// This file is generated from a similarly-named Perl script in the BoringSSL // source tree. Do not edit by hand. #if !defined(__has_feature) #define __has_feature(x) 0 #endif #if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM) #define OPENSSL_NO_ASM #endif #if !defined(OPENSSL_NO_ASM) #if defined(__aarch64__) #if defined(BORINGSSL_PREFIX) #include #endif #include .text .globl gcm_init_neon .def gcm_init_neon .type 32 .endef .align 4 gcm_init_neon: AARCH64_VALID_CALL_TARGET // This function is adapted from gcm_init_v8. xC2 is t3. ld1 {v17.2d}, [x1] // load H movi v19.16b, #0xe1 shl v19.2d, v19.2d, #57 // 0xc2.0 ext v3.16b, v17.16b, v17.16b, #8 ushr v18.2d, v19.2d, #63 dup v17.4s, v17.s[1] ext v16.16b, v18.16b, v19.16b, #8 // t0=0xc2....01 ushr v18.2d, v3.2d, #63 sshr v17.4s, v17.4s, #31 // broadcast carry bit and v18.16b, v18.16b, v16.16b shl v3.2d, v3.2d, #1 ext v18.16b, v18.16b, v18.16b, #8 and v16.16b, v16.16b, v17.16b orr v3.16b, v3.16b, v18.16b // H<<<=1 eor v5.16b, v3.16b, v16.16b // twisted H st1 {v5.2d}, [x0] // store Htable[0] ret .globl gcm_gmult_neon .def gcm_gmult_neon .type 32 .endef .align 4 gcm_gmult_neon: AARCH64_VALID_CALL_TARGET ld1 {v3.16b}, [x0] // load Xi ld1 {v5.1d}, [x1], #8 // load twisted H ld1 {v6.1d}, [x1] adrp x9, Lmasks // load constants add x9, x9, :lo12:Lmasks ld1 {v24.2d, v25.2d}, [x9] rev64 v3.16b, v3.16b // byteswap Xi ext v3.16b, v3.16b, v3.16b, #8 eor v7.8b, v5.8b, v6.8b // Karatsuba pre-processing mov x3, #16 b Lgmult_neon .globl gcm_ghash_neon .def gcm_ghash_neon .type 32 .endef .align 4 gcm_ghash_neon: AARCH64_VALID_CALL_TARGET ld1 {v0.16b}, [x0] // load Xi ld1 {v5.1d}, [x1], #8 // load twisted H ld1 {v6.1d}, [x1] adrp x9, Lmasks // load constants add x9, x9, :lo12:Lmasks ld1 {v24.2d, v25.2d}, [x9] rev64 v0.16b, v0.16b // byteswap Xi ext v0.16b, v0.16b, v0.16b, #8 eor v7.8b, v5.8b, v6.8b // Karatsuba pre-processing Loop_neon: ld1 {v3.16b}, [x2], #16 // load inp rev64 v3.16b, v3.16b // byteswap inp ext v3.16b, v3.16b, v3.16b, #8 eor v3.16b, v3.16b, v0.16b // inp ^= Xi Lgmult_neon: // Split the input into v3 and v4. (The upper halves are unused, // so it is okay to leave them alone.) ins v4.d[0], v3.d[1] ext v16.8b, v5.8b, v5.8b, #1 // A1 pmull v16.8h, v16.8b, v3.8b // F = A1*B ext v0.8b, v3.8b, v3.8b, #1 // B1 pmull v0.8h, v5.8b, v0.8b // E = A*B1 ext v17.8b, v5.8b, v5.8b, #2 // A2 pmull v17.8h, v17.8b, v3.8b // H = A2*B ext v19.8b, v3.8b, v3.8b, #2 // B2 pmull v19.8h, v5.8b, v19.8b // G = A*B2 ext v18.8b, v5.8b, v5.8b, #3 // A3 eor v16.16b, v16.16b, v0.16b // L = E + F pmull v18.8h, v18.8b, v3.8b // J = A3*B ext v0.8b, v3.8b, v3.8b, #3 // B3 eor v17.16b, v17.16b, v19.16b // M = G + H pmull v0.8h, v5.8b, v0.8b // I = A*B3 // Here we diverge from the 32-bit version. It computes the following // (instructions reordered for clarity): // // veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L) // vand $t0#hi, $t0#hi, $k48 // veor $t0#lo, $t0#lo, $t0#hi // // veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M) // vand $t1#hi, $t1#hi, $k32 // veor $t1#lo, $t1#lo, $t1#hi // // veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N) // vand $t2#hi, $t2#hi, $k16 // veor $t2#lo, $t2#lo, $t2#hi // // veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K) // vmov.i64 $t3#hi, #0 // // $kN is a mask with the bottom N bits set. AArch64 cannot compute on // upper halves of SIMD registers, so we must split each half into // separate registers. To compensate, we pair computations up and // parallelize. ext v19.8b, v3.8b, v3.8b, #4 // B4 eor v18.16b, v18.16b, v0.16b // N = I + J pmull v19.8h, v5.8b, v19.8b // K = A*B4 // This can probably be scheduled more efficiently. For now, we just // pair up independent instructions. zip1 v20.2d, v16.2d, v17.2d zip1 v22.2d, v18.2d, v19.2d zip2 v21.2d, v16.2d, v17.2d zip2 v23.2d, v18.2d, v19.2d eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b and v21.16b, v21.16b, v24.16b and v23.16b, v23.16b, v25.16b eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b zip1 v16.2d, v20.2d, v21.2d zip1 v18.2d, v22.2d, v23.2d zip2 v17.2d, v20.2d, v21.2d zip2 v19.2d, v22.2d, v23.2d ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8 ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16 pmull v0.8h, v5.8b, v3.8b // D = A*B ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32 ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24 eor v16.16b, v16.16b, v17.16b eor v18.16b, v18.16b, v19.16b eor v0.16b, v0.16b, v16.16b eor v0.16b, v0.16b, v18.16b eor v3.8b, v3.8b, v4.8b // Karatsuba pre-processing ext v16.8b, v7.8b, v7.8b, #1 // A1 pmull v16.8h, v16.8b, v3.8b // F = A1*B ext v1.8b, v3.8b, v3.8b, #1 // B1 pmull v1.8h, v7.8b, v1.8b // E = A*B1 ext v17.8b, v7.8b, v7.8b, #2 // A2 pmull v17.8h, v17.8b, v3.8b // H = A2*B ext v19.8b, v3.8b, v3.8b, #2 // B2 pmull v19.8h, v7.8b, v19.8b // G = A*B2 ext v18.8b, v7.8b, v7.8b, #3 // A3 eor v16.16b, v16.16b, v1.16b // L = E + F pmull v18.8h, v18.8b, v3.8b // J = A3*B ext v1.8b, v3.8b, v3.8b, #3 // B3 eor v17.16b, v17.16b, v19.16b // M = G + H pmull v1.8h, v7.8b, v1.8b // I = A*B3 // Here we diverge from the 32-bit version. It computes the following // (instructions reordered for clarity): // // veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L) // vand $t0#hi, $t0#hi, $k48 // veor $t0#lo, $t0#lo, $t0#hi // // veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M) // vand $t1#hi, $t1#hi, $k32 // veor $t1#lo, $t1#lo, $t1#hi // // veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N) // vand $t2#hi, $t2#hi, $k16 // veor $t2#lo, $t2#lo, $t2#hi // // veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K) // vmov.i64 $t3#hi, #0 // // $kN is a mask with the bottom N bits set. AArch64 cannot compute on // upper halves of SIMD registers, so we must split each half into // separate registers. To compensate, we pair computations up and // parallelize. ext v19.8b, v3.8b, v3.8b, #4 // B4 eor v18.16b, v18.16b, v1.16b // N = I + J pmull v19.8h, v7.8b, v19.8b // K = A*B4 // This can probably be scheduled more efficiently. For now, we just // pair up independent instructions. zip1 v20.2d, v16.2d, v17.2d zip1 v22.2d, v18.2d, v19.2d zip2 v21.2d, v16.2d, v17.2d zip2 v23.2d, v18.2d, v19.2d eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b and v21.16b, v21.16b, v24.16b and v23.16b, v23.16b, v25.16b eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b zip1 v16.2d, v20.2d, v21.2d zip1 v18.2d, v22.2d, v23.2d zip2 v17.2d, v20.2d, v21.2d zip2 v19.2d, v22.2d, v23.2d ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8 ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16 pmull v1.8h, v7.8b, v3.8b // D = A*B ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32 ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24 eor v16.16b, v16.16b, v17.16b eor v18.16b, v18.16b, v19.16b eor v1.16b, v1.16b, v16.16b eor v1.16b, v1.16b, v18.16b ext v16.8b, v6.8b, v6.8b, #1 // A1 pmull v16.8h, v16.8b, v4.8b // F = A1*B ext v2.8b, v4.8b, v4.8b, #1 // B1 pmull v2.8h, v6.8b, v2.8b // E = A*B1 ext v17.8b, v6.8b, v6.8b, #2 // A2 pmull v17.8h, v17.8b, v4.8b // H = A2*B ext v19.8b, v4.8b, v4.8b, #2 // B2 pmull v19.8h, v6.8b, v19.8b // G = A*B2 ext v18.8b, v6.8b, v6.8b, #3 // A3 eor v16.16b, v16.16b, v2.16b // L = E + F pmull v18.8h, v18.8b, v4.8b // J = A3*B ext v2.8b, v4.8b, v4.8b, #3 // B3 eor v17.16b, v17.16b, v19.16b // M = G + H pmull v2.8h, v6.8b, v2.8b // I = A*B3 // Here we diverge from the 32-bit version. It computes the following // (instructions reordered for clarity): // // veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L) // vand $t0#hi, $t0#hi, $k48 // veor $t0#lo, $t0#lo, $t0#hi // // veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M) // vand $t1#hi, $t1#hi, $k32 // veor $t1#lo, $t1#lo, $t1#hi // // veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N) // vand $t2#hi, $t2#hi, $k16 // veor $t2#lo, $t2#lo, $t2#hi // // veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K) // vmov.i64 $t3#hi, #0 // // $kN is a mask with the bottom N bits set. AArch64 cannot compute on // upper halves of SIMD registers, so we must split each half into // separate registers. To compensate, we pair computations up and // parallelize. ext v19.8b, v4.8b, v4.8b, #4 // B4 eor v18.16b, v18.16b, v2.16b // N = I + J pmull v19.8h, v6.8b, v19.8b // K = A*B4 // This can probably be scheduled more efficiently. For now, we just // pair up independent instructions. zip1 v20.2d, v16.2d, v17.2d zip1 v22.2d, v18.2d, v19.2d zip2 v21.2d, v16.2d, v17.2d zip2 v23.2d, v18.2d, v19.2d eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b and v21.16b, v21.16b, v24.16b and v23.16b, v23.16b, v25.16b eor v20.16b, v20.16b, v21.16b eor v22.16b, v22.16b, v23.16b zip1 v16.2d, v20.2d, v21.2d zip1 v18.2d, v22.2d, v23.2d zip2 v17.2d, v20.2d, v21.2d zip2 v19.2d, v22.2d, v23.2d ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8 ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16 pmull v2.8h, v6.8b, v4.8b // D = A*B ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32 ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24 eor v16.16b, v16.16b, v17.16b eor v18.16b, v18.16b, v19.16b eor v2.16b, v2.16b, v16.16b eor v2.16b, v2.16b, v18.16b ext v16.16b, v0.16b, v2.16b, #8 eor v1.16b, v1.16b, v0.16b // Karatsuba post-processing eor v1.16b, v1.16b, v2.16b eor v1.16b, v1.16b, v16.16b // Xm overlaps Xh.lo and Xl.hi ins v0.d[1], v1.d[0] // Xh|Xl - 256-bit result // This is a no-op due to the ins instruction below. // ins v2.d[0], v1.d[1] // equivalent of reduction_avx from ghash-x86_64.pl shl v17.2d, v0.2d, #57 // 1st phase shl v18.2d, v0.2d, #62 eor v18.16b, v18.16b, v17.16b // shl v17.2d, v0.2d, #63 eor v18.16b, v18.16b, v17.16b // // Note Xm contains {Xl.d[1], Xh.d[0]}. eor v18.16b, v18.16b, v1.16b ins v0.d[1], v18.d[0] // Xl.d[1] ^= t2.d[0] ins v2.d[0], v18.d[1] // Xh.d[0] ^= t2.d[1] ushr v18.2d, v0.2d, #1 // 2nd phase eor v2.16b, v2.16b,v0.16b eor v0.16b, v0.16b,v18.16b // ushr v18.2d, v18.2d, #6 ushr v0.2d, v0.2d, #1 // eor v0.16b, v0.16b, v2.16b // eor v0.16b, v0.16b, v18.16b // subs x3, x3, #16 bne Loop_neon rev64 v0.16b, v0.16b // byteswap Xi and write ext v0.16b, v0.16b, v0.16b, #8 st1 {v0.16b}, [x0] ret .section .rodata .align 4 Lmasks: .quad 0x0000ffffffffffff // k48 .quad 0x00000000ffffffff // k32 .quad 0x000000000000ffff // k16 .quad 0x0000000000000000 // k0 .byte 71,72,65,83,72,32,102,111,114,32,65,82,77,118,56,44,32,100,101,114,105,118,101,100,32,102,114,111,109,32,65,82,77,118,52,32,118,101,114,115,105,111,110,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0 .align 2 .align 2 #endif #endif // !OPENSSL_NO_ASM