/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Drawing tests. *//*--------------------------------------------------------------------*/ #include "es31fDrawTests.hpp" #include "deRandom.hpp" #include "deStringUtil.hpp" #include "deMemory.h" #include "tcuRenderTarget.hpp" #include "tcuVectorUtil.hpp" #include "sglrGLContext.hpp" #include "glsDrawTest.hpp" #include "gluStrUtil.hpp" #include "gluPixelTransfer.hpp" #include "gluCallLogWrapper.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include namespace deqp { namespace gles31 { namespace Functional { namespace { enum TestIterationType { TYPE_DRAW_COUNT, // !< test with 1, 5, and 25 primitives TYPE_INSTANCE_COUNT, // !< test with 1, 4, and 11 instances TYPE_LAST }; static const char* s_commonVertexShaderSource = "#version 310 es\n" "in highp vec4 a_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" "}\n"; static const char* s_commonFragmentShaderSource = "#version 310 es\n" "layout(location = 0) out highp vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" "}\n"; static const char* s_colorVertexShaderSource = "#version 310 es\n" "in highp vec4 a_position;\n" "in highp vec4 a_color;\n" "out highp vec4 v_color;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_color = a_color;\n" "}\n"; static const char* s_colorFragmentShaderSource = "#version 310 es\n" "layout(location = 0) out highp vec4 fragColor;\n" "in highp vec4 v_color;\n" "void main (void)\n" "{\n" " fragColor = v_color;\n" "}\n"; struct DrawElementsCommand { deUint32 count; deUint32 primCount; deUint32 firstIndex; deInt32 baseVertex; deUint32 reservedMustBeZero; }; DE_STATIC_ASSERT(5 * sizeof(deUint32) == sizeof(DrawElementsCommand)); // tight packing struct DrawArraysCommand { deUint32 count; deUint32 primCount; deUint32 first; deUint32 reservedMustBeZero; }; DE_STATIC_ASSERT(4 * sizeof(deUint32) == sizeof(DrawArraysCommand)); // tight packing // Verifies image contains only yellow or greeen, or a linear combination // of these colors. static bool verifyImageYellowGreen (const tcu::Surface& image, tcu::TestLog& log) { using tcu::TestLog; const int colorThreshold = 20; tcu::Surface error (image.getWidth(), image.getHeight()); bool isOk = true; for (int y = 0; y < image.getHeight(); y++) for (int x = 0; x < image.getWidth(); x++) { const tcu::RGBA pixel = image.getPixel(x, y); bool pixelOk = true; // Any pixel with !(G ~= 255) is faulty (not a linear combinations of green and yellow) if (de::abs(pixel.getGreen() - 255) > colorThreshold) pixelOk = false; // Any pixel with !(B ~= 0) is faulty (not a linear combinations of green and yellow) if (de::abs(pixel.getBlue() - 0) > colorThreshold) pixelOk = false; error.setPixel(x, y, (pixelOk) ? (tcu::RGBA(0, 255, 0, 255)) : (tcu::RGBA(255, 0, 0, 255))); isOk = isOk && pixelOk; } if (!isOk) { log << TestLog::Message << "Image verification failed." << TestLog::EndMessage; log << TestLog::ImageSet("Verfication result", "Result of rendering") << TestLog::Image("Result", "Result", image) << TestLog::Image("ErrorMask", "Error mask", error) << TestLog::EndImageSet; } else { log << TestLog::ImageSet("Verfication result", "Result of rendering") << TestLog::Image("Result", "Result", image) << TestLog::EndImageSet; } return isOk; } static void addTestIterations (gls::DrawTest* test, gls::DrawTestSpec& spec, TestIterationType type) { if (type == TYPE_DRAW_COUNT) { spec.primitiveCount = 1; test->addIteration(spec, "draw count = 1"); spec.primitiveCount = 5; test->addIteration(spec, "draw count = 5"); spec.primitiveCount = 25; test->addIteration(spec, "draw count = 25"); } else if (type == TYPE_INSTANCE_COUNT) { spec.instanceCount = 1; test->addIteration(spec, "instance count = 1"); spec.instanceCount = 4; test->addIteration(spec, "instance count = 4"); spec.instanceCount = 11; test->addIteration(spec, "instance count = 11"); } else DE_ASSERT(false); } static void genBasicSpec (gls::DrawTestSpec& spec, glu::ContextType contextType, gls::DrawTestSpec::DrawMethod method) { spec.apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3, 1) : contextType.getAPI(); spec.primitive = gls::DrawTestSpec::PRIMITIVE_TRIANGLES; spec.primitiveCount = 5; spec.drawMethod = method; spec.indexType = gls::DrawTestSpec::INDEXTYPE_LAST; spec.indexPointerOffset = 0; spec.indexStorage = gls::DrawTestSpec::STORAGE_LAST; spec.first = 0; spec.indexMin = 0; spec.indexMax = 0; spec.instanceCount = 1; spec.indirectOffset = 0; spec.attribs.resize(2); spec.attribs[0].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[0].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[0].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[0].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[0].componentCount = 4; spec.attribs[0].offset = 0; spec.attribs[0].stride = 0; spec.attribs[0].normalize = false; spec.attribs[0].instanceDivisor = 0; spec.attribs[0].useDefaultAttribute = false; spec.attribs[1].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[1].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[1].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[1].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[1].componentCount = 2; spec.attribs[1].offset = 0; spec.attribs[1].stride = 0; spec.attribs[1].normalize = false; spec.attribs[1].instanceDivisor = 0; spec.attribs[1].useDefaultAttribute = false; } static std::string sizeToString (int size) { if (size < 1024) return de::toString(size) + " byte(s)"; if (size < 1024*1024) return de::toString(size / 1024) + " KB"; return de::toString(size / 1024 / 1024) + " MB"; } class AttributeGroup : public TestCaseGroup { public: AttributeGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod, gls::DrawTestSpec::Primitive primitive, gls::DrawTestSpec::IndexType indexType, gls::DrawTestSpec::Storage indexStorage); ~AttributeGroup (void); void init (void); private: gls::DrawTestSpec::DrawMethod m_method; gls::DrawTestSpec::Primitive m_primitive; gls::DrawTestSpec::IndexType m_indexType; gls::DrawTestSpec::Storage m_indexStorage; }; AttributeGroup::AttributeGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod, gls::DrawTestSpec::Primitive primitive, gls::DrawTestSpec::IndexType indexType, gls::DrawTestSpec::Storage indexStorage) : TestCaseGroup (context, name, descr) , m_method (drawMethod) , m_primitive (primitive) , m_indexType (indexType) , m_indexStorage (indexStorage) { } AttributeGroup::~AttributeGroup (void) { } void AttributeGroup::init (void) { // Single attribute { gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), "single_attribute", "Single attribute array."); glu::ContextType contextType = m_context.getRenderContext().getType(); gls::DrawTestSpec spec; spec.apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3, 1) : contextType.getAPI(); spec.primitive = m_primitive; spec.primitiveCount = 5; spec.drawMethod = m_method; spec.indexType = m_indexType; spec.indexPointerOffset = 0; spec.indexStorage = m_indexStorage; spec.first = 0; spec.indexMin = 0; spec.indexMax = 0; spec.instanceCount = 1; spec.indirectOffset = 0; spec.attribs.resize(1); spec.attribs[0].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[0].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[0].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[0].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[0].componentCount = 2; spec.attribs[0].offset = 0; spec.attribs[0].stride = 0; spec.attribs[0].normalize = false; spec.attribs[0].instanceDivisor = 0; spec.attribs[0].useDefaultAttribute = false; addTestIterations(test, spec, TYPE_DRAW_COUNT); this->addChild(test); } // Multiple attribute { gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), "multiple_attributes", "Multiple attribute arrays."); glu::ContextType contextType = m_context.getRenderContext().getType(); gls::DrawTestSpec spec; spec.apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3, 1) : contextType.getAPI(); spec.primitive = m_primitive; spec.primitiveCount = 5; spec.drawMethod = m_method; spec.indexType = m_indexType; spec.indexPointerOffset = 0; spec.indexStorage = m_indexStorage; spec.first = 0; spec.indexMin = 0; spec.indexMax = 0; spec.instanceCount = 1; spec.indirectOffset = 0; spec.attribs.resize(2); spec.attribs[0].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[0].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[0].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[0].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[0].componentCount = 4; spec.attribs[0].offset = 0; spec.attribs[0].stride = 0; spec.attribs[0].normalize = false; spec.attribs[0].instanceDivisor = 0; spec.attribs[0].useDefaultAttribute = false; spec.attribs[1].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[1].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[1].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[1].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[1].componentCount = 2; spec.attribs[1].offset = 0; spec.attribs[1].stride = 0; spec.attribs[1].normalize = false; spec.attribs[1].instanceDivisor = 0; spec.attribs[1].useDefaultAttribute = false; addTestIterations(test, spec, TYPE_DRAW_COUNT); this->addChild(test); } // Multiple attribute, second one divided { gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), "instanced_attributes", "Instanced attribute array."); glu::ContextType contextType = m_context.getRenderContext().getType(); gls::DrawTestSpec spec; spec.apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3, 1) : contextType.getAPI(); spec.primitive = m_primitive; spec.primitiveCount = 5; spec.drawMethod = m_method; spec.indexType = m_indexType; spec.indexPointerOffset = 0; spec.indexStorage = m_indexStorage; spec.first = 0; spec.indexMin = 0; spec.indexMax = 0; spec.instanceCount = 1; spec.indirectOffset = 0; spec.attribs.resize(3); spec.attribs[0].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[0].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[0].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[0].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[0].componentCount = 4; spec.attribs[0].offset = 0; spec.attribs[0].stride = 0; spec.attribs[0].normalize = false; spec.attribs[0].instanceDivisor = 0; spec.attribs[0].useDefaultAttribute = false; // Add another position component so the instances wont be drawn on each other spec.attribs[1].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[1].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[1].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[1].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[1].componentCount = 2; spec.attribs[1].offset = 0; spec.attribs[1].stride = 0; spec.attribs[1].normalize = false; spec.attribs[1].instanceDivisor = 1; spec.attribs[1].useDefaultAttribute = false; spec.attribs[1].additionalPositionAttribute = true; // Instanced color spec.attribs[2].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[2].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[2].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[2].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[2].componentCount = 3; spec.attribs[2].offset = 0; spec.attribs[2].stride = 0; spec.attribs[2].normalize = false; spec.attribs[2].instanceDivisor = 1; spec.attribs[2].useDefaultAttribute = false; addTestIterations(test, spec, TYPE_INSTANCE_COUNT); this->addChild(test); } // Multiple attribute, second one default { gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), "default_attribute", "Attribute specified with glVertexAttrib*."); glu::ContextType contextType = m_context.getRenderContext().getType(); gls::DrawTestSpec spec; spec.apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3, 1) : contextType.getAPI(); spec.primitive = m_primitive; spec.primitiveCount = 5; spec.drawMethod = m_method; spec.indexType = m_indexType; spec.indexPointerOffset = 0; spec.indexStorage = m_indexStorage; spec.first = 0; spec.indexMin = 0; spec.indexMax = 0; spec.instanceCount = 1; spec.indirectOffset = 0; spec.attribs.resize(2); spec.attribs[0].inputType = gls::DrawTestSpec::INPUTTYPE_FLOAT; spec.attribs[0].outputType = gls::DrawTestSpec::OUTPUTTYPE_VEC2; spec.attribs[0].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[0].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[0].componentCount = 2; spec.attribs[0].offset = 0; spec.attribs[0].stride = 0; spec.attribs[0].normalize = false; spec.attribs[0].instanceDivisor = 0; spec.attribs[0].useDefaultAttribute = false; struct IOPair { gls::DrawTestSpec::InputType input; gls::DrawTestSpec::OutputType output; int componentCount; } iopairs[] = { { gls::DrawTestSpec::INPUTTYPE_FLOAT, gls::DrawTestSpec::OUTPUTTYPE_VEC2, 4 }, { gls::DrawTestSpec::INPUTTYPE_FLOAT, gls::DrawTestSpec::OUTPUTTYPE_VEC4, 2 }, { gls::DrawTestSpec::INPUTTYPE_INT, gls::DrawTestSpec::OUTPUTTYPE_IVEC3, 4 }, { gls::DrawTestSpec::INPUTTYPE_UNSIGNED_INT, gls::DrawTestSpec::OUTPUTTYPE_UVEC2, 4 }, }; for (int ioNdx = 0; ioNdx < DE_LENGTH_OF_ARRAY(iopairs); ++ioNdx) { const std::string desc = gls::DrawTestSpec::inputTypeToString(iopairs[ioNdx].input) + de::toString(iopairs[ioNdx].componentCount) + " to " + gls::DrawTestSpec::outputTypeToString(iopairs[ioNdx].output); spec.attribs[1].inputType = iopairs[ioNdx].input; spec.attribs[1].outputType = iopairs[ioNdx].output; spec.attribs[1].storage = gls::DrawTestSpec::STORAGE_BUFFER; spec.attribs[1].usage = gls::DrawTestSpec::USAGE_STATIC_DRAW; spec.attribs[1].componentCount = iopairs[ioNdx].componentCount; spec.attribs[1].offset = 0; spec.attribs[1].stride = 0; spec.attribs[1].normalize = false; spec.attribs[1].instanceDivisor = 0; spec.attribs[1].useDefaultAttribute = true; test->addIteration(spec, desc.c_str()); } this->addChild(test); } } class IndexGroup : public TestCaseGroup { public: IndexGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod); ~IndexGroup (void); void init (void); private: gls::DrawTestSpec::DrawMethod m_method; }; IndexGroup::IndexGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod) : TestCaseGroup (context, name, descr) , m_method (drawMethod) { } IndexGroup::~IndexGroup (void) { } void IndexGroup::init (void) { struct IndexTest { gls::DrawTestSpec::IndexType type; int offsets[3]; }; const IndexTest tests[] = { { gls::DrawTestSpec::INDEXTYPE_BYTE, { 0, 1, -1 } }, { gls::DrawTestSpec::INDEXTYPE_SHORT, { 0, 2, -1 } }, { gls::DrawTestSpec::INDEXTYPE_INT, { 0, 4, -1 } }, }; gls::DrawTestSpec spec; genBasicSpec(spec, m_context.getRenderContext().getType(), m_method); spec.indexStorage = gls::DrawTestSpec::STORAGE_BUFFER; for (int testNdx = 0; testNdx < DE_LENGTH_OF_ARRAY(tests); ++testNdx) { const IndexTest& indexTest = tests[testNdx]; const std::string name = std::string("index_") + gls::DrawTestSpec::indexTypeToString(indexTest.type); const std::string desc = std::string("index ") + gls::DrawTestSpec::indexTypeToString(indexTest.type); gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), name.c_str(), desc.c_str()); spec.indexType = indexTest.type; for (int iterationNdx = 0; iterationNdx < DE_LENGTH_OF_ARRAY(indexTest.offsets) && indexTest.offsets[iterationNdx] != -1; ++iterationNdx) { const std::string iterationDesc = std::string("first vertex ") + de::toString(indexTest.offsets[iterationNdx] / gls::DrawTestSpec::indexTypeSize(indexTest.type)); spec.indexPointerOffset = indexTest.offsets[iterationNdx]; test->addIteration(spec, iterationDesc.c_str()); } addChild(test); } } class BaseVertexGroup : public TestCaseGroup { public: BaseVertexGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod); ~BaseVertexGroup (void); void init (void); private: gls::DrawTestSpec::DrawMethod m_method; }; BaseVertexGroup::BaseVertexGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod) : TestCaseGroup (context, name, descr) , m_method (drawMethod) { } BaseVertexGroup::~BaseVertexGroup (void) { } void BaseVertexGroup::init (void) { struct IndexTest { bool positiveBase; gls::DrawTestSpec::IndexType type; int baseVertex[2]; }; const IndexTest tests[] = { { true, gls::DrawTestSpec::INDEXTYPE_BYTE, { 1, 2 } }, { true, gls::DrawTestSpec::INDEXTYPE_SHORT, { 1, 2 } }, { true, gls::DrawTestSpec::INDEXTYPE_INT, { 1, 2 } }, { false, gls::DrawTestSpec::INDEXTYPE_BYTE, { -1, -2 } }, { false, gls::DrawTestSpec::INDEXTYPE_SHORT, { -1, -2 } }, { false, gls::DrawTestSpec::INDEXTYPE_INT, { -1, -2 } }, }; gls::DrawTestSpec spec; genBasicSpec(spec, m_context.getRenderContext().getType(), m_method); spec.indexStorage = gls::DrawTestSpec::STORAGE_BUFFER; for (int testNdx = 0; testNdx < DE_LENGTH_OF_ARRAY(tests); ++testNdx) { const IndexTest& indexTest = tests[testNdx]; const std::string name = std::string("index_") + (indexTest.positiveBase ? "" : "neg_") + gls::DrawTestSpec::indexTypeToString(indexTest.type); const std::string desc = std::string("index ") + gls::DrawTestSpec::indexTypeToString(indexTest.type); gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), name.c_str(), desc.c_str()); spec.indexType = indexTest.type; for (int iterationNdx = 0; iterationNdx < DE_LENGTH_OF_ARRAY(indexTest.baseVertex); ++iterationNdx) { const std::string iterationDesc = std::string("base vertex ") + de::toString(indexTest.baseVertex[iterationNdx]); spec.baseVertex = indexTest.baseVertex[iterationNdx]; test->addIteration(spec, iterationDesc.c_str()); } addChild(test); } } class FirstGroup : public TestCaseGroup { public: FirstGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod); ~FirstGroup (void); void init (void); private: gls::DrawTestSpec::DrawMethod m_method; }; FirstGroup::FirstGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod) : TestCaseGroup (context, name, descr) , m_method (drawMethod) { } FirstGroup::~FirstGroup (void) { } void FirstGroup::init (void) { const int firsts[] = { 1, 3, 17 }; gls::DrawTestSpec spec; genBasicSpec(spec, m_context.getRenderContext().getType(), m_method); for (int firstNdx = 0; firstNdx < DE_LENGTH_OF_ARRAY(firsts); ++firstNdx) { const std::string name = std::string("first_") + de::toString(firsts[firstNdx]); const std::string desc = std::string("first ") + de::toString(firsts[firstNdx]); gls::DrawTest* test = new gls::DrawTest(m_testCtx, m_context.getRenderContext(), name.c_str(), desc.c_str()); spec.first = firsts[firstNdx]; addTestIterations(test, spec, TYPE_DRAW_COUNT); this->addChild(test); } } class MethodGroup : public TestCaseGroup { public: MethodGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod); ~MethodGroup (void); void init (void); private: gls::DrawTestSpec::DrawMethod m_method; }; MethodGroup::MethodGroup (Context& context, const char* name, const char* descr, gls::DrawTestSpec::DrawMethod drawMethod) : TestCaseGroup (context, name, descr) , m_method (drawMethod) { } MethodGroup::~MethodGroup (void) { } void MethodGroup::init (void) { const bool indexed = (m_method == gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_INDIRECT); const bool hasFirst = (m_method == gls::DrawTestSpec::DRAWMETHOD_DRAWARRAYS_INDIRECT); const gls::DrawTestSpec::Primitive primitive[] = { gls::DrawTestSpec::PRIMITIVE_POINTS, gls::DrawTestSpec::PRIMITIVE_TRIANGLES, gls::DrawTestSpec::PRIMITIVE_TRIANGLE_FAN, gls::DrawTestSpec::PRIMITIVE_TRIANGLE_STRIP, gls::DrawTestSpec::PRIMITIVE_LINES, gls::DrawTestSpec::PRIMITIVE_LINE_STRIP, gls::DrawTestSpec::PRIMITIVE_LINE_LOOP }; if (hasFirst) { // First-tests this->addChild(new FirstGroup(m_context, "first", "First tests", m_method)); } if (indexed) { // Index-tests this->addChild(new IndexGroup(m_context, "indices", "Index tests", m_method)); this->addChild(new BaseVertexGroup(m_context, "base_vertex", "Base vertex tests", m_method)); } for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(primitive); ++ndx) { const std::string name = gls::DrawTestSpec::primitiveToString(primitive[ndx]); const std::string desc = gls::DrawTestSpec::primitiveToString(primitive[ndx]); this->addChild(new AttributeGroup(m_context, name.c_str(), desc.c_str(), m_method, primitive[ndx], gls::DrawTestSpec::INDEXTYPE_SHORT, gls::DrawTestSpec::STORAGE_BUFFER)); } } class GridProgram : public sglr::ShaderProgram { public: GridProgram (void); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; }; GridProgram::GridProgram (void) : sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_offset", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource("#version 310 es\n" "in highp vec4 a_position;\n" "in highp vec4 a_offset;\n" "in highp vec4 a_color;\n" "out highp vec4 v_color;\n" "void main(void)\n" "{\n" " gl_Position = a_position + a_offset;\n" " v_color = a_color;\n" "}\n") << sglr::pdec::FragmentSource( "#version 310 es\n" "layout(location = 0) out highp vec4 dEQP_FragColor;\n" "in highp vec4 v_color;\n" "void main(void)\n" "{\n" " dEQP_FragColor = v_color;\n" "}\n")) { } void GridProgram::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx) + rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[2], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void GridProgram::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readTriangleVarying(packets[packetNdx], context, 0, fragNdx)); } class InstancedGridRenderTest : public TestCase { public: InstancedGridRenderTest (Context& context, const char* name, const char* desc, int gridSide, bool useIndices); ~InstancedGridRenderTest (void); IterateResult iterate (void); private: void renderTo (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dst); const int m_gridSide; const bool m_useIndices; }; InstancedGridRenderTest::InstancedGridRenderTest (Context& context, const char* name, const char* desc, int gridSide, bool useIndices) : TestCase (context, name, desc) , m_gridSide (gridSide) , m_useIndices (useIndices) { } InstancedGridRenderTest::~InstancedGridRenderTest (void) { } InstancedGridRenderTest::IterateResult InstancedGridRenderTest::iterate (void) { const int renderTargetWidth = de::min(1024, m_context.getRenderTarget().getWidth()); const int renderTargetHeight = de::min(1024, m_context.getRenderTarget().getHeight()); sglr::GLContext ctx (m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS | sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(0, 0, renderTargetWidth, renderTargetHeight)); tcu::Surface surface (renderTargetWidth, renderTargetHeight); GridProgram program; // render renderTo(ctx, program, surface); // verify image // \note the green/yellow pattern is only for clarity. The test will only verify that all instances were drawn by looking for anything non-green/yellow. if (verifyImageYellowGreen(surface, m_testCtx.getLog())) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Result image invalid"); return STOP; } void InstancedGridRenderTest::renderTo (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dst) { const tcu::Vec4 green (0, 1, 0, 1); const tcu::Vec4 yellow (1, 1, 0, 1); deUint32 vaoID = 0; deUint32 positionBuf = 0; deUint32 offsetBuf = 0; deUint32 colorBuf = 0; deUint32 indexBuf = 0; deUint32 drawIndirectBuf= 0; deUint32 programID = ctx.createProgram(&program); deInt32 posLocation = ctx.getAttribLocation(programID, "a_position"); deInt32 offsetLocation = ctx.getAttribLocation(programID, "a_offset"); deInt32 colorLocation = ctx.getAttribLocation(programID, "a_color"); float cellW = 2.0f / (float)m_gridSide; float cellH = 2.0f / (float)m_gridSide; const tcu::Vec4 vertexPositions[] = { tcu::Vec4(0, 0, 0, 1), tcu::Vec4(cellW, 0, 0, 1), tcu::Vec4(0, cellH, 0, 1), tcu::Vec4(0, cellH, 0, 1), tcu::Vec4(cellW, 0, 0, 1), tcu::Vec4(cellW, cellH, 0, 1), }; const deUint16 indices[] = { 0, 4, 3, 2, 1, 5 }; std::vector offsets; for (int x = 0; x < m_gridSide; ++x) for (int y = 0; y < m_gridSide; ++y) offsets.push_back(tcu::Vec4((float)x * cellW - 1.0f, (float)y * cellW - 1.0f, 0, 0)); std::vector colors; for (int x = 0; x < m_gridSide; ++x) for (int y = 0; y < m_gridSide; ++y) colors.push_back(((x + y) % 2 == 0) ? (green) : (yellow)); ctx.genVertexArrays(1, &vaoID); ctx.bindVertexArray(vaoID); ctx.genBuffers(1, &positionBuf); ctx.bindBuffer(GL_ARRAY_BUFFER, positionBuf); ctx.bufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW); ctx.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); ctx.vertexAttribDivisor(posLocation, 0); ctx.enableVertexAttribArray(posLocation); ctx.genBuffers(1, &offsetBuf); ctx.bindBuffer(GL_ARRAY_BUFFER, offsetBuf); ctx.bufferData(GL_ARRAY_BUFFER, offsets.size() * sizeof(tcu::Vec4), &offsets[0], GL_STATIC_DRAW); ctx.vertexAttribPointer(offsetLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); ctx.vertexAttribDivisor(offsetLocation, 1); ctx.enableVertexAttribArray(offsetLocation); ctx.genBuffers(1, &colorBuf); ctx.bindBuffer(GL_ARRAY_BUFFER, colorBuf); ctx.bufferData(GL_ARRAY_BUFFER, colors.size() * sizeof(tcu::Vec4), &colors[0], GL_STATIC_DRAW); ctx.vertexAttribPointer(colorLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); ctx.vertexAttribDivisor(colorLocation, 1); ctx.enableVertexAttribArray(colorLocation); if (m_useIndices) { ctx.genBuffers(1, &indexBuf); ctx.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf); ctx.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); } ctx.genBuffers(1, &drawIndirectBuf); ctx.bindBuffer(GL_DRAW_INDIRECT_BUFFER, drawIndirectBuf); if (m_useIndices) { DrawElementsCommand command; command.count = 6; command.primCount = m_gridSide * m_gridSide; command.firstIndex = 0; command.baseVertex = 0; command.reservedMustBeZero = 0; ctx.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(command), &command, GL_STATIC_DRAW); } else { DrawArraysCommand command; command.count = 6; command.primCount = m_gridSide * m_gridSide; command.first = 0; command.reservedMustBeZero = 0; ctx.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(command), &command, GL_STATIC_DRAW); } ctx.clearColor(0, 0, 0, 1); ctx.clear(GL_COLOR_BUFFER_BIT); ctx.viewport(0, 0, dst.getWidth(), dst.getHeight()); ctx.useProgram(programID); if (m_useIndices) ctx.drawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, DE_NULL); else ctx.drawArraysIndirect(GL_TRIANGLES, DE_NULL); ctx.useProgram(0); glu::checkError(ctx.getError(), "", __FILE__, __LINE__); ctx.deleteBuffers(1, &drawIndirectBuf); if (m_useIndices) ctx.deleteBuffers(1, &indexBuf); ctx.deleteBuffers(1, &colorBuf); ctx.deleteBuffers(1, &offsetBuf); ctx.deleteBuffers(1, &positionBuf); ctx.deleteVertexArrays(1, &vaoID); ctx.deleteProgram(programID); ctx.finish(); ctx.readPixels(dst, 0, 0, dst.getWidth(), dst.getHeight()); glu::checkError(ctx.getError(), "", __FILE__, __LINE__); } class InstancingGroup : public TestCaseGroup { public: InstancingGroup (Context& context, const char* name, const char* descr); ~InstancingGroup (void); void init (void); }; InstancingGroup::InstancingGroup (Context& context, const char* name, const char* descr) : TestCaseGroup (context, name, descr) { } InstancingGroup::~InstancingGroup (void) { } void InstancingGroup::init (void) { const int gridWidths[] = { 2, 5, 10, 32, 100, }; // drawArrays for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(gridWidths); ++ndx) { const std::string name = std::string("draw_arrays_indirect_grid_") + de::toString(gridWidths[ndx]) + "x" + de::toString(gridWidths[ndx]); const std::string desc = std::string("DrawArraysIndirect, Grid size ") + de::toString(gridWidths[ndx]) + "x" + de::toString(gridWidths[ndx]); this->addChild(new InstancedGridRenderTest(m_context, name.c_str(), desc.c_str(), gridWidths[ndx], false)); } // drawElements for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(gridWidths); ++ndx) { const std::string name = std::string("draw_elements_indirect_grid_") + de::toString(gridWidths[ndx]) + "x" + de::toString(gridWidths[ndx]); const std::string desc = std::string("DrawElementsIndirect, Grid size ") + de::toString(gridWidths[ndx]) + "x" + de::toString(gridWidths[ndx]); this->addChild(new InstancedGridRenderTest(m_context, name.c_str(), desc.c_str(), gridWidths[ndx], true)); } } class ComputeShaderGeneratedCase : public TestCase { public: enum DrawMethod { DRAWMETHOD_DRAWARRAYS, DRAWMETHOD_DRAWELEMENTS, DRAWMETHOD_LAST }; ComputeShaderGeneratedCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int drawCallCount); ~ComputeShaderGeneratedCase (void); void init (void); void deinit (void); IterateResult iterate (void); std::string genComputeSource (bool computeCmd, bool computeData, bool computeIndices) const; private: void createDrawCommand (void); void createDrawData (void); void createDrawIndices (void); virtual void runComputeShader (void) = 0; void renderTo (tcu::Surface& image); protected: deUint32 calcDrawBufferSize (void) const; deUint32 calcIndexBufferSize (void) const; const DrawMethod m_drawMethod; const bool m_computeCmd; const bool m_computeData; const bool m_computeIndices; const int m_commandSize; const int m_numDrawCmds; const int m_gridSize; glw::GLuint m_cmdBufferID; glw::GLuint m_dataBufferID; glw::GLuint m_indexBufferID; private: glu::ShaderProgram* m_shaderProgram; }; ComputeShaderGeneratedCase::ComputeShaderGeneratedCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int drawCallCount) : TestCase (context, name, desc) , m_drawMethod (method) , m_computeCmd (computeCmd) , m_computeData (computeData) , m_computeIndices (computeIndices) , m_commandSize ((method==DRAWMETHOD_DRAWARRAYS) ? ((int)sizeof(DrawArraysCommand)) : ((int)sizeof(DrawElementsCommand))) , m_numDrawCmds (drawCallCount) , m_gridSize (gridSize) , m_cmdBufferID (0) , m_dataBufferID (0) , m_indexBufferID (0) , m_shaderProgram (DE_NULL) { const int triangleCount = m_gridSize * m_gridSize * 2; DE_ASSERT(method < DRAWMETHOD_LAST); DE_ASSERT(!computeIndices || method == DRAWMETHOD_DRAWELEMENTS); DE_ASSERT(triangleCount % m_numDrawCmds == 0); DE_UNREF(triangleCount); } ComputeShaderGeneratedCase::~ComputeShaderGeneratedCase (void) { deinit(); } void ComputeShaderGeneratedCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); // generate basic shader m_shaderProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(s_colorVertexShaderSource) << glu::FragmentSource(s_colorFragmentShaderSource)); m_testCtx.getLog() << *m_shaderProgram; if (!m_shaderProgram->isOk()) throw tcu::TestError("Failed to compile shader."); // gen buffers gl.genBuffers(1, &m_cmdBufferID); gl.genBuffers(1, &m_dataBufferID); gl.genBuffers(1, &m_indexBufferID); // check the SSBO buffers are of legal size { const deUint64 drawBufferElementSize = sizeof(tcu::Vec4); const deUint64 indexBufferElementSize = sizeof(deUint32); const int commandBufferSize = m_commandSize * m_numDrawCmds; deInt64 maxSSBOSize = 0; gl.getInteger64v(GL_MAX_SHADER_STORAGE_BLOCK_SIZE, &maxSSBOSize); if (m_computeData && (deUint64)calcDrawBufferSize()*drawBufferElementSize > (deUint64)maxSSBOSize) throw tcu::NotSupportedError("GL_MAX_SHADER_STORAGE_BLOCK_SIZE is too small for vertex attrib buffers"); if (m_computeIndices && (deUint64)calcIndexBufferSize()*indexBufferElementSize > (deUint64)maxSSBOSize) throw tcu::NotSupportedError("GL_MAX_SHADER_STORAGE_BLOCK_SIZE is too small for index buffers"); if (m_computeCmd && (deUint64)commandBufferSize > (deUint64)maxSSBOSize) throw tcu::NotSupportedError("GL_MAX_SHADER_STORAGE_BLOCK_SIZE is too small for command buffers"); } } void ComputeShaderGeneratedCase::deinit (void) { if (m_cmdBufferID) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_cmdBufferID); m_cmdBufferID = 0; } if (m_dataBufferID) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_dataBufferID); m_dataBufferID = 0; } if (m_indexBufferID) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_indexBufferID); m_indexBufferID = 0; } if (m_shaderProgram) { delete m_shaderProgram; m_shaderProgram = DE_NULL; } } ComputeShaderGeneratedCase::IterateResult ComputeShaderGeneratedCase::iterate (void) { const int renderTargetWidth = de::min(1024, m_context.getRenderTarget().getWidth()); const int renderTargetHeight = de::min(1024, m_context.getRenderTarget().getHeight()); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); tcu::Surface surface (renderTargetWidth, renderTargetHeight); m_testCtx.getLog() << tcu::TestLog::Message << "Preparing to draw " << m_gridSize << " x " << m_gridSize << " grid." << tcu::TestLog::EndMessage; try { // Gen command buffer if (!m_computeCmd) { m_testCtx.getLog() << tcu::TestLog::Message << "Uploading draw command buffer." << tcu::TestLog::EndMessage; createDrawCommand(); } // Gen data buffer if (!m_computeData) { m_testCtx.getLog() << tcu::TestLog::Message << "Uploading draw data buffer." << tcu::TestLog::EndMessage; createDrawData(); } // Gen index buffer if (!m_computeIndices && m_drawMethod == DRAWMETHOD_DRAWELEMENTS) { m_testCtx.getLog() << tcu::TestLog::Message << "Uploading draw index buffer." << tcu::TestLog::EndMessage; createDrawIndices(); } // Run compute shader { m_testCtx.getLog() << tcu::TestLog::Message << "Filling following buffers using compute shader:\n" << ((m_computeCmd) ? ("\tcommand buffer\n") : ("")) << ((m_computeData) ? ("\tdata buffer\n") : ("")) << ((m_computeIndices) ? ("\tindex buffer\n") : ("")) << tcu::TestLog::EndMessage; runComputeShader(); } // Ensure data is written to the buffers before we try to read it { const glw::GLuint barriers = ((m_computeCmd) ? (GL_COMMAND_BARRIER_BIT) : (0)) | ((m_computeData) ? (GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT) : (0)) | ((m_computeIndices) ? (GL_ELEMENT_ARRAY_BARRIER_BIT) : (0)); m_testCtx.getLog() << tcu::TestLog::Message << "Memory barrier. Barriers = " << glu::getMemoryBarrierFlagsStr(barriers) << tcu::TestLog::EndMessage; gl.memoryBarrier(barriers); } // Draw from buffers m_testCtx.getLog() << tcu::TestLog::Message << "Drawing from buffers with " << m_numDrawCmds << " draw call(s)." << tcu::TestLog::EndMessage; renderTo(surface); } catch (glu::OutOfMemoryError&) { m_testCtx.getLog() << tcu::TestLog::Message << "Got GL_OUT_OF_MEMORY." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_NOT_SUPPORTED, "Got GL_OUT_OF_MEMORY"); m_testCtx.setTerminateAfter(true); // Do not rely on implementation to be able to recover from OOM return STOP; } // verify image // \note the green/yellow pattern is only for clarity. The test will only verify that all grid cells were drawn by looking for anything non-green/yellow. if (verifyImageYellowGreen(surface, m_testCtx.getLog())) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Result image invalid"); return STOP; } std::string ComputeShaderGeneratedCase::genComputeSource (bool computeCmd, bool computeData, bool computeIndices) const { const int cmdLayoutBinding = 0; const int dataLayoutBinding = (computeCmd) ? (1) : (0); const int indexLayoutBinding = (computeCmd && computeData) ? (2) : (computeCmd || computeData) ? (1) : (0); std::ostringstream buf; buf << "#version 310 es\n\n" << "precision highp int;\n" << "precision highp float;\n\n"; if (computeCmd && m_drawMethod==DRAWMETHOD_DRAWARRAYS) buf << "struct DrawArraysIndirectCommand {\n" << " uint count;\n" << " uint primCount;\n" << " uint first;\n" << " uint reservedMustBeZero;\n" << "};\n\n"; else if (computeCmd && m_drawMethod==DRAWMETHOD_DRAWELEMENTS) buf << "struct DrawElementsIndirectCommand {\n" << " uint count;\n" << " uint primCount;\n" << " uint firstIndex;\n" << " int baseVertex;\n" << " uint reservedMustBeZero;\n" << "};\n\n"; buf << "layout(local_size_x = 1, local_size_y = 1) in;\n" << "layout(std430) buffer;\n\n"; if (computeCmd) buf << "layout(binding = " << cmdLayoutBinding << ") writeonly buffer CommandBuffer {\n" << " " << ((m_drawMethod==DRAWMETHOD_DRAWARRAYS) ? ("DrawArraysIndirectCommand") : ("DrawElementsIndirectCommand")) << " commands[];\n" << "};\n"; if (computeData) buf << "layout(binding = " << dataLayoutBinding << ") writeonly buffer DataBuffer {\n" << " vec4 attribs[];\n" << "};\n"; if (computeIndices) buf << "layout(binding = " << indexLayoutBinding << ") writeonly buffer IndexBuffer {\n" << " uint indices[];\n" << "};\n"; buf << "\n" << "void main() {\n" << " const uint gridSize = " << m_gridSize << "u;\n" << " const uint triangleCount = gridSize * gridSize * 2u;\n" << "\n"; if (computeCmd) { buf << " // command\n" << " if (gl_GlobalInvocationID.x < " << m_numDrawCmds << "u && gl_GlobalInvocationID.y == 0u && gl_GlobalInvocationID.z == 0u) {\n" << " const uint numDrawCallTris = triangleCount / " << m_numDrawCmds << "u;\n" << " uint firstTri = gl_GlobalInvocationID.x * numDrawCallTris;\n\n" << " commands[gl_GlobalInvocationID.x].count = numDrawCallTris*3u;\n" << " commands[gl_GlobalInvocationID.x].primCount = 1u;\n"; if (m_drawMethod==DRAWMETHOD_DRAWARRAYS) { buf << " commands[gl_GlobalInvocationID.x].first = firstTri*3u;\n"; } else if (m_drawMethod==DRAWMETHOD_DRAWELEMENTS) { buf << " commands[gl_GlobalInvocationID.x].firstIndex = firstTri*3u;\n"; buf << " commands[gl_GlobalInvocationID.x].baseVertex = 0;\n"; } buf << " commands[gl_GlobalInvocationID.x].reservedMustBeZero = 0u;\n" << " }\n" << "\n"; } if (computeData) { buf << " // vertex attribs\n" << " const vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" << " const vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"; if (m_drawMethod == DRAWMETHOD_DRAWARRAYS) { buf << " if (gl_GlobalInvocationID.x < gridSize && gl_GlobalInvocationID.y < gridSize && gl_GlobalInvocationID.z == 0u) {\n" << " uint y = gl_GlobalInvocationID.x;\n" << " uint x = gl_GlobalInvocationID.y;\n" << " float posX = (float(x) / float(gridSize)) * 2.0 - 1.0;\n" << " float posXp1 = (float(x+1u) / float(gridSize)) * 2.0 - 1.0;\n" << " float posY = (float(y) / float(gridSize)) * 2.0 - 1.0;\n" << " float posYp1 = (float(y+1u) / float(gridSize)) * 2.0 - 1.0;\n" << " vec4 color = ((x + y)%2u != 0u) ? (yellow) : (green);\n" << "\n" << " attribs[((y * gridSize + x) * 6u + 0u) * 2u + 0u] = vec4(posX, posY, 0.0, 1.0);\n" << " attribs[((y * gridSize + x) * 6u + 1u) * 2u + 0u] = vec4(posXp1, posY, 0.0, 1.0);\n" << " attribs[((y * gridSize + x) * 6u + 2u) * 2u + 0u] = vec4(posXp1, posYp1, 0.0, 1.0);\n" << " attribs[((y * gridSize + x) * 6u + 3u) * 2u + 0u] = vec4(posX, posY, 0.0, 1.0);\n" << " attribs[((y * gridSize + x) * 6u + 4u) * 2u + 0u] = vec4(posXp1, posYp1, 0.0, 1.0);\n" << " attribs[((y * gridSize + x) * 6u + 5u) * 2u + 0u] = vec4(posX, posYp1, 0.0, 1.0);\n" << "\n" << " attribs[((y * gridSize + x) * 6u + 0u) * 2u + 1u] = color;\n" << " attribs[((y * gridSize + x) * 6u + 1u) * 2u + 1u] = color;\n" << " attribs[((y * gridSize + x) * 6u + 2u) * 2u + 1u] = color;\n" << " attribs[((y * gridSize + x) * 6u + 3u) * 2u + 1u] = color;\n" << " attribs[((y * gridSize + x) * 6u + 4u) * 2u + 1u] = color;\n" << " attribs[((y * gridSize + x) * 6u + 5u) * 2u + 1u] = color;\n" << " }\n"; } else if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) { buf << " if (gl_GlobalInvocationID.x < gridSize+1u && gl_GlobalInvocationID.y < gridSize+1u && gl_GlobalInvocationID.z == 0u) {\n" << " uint y = gl_GlobalInvocationID.x;\n" << " uint x = gl_GlobalInvocationID.y;\n" << " float posX = (float(x) / float(gridSize)) * 2.0 - 1.0;\n" << " float posY = (float(y) / float(gridSize)) * 2.0 - 1.0;\n" << "\n" << " attribs[(y * (gridSize+1u) + x) * 4u + 0u] = vec4(posX, posY, 0.0, 1.0);\n" << " attribs[(y * (gridSize+1u) + x) * 4u + 1u] = green;\n" << " attribs[(y * (gridSize+1u) + x) * 4u + 2u] = vec4(posX, posY, 0.0, 1.0);\n" << " attribs[(y * (gridSize+1u) + x) * 4u + 3u] = yellow;\n" << " }\n"; } buf << "\n"; } if (computeIndices) { buf << " // indices\n" << " if (gl_GlobalInvocationID.x < gridSize && gl_GlobalInvocationID.y < gridSize && gl_GlobalInvocationID.z == 0u) {\n" << " uint y = gl_GlobalInvocationID.x;\n" << " uint x = gl_GlobalInvocationID.y;\n" << " uint color = ((x + y)%2u);\n" << "\n" << " indices[(y * gridSize + x) * 6u + 0u] = ((y+0u) * (gridSize+1u) + (x+0u)) * 2u + color;\n" << " indices[(y * gridSize + x) * 6u + 1u] = ((y+1u) * (gridSize+1u) + (x+0u)) * 2u + color;\n" << " indices[(y * gridSize + x) * 6u + 2u] = ((y+1u) * (gridSize+1u) + (x+1u)) * 2u + color;\n" << " indices[(y * gridSize + x) * 6u + 3u] = ((y+0u) * (gridSize+1u) + (x+0u)) * 2u + color;\n" << " indices[(y * gridSize + x) * 6u + 4u] = ((y+1u) * (gridSize+1u) + (x+1u)) * 2u + color;\n" << " indices[(y * gridSize + x) * 6u + 5u] = ((y+0u) * (gridSize+1u) + (x+1u)) * 2u + color;\n" << " }\n" << "\n"; } buf << "}\n"; return buf.str(); } void ComputeShaderGeneratedCase::createDrawCommand (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int triangleCount = m_gridSize * m_gridSize * 2; const deUint32 numDrawCallTris = triangleCount / m_numDrawCmds; if (m_drawMethod == DRAWMETHOD_DRAWARRAYS) { std::vector cmds; for (int ndx = 0; ndx < m_numDrawCmds; ++ndx) { const deUint32 firstTri = ndx * numDrawCallTris; DrawArraysCommand data; data.count = numDrawCallTris*3; data.primCount = 1; data.first = firstTri*3; data.reservedMustBeZero = 0; cmds.push_back(data); } DE_ASSERT((int)(sizeof(DrawArraysCommand)*cmds.size()) == m_numDrawCmds * m_commandSize); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_cmdBufferID); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, (glw::GLsizeiptr)(sizeof(DrawArraysCommand)*cmds.size()), &cmds[0], GL_STATIC_DRAW); } else if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) { std::vector cmds; for (int ndx = 0; ndx < m_numDrawCmds; ++ndx) { const deUint32 firstTri = ndx * numDrawCallTris; DrawElementsCommand data; data.count = numDrawCallTris*3; data.primCount = 1; data.firstIndex = firstTri*3; data.baseVertex = 0; data.reservedMustBeZero = 0; cmds.push_back(data); } DE_ASSERT((int)(sizeof(DrawElementsCommand)*cmds.size()) == m_numDrawCmds * m_commandSize); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_cmdBufferID); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, (glw::GLsizeiptr)(sizeof(DrawElementsCommand)*cmds.size()), &cmds[0], GL_STATIC_DRAW); } else DE_ASSERT(false); glu::checkError(gl.getError(), "create draw command", __FILE__, __LINE__); } void ComputeShaderGeneratedCase::createDrawData (void) { const tcu::Vec4 yellow (1.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 green (0.0f, 1.0f, 0.0f, 1.0f); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_drawMethod == DRAWMETHOD_DRAWARRAYS) { // Store elements in the order they are drawn. Interleave color. std::vector buffer(m_gridSize*m_gridSize*6*2); DE_ASSERT(buffer.size() == calcDrawBufferSize()); for (int y = 0; y < m_gridSize; ++y) for (int x = 0; x < m_gridSize; ++x) { const float posX = ((float)x / (float)m_gridSize) * 2.0f - 1.0f; const float posY = ((float)y / (float)m_gridSize) * 2.0f - 1.0f; const float cellSize = 2.0f / (float)m_gridSize; const tcu::Vec4& color = ((x + y)%2) ? (yellow) : (green); buffer[((y * m_gridSize + x) * 6 + 0) * 2 + 0] = tcu::Vec4(posX, posY, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 1) * 2 + 0] = tcu::Vec4(posX + cellSize, posY, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 2) * 2 + 0] = tcu::Vec4(posX + cellSize, posY + cellSize, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 3) * 2 + 0] = tcu::Vec4(posX, posY, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 4) * 2 + 0] = tcu::Vec4(posX + cellSize, posY + cellSize, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 5) * 2 + 0] = tcu::Vec4(posX, posY + cellSize, 0.0f, 1.0f); buffer[((y * m_gridSize + x) * 6 + 0) * 2 + 1] = color; buffer[((y * m_gridSize + x) * 6 + 1) * 2 + 1] = color; buffer[((y * m_gridSize + x) * 6 + 2) * 2 + 1] = color; buffer[((y * m_gridSize + x) * 6 + 3) * 2 + 1] = color; buffer[((y * m_gridSize + x) * 6 + 4) * 2 + 1] = color; buffer[((y * m_gridSize + x) * 6 + 5) * 2 + 1] = color; } gl.bindBuffer(GL_ARRAY_BUFFER, m_dataBufferID); gl.bufferData(GL_ARRAY_BUFFER, (int)(buffer.size() * sizeof(tcu::Vec4)), buffer[0].getPtr(), GL_STATIC_DRAW); } else if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) { // Elements are indexed by index buffer. Interleave color. Two vertices per position since 2 colors std::vector buffer((m_gridSize+1)*(m_gridSize+1)*4); DE_ASSERT(buffer.size() == calcDrawBufferSize()); for (int y = 0; y < m_gridSize+1; ++y) for (int x = 0; x < m_gridSize+1; ++x) { const float posX = ((float)x / (float)m_gridSize) * 2.0f - 1.0f; const float posY = ((float)y / (float)m_gridSize) * 2.0f - 1.0f; buffer[(y * (m_gridSize+1) + x) * 4 + 0] = tcu::Vec4(posX, posY, 0.0f, 1.0f); buffer[(y * (m_gridSize+1) + x) * 4 + 1] = green; buffer[(y * (m_gridSize+1) + x) * 4 + 2] = tcu::Vec4(posX, posY, 0.0f, 1.0f); buffer[(y * (m_gridSize+1) + x) * 4 + 3] = yellow; } gl.bindBuffer(GL_ARRAY_BUFFER, m_dataBufferID); gl.bufferData(GL_ARRAY_BUFFER, (int)(buffer.size() * sizeof(tcu::Vec4)), buffer[0].getPtr(), GL_STATIC_DRAW); } else DE_ASSERT(false); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } void ComputeShaderGeneratedCase::createDrawIndices (void) { DE_ASSERT(m_drawMethod == DRAWMETHOD_DRAWELEMENTS); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); std::vector buffer (m_gridSize*m_gridSize*6); DE_ASSERT(buffer.size() == calcIndexBufferSize()); for (int y = 0; y < m_gridSize; ++y) for (int x = 0; x < m_gridSize; ++x) { const int color = ((x + y)%2); buffer[(y * m_gridSize + x) * 6 + 0] = ((y+0) * (m_gridSize+1) + (x+0)) * 2 + color; buffer[(y * m_gridSize + x) * 6 + 1] = ((y+1) * (m_gridSize+1) + (x+0)) * 2 + color; buffer[(y * m_gridSize + x) * 6 + 2] = ((y+1) * (m_gridSize+1) + (x+1)) * 2 + color; buffer[(y * m_gridSize + x) * 6 + 3] = ((y+0) * (m_gridSize+1) + (x+0)) * 2 + color; buffer[(y * m_gridSize + x) * 6 + 4] = ((y+1) * (m_gridSize+1) + (x+1)) * 2 + color; buffer[(y * m_gridSize + x) * 6 + 5] = ((y+0) * (m_gridSize+1) + (x+1)) * 2 + color; } gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBufferID); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, (int)(buffer.size() * sizeof(deUint32)), &buffer[0], GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } void ComputeShaderGeneratedCase::renderTo (tcu::Surface& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const deInt32 positionLoc = gl.getAttribLocation(m_shaderProgram->getProgram(), "a_position"); const deInt32 colorLoc = gl.getAttribLocation(m_shaderProgram->getProgram(), "a_color"); deUint32 vaoID = 0; gl.genVertexArrays(1, &vaoID); gl.bindVertexArray(vaoID); // Setup buffers gl.bindBuffer(GL_ARRAY_BUFFER, m_dataBufferID); gl.vertexAttribPointer(positionLoc, 4, GL_FLOAT, GL_FALSE, 8 * (int)sizeof(float), DE_NULL); gl.vertexAttribPointer(colorLoc, 4, GL_FLOAT, GL_FALSE, 8 * (int)sizeof(float), glu::BufferOffsetAsPointer(4*sizeof(float))); gl.enableVertexAttribArray(positionLoc); gl.enableVertexAttribArray(colorLoc); DE_ASSERT(positionLoc != -1); DE_ASSERT(colorLoc != -1); if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_indexBufferID); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_cmdBufferID); // draw gl.clearColor(0, 0, 0, 1); gl.clear(GL_COLOR_BUFFER_BIT); gl.viewport(0, 0, dst.getWidth(), dst.getHeight()); gl.useProgram(m_shaderProgram->getProgram()); for (int drawCmdNdx = 0; drawCmdNdx < m_numDrawCmds; ++drawCmdNdx) { const void* offset = glu::BufferOffsetAsPointer(drawCmdNdx*m_commandSize); if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) gl.drawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_INT, offset); else if (m_drawMethod == DRAWMETHOD_DRAWARRAYS) gl.drawArraysIndirect(GL_TRIANGLES, offset); else DE_ASSERT(DE_FALSE); } gl.useProgram(0); // free gl.deleteVertexArrays(1, &vaoID); glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.finish(); glu::checkError(gl.getError(), "", __FILE__, __LINE__); glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess()); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } deUint32 ComputeShaderGeneratedCase::calcDrawBufferSize (void) const { // returns size in "vec4"s if (m_drawMethod == DRAWMETHOD_DRAWARRAYS) return m_gridSize*m_gridSize*6*2; else if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) return (m_gridSize+1)*(m_gridSize+1)*4; else DE_ASSERT(DE_FALSE); return 0; } deUint32 ComputeShaderGeneratedCase::calcIndexBufferSize (void) const { if (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) return m_gridSize*m_gridSize*6; else return 0; } class ComputeShaderGeneratedCombinedCase : public ComputeShaderGeneratedCase { public: ComputeShaderGeneratedCombinedCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int numDrawCalls); ~ComputeShaderGeneratedCombinedCase (void); void init (void); void deinit (void); private: void runComputeShader (void); glu::ShaderProgram* m_computeProgram; }; ComputeShaderGeneratedCombinedCase::ComputeShaderGeneratedCombinedCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int numDrawCalls) : ComputeShaderGeneratedCase(context, name, desc, method, computeCmd, computeData, computeIndices, gridSize, numDrawCalls) , m_computeProgram (DE_NULL) { } ComputeShaderGeneratedCombinedCase::~ComputeShaderGeneratedCombinedCase (void) { deinit(); } void ComputeShaderGeneratedCombinedCase::init (void) { // generate compute shader m_computeProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::ComputeSource(genComputeSource(m_computeCmd, m_computeData, m_computeIndices))); m_testCtx.getLog() << *m_computeProgram; if (!m_computeProgram->isOk()) throw tcu::TestError("Failed to compile compute shader."); // init parent ComputeShaderGeneratedCase::init(); } void ComputeShaderGeneratedCombinedCase::deinit (void) { // deinit parent ComputeShaderGeneratedCase::deinit(); if (m_computeProgram) { delete m_computeProgram; m_computeProgram = DE_NULL; } } void ComputeShaderGeneratedCombinedCase::runComputeShader (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const bool indexed = (m_drawMethod == DRAWMETHOD_DRAWELEMENTS); const tcu::IVec3 nullSize (0, 0, 0); const tcu::IVec3 commandDispatchSize = (m_computeCmd) ? (tcu::IVec3(m_numDrawCmds, 1, 1)) : (nullSize); const tcu::IVec3 drawElementsDataBufferDispatchSize = (m_computeData) ? (tcu::IVec3(m_gridSize+1, m_gridSize+1, 1)) : (nullSize); const tcu::IVec3 drawArraysDataBufferDispatchSize = (m_computeData) ? (tcu::IVec3(m_gridSize, m_gridSize, 1)) : (nullSize); const tcu::IVec3 indexBufferDispatchSize = (m_computeIndices && indexed) ? (tcu::IVec3(m_gridSize, m_gridSize, 1)) : (nullSize); const tcu::IVec3 dataBufferDispatchSize = (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) ? (drawElementsDataBufferDispatchSize) : (drawArraysDataBufferDispatchSize); const tcu::IVec3 dispatchSize = tcu::max(tcu::max(commandDispatchSize, dataBufferDispatchSize), indexBufferDispatchSize); gl.useProgram(m_computeProgram->getProgram()); glu::checkError(gl.getError(), "use compute shader", __FILE__, __LINE__); // setup buffers if (m_computeCmd) { const int bindingPoint = 0; const int bufferSize = m_commandSize * m_numDrawCmds; m_testCtx.getLog() << tcu::TestLog::Message << "Binding command buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_cmdBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for command buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); } if (m_computeData) { const int bindingPoint = (m_computeCmd) ? (1) : (0); const int bufferSize = (int)(calcDrawBufferSize()*sizeof(tcu::Vec4)); m_testCtx.getLog() << tcu::TestLog::Message << "Binding data buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_dataBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for data buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); } if (m_computeIndices) { const int bindingPoint = (m_computeCmd && m_computeData) ? (2) : (m_computeCmd || m_computeData) ? (1) : (0); const int bufferSize = (int)(calcIndexBufferSize()*sizeof(deUint32)); m_testCtx.getLog() << tcu::TestLog::Message << "Binding index buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_indexBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for index buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); } glu::checkError(gl.getError(), "setup buffers", __FILE__, __LINE__); // calculate m_testCtx.getLog() << tcu::TestLog::Message << "Dispatching compute, size = " << dispatchSize << tcu::TestLog::EndMessage; gl.dispatchCompute(dispatchSize.x(), dispatchSize.y(), dispatchSize.z()); glu::checkError(gl.getError(), "calculate", __FILE__, __LINE__); } class ComputeShaderGeneratedSeparateCase : public ComputeShaderGeneratedCase { public: ComputeShaderGeneratedSeparateCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int numDrawCalls); ~ComputeShaderGeneratedSeparateCase (void); void init (void); void deinit (void); private: std::string genCmdComputeSource (void); std::string genDataComputeSource (void); std::string genIndexComputeSource (void); void runComputeShader (void); glu::ShaderProgram* m_computeCmdProgram; glu::ShaderProgram* m_computeDataProgram; glu::ShaderProgram* m_computeIndicesProgram; }; ComputeShaderGeneratedSeparateCase::ComputeShaderGeneratedSeparateCase (Context& context, const char* name, const char* desc, DrawMethod method, bool computeCmd, bool computeData, bool computeIndices, int gridSize, int numDrawCalls) : ComputeShaderGeneratedCase (context, name, desc, method, computeCmd, computeData, computeIndices, gridSize, numDrawCalls) , m_computeCmdProgram (DE_NULL) , m_computeDataProgram (DE_NULL) , m_computeIndicesProgram (DE_NULL) { } ComputeShaderGeneratedSeparateCase::~ComputeShaderGeneratedSeparateCase (void) { deinit(); } void ComputeShaderGeneratedSeparateCase::init (void) { // generate cmd compute shader if (m_computeCmd) { m_computeCmdProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::ComputeSource(genCmdComputeSource())); m_testCtx.getLog() << *m_computeCmdProgram; if (!m_computeCmdProgram->isOk()) throw tcu::TestError("Failed to compile command compute shader."); } // generate data compute shader if (m_computeData) { m_computeDataProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::ComputeSource(genDataComputeSource())); m_testCtx.getLog() << *m_computeDataProgram; if (!m_computeDataProgram->isOk()) throw tcu::TestError("Failed to compile data compute shader."); } // generate index compute shader if (m_computeIndices) { m_computeIndicesProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::ComputeSource(genIndexComputeSource())); m_testCtx.getLog() << *m_computeIndicesProgram; if (!m_computeIndicesProgram->isOk()) throw tcu::TestError("Failed to compile data compute shader."); } // init parent ComputeShaderGeneratedCase::init(); } void ComputeShaderGeneratedSeparateCase::deinit (void) { // deinit parent ComputeShaderGeneratedCase::deinit(); if (m_computeCmdProgram) { delete m_computeCmdProgram; m_computeCmdProgram = DE_NULL; } if (m_computeDataProgram) { delete m_computeDataProgram; m_computeDataProgram = DE_NULL; } if (m_computeIndicesProgram) { delete m_computeIndicesProgram; m_computeIndicesProgram = DE_NULL; } } std::string ComputeShaderGeneratedSeparateCase::genCmdComputeSource (void) { return ComputeShaderGeneratedCase::genComputeSource(true, false, false); } std::string ComputeShaderGeneratedSeparateCase::genDataComputeSource (void) { return ComputeShaderGeneratedCase::genComputeSource(false, true, false); } std::string ComputeShaderGeneratedSeparateCase::genIndexComputeSource (void) { return ComputeShaderGeneratedCase::genComputeSource(false, false, true); } void ComputeShaderGeneratedSeparateCase::runComputeShader (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); // Compute command if (m_computeCmd) { const int bindingPoint = 0; const tcu::IVec3 commandDispatchSize (m_numDrawCmds, 1, 1); const int bufferSize = m_commandSize * m_numDrawCmds; gl.useProgram(m_computeCmdProgram->getProgram()); // setup buffers m_testCtx.getLog() << tcu::TestLog::Message << "Binding command buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_cmdBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for command buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); // calculate m_testCtx.getLog() << tcu::TestLog::Message << "Dispatching command compute, size = " << commandDispatchSize << tcu::TestLog::EndMessage; gl.dispatchCompute(commandDispatchSize.x(), commandDispatchSize.y(), commandDispatchSize.z()); glu::checkError(gl.getError(), "calculate cmd", __FILE__, __LINE__); } // Compute data if (m_computeData) { const int bindingPoint = 0; const tcu::IVec3 drawElementsDataBufferDispatchSize (m_gridSize+1, m_gridSize+1, 1); const tcu::IVec3 drawArraysDataBufferDispatchSize (m_gridSize, m_gridSize, 1); const tcu::IVec3 dataBufferDispatchSize = (m_drawMethod == DRAWMETHOD_DRAWELEMENTS) ? (drawElementsDataBufferDispatchSize) : (drawArraysDataBufferDispatchSize); const int bufferSize = (int)(calcDrawBufferSize()*sizeof(tcu::Vec4)); gl.useProgram(m_computeDataProgram->getProgram()); // setup buffers m_testCtx.getLog() << tcu::TestLog::Message << "Binding data buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_dataBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for data buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); // calculate m_testCtx.getLog() << tcu::TestLog::Message << "Dispatching data compute, size = " << dataBufferDispatchSize << tcu::TestLog::EndMessage; gl.dispatchCompute(dataBufferDispatchSize.x(), dataBufferDispatchSize.y(), dataBufferDispatchSize.z()); glu::checkError(gl.getError(), "calculate data", __FILE__, __LINE__); } // Compute indices if (m_computeIndices) { const int bindingPoint = 0; const tcu::IVec3 indexBufferDispatchSize (m_gridSize, m_gridSize, 1); const int bufferSize = (int)(calcIndexBufferSize()*sizeof(deUint32)); DE_ASSERT(m_drawMethod == DRAWMETHOD_DRAWELEMENTS); gl.useProgram(m_computeIndicesProgram->getProgram()); // setup buffers m_testCtx.getLog() << tcu::TestLog::Message << "Binding index buffer to binding point " << bindingPoint << tcu::TestLog::EndMessage; gl.bindBufferBase(GL_SHADER_STORAGE_BUFFER, bindingPoint, m_indexBufferID); m_testCtx.getLog() << tcu::TestLog::Message << "Allocating memory for index buffer, size " << sizeToString(bufferSize) << "." << tcu::TestLog::EndMessage; gl.bufferData(GL_SHADER_STORAGE_BUFFER, bufferSize, DE_NULL, GL_DYNAMIC_DRAW); // calculate m_testCtx.getLog() << tcu::TestLog::Message << "Dispatching index compute, size = " << indexBufferDispatchSize << tcu::TestLog::EndMessage; gl.dispatchCompute(indexBufferDispatchSize.x(), indexBufferDispatchSize.y(), indexBufferDispatchSize.z()); glu::checkError(gl.getError(), "calculate indices", __FILE__, __LINE__); } glu::checkError(gl.getError(), "post dispatch", __FILE__, __LINE__); } class ComputeShaderGeneratedGroup : public TestCaseGroup { public: ComputeShaderGeneratedGroup (Context& context, const char* name, const char* descr); ~ComputeShaderGeneratedGroup (void); void init (void); }; ComputeShaderGeneratedGroup::ComputeShaderGeneratedGroup (Context& context, const char* name, const char* descr) : TestCaseGroup (context, name, descr) { } ComputeShaderGeneratedGroup::~ComputeShaderGeneratedGroup (void) { } void ComputeShaderGeneratedGroup::init (void) { const int gridSize = 8; tcu::TestCaseGroup* const separateGroup = new tcu::TestCaseGroup(m_testCtx, "separate", "Use separate compute shaders for each buffer"); tcu::TestCaseGroup* const combinedGroup = new tcu::TestCaseGroup(m_testCtx, "combined", "Use combined compute shader for all buffers"); tcu::TestCaseGroup* const largeGroup = new tcu::TestCaseGroup(m_testCtx, "large", "Draw shapes with large buffers"); this->addChild(separateGroup); this->addChild(combinedGroup); this->addChild(largeGroup); // .separate { separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawarrays_compute_cmd", "Command from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, true, false, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawarrays_compute_data", "Data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, false, true, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawarrays_compute_cmd_and_data", "Command and data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, true, true, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_cmd", "Command from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, false, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_data", "Data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, false, true, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_indices", "Indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, false, false, true, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_cmd_and_data", "Command and data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, true, false, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_cmd_and_indices", "Command and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, false, true, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_data_and_indices", "Data and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, false, true, true, gridSize, 1)); separateGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, "drawelements_compute_cmd_and_data_and_indices", "Command, data and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, true, true, gridSize, 1)); } // .combined { combinedGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, "drawarrays_compute_cmd_and_data", "Command and data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, true, true, false, gridSize, 1)); combinedGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, "drawelements_compute_cmd_and_data", "Command and data from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, true, false, gridSize, 1)); combinedGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, "drawelements_compute_cmd_and_indices", "Command and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, false, true, gridSize, 1)); combinedGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, "drawelements_compute_data_and_indices", "Data and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, false, true, true, gridSize, 1)); combinedGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, "drawelements_compute_cmd_and_data_and_indices", "Command, data and indices from compute shader", ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true, true, true, gridSize, 1)); } // .large { struct TestSpec { int gridSize; int numDrawCommands; }; struct TestMethod { ComputeShaderGeneratedCase::DrawMethod method; bool separateCompute; }; static const TestSpec specs[] = { { 100, 1 }, // !< drawArrays array size ~ 1.9 MB { 200, 1 }, // !< drawArrays array size ~ 7.7 MB { 500, 1 }, // !< drawArrays array size ~ 48 MB { 1000, 1 }, // !< drawArrays array size ~ 192 MB { 1200, 1 }, // !< drawArrays array size ~ 277 MB { 1500, 1 }, // !< drawArrays array size ~ 430 MB { 100, 8 }, // !< drawArrays array size ~ 1.9 MB { 200, 8 }, // !< drawArrays array size ~ 7.7 MB { 500, 8 }, // !< drawArrays array size ~ 48 MB { 1000, 8 }, // !< drawArrays array size ~ 192 MB { 1200, 8 }, // !< drawArrays array size ~ 277 MB { 1500, 8 }, // !< drawArrays array size ~ 430 MB { 100, 200 }, // !< 50 cells per draw call { 200, 800 }, // !< 50 cells per draw call { 500, 2500 }, // !< 100 cells per draw call { 1000, 5000 }, // !< 250 cells per draw call }; static const TestMethod methods[] = { { ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, true }, { ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS, false }, { ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, true }, { ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS, false }, }; for (int methodNdx = 0; methodNdx < DE_LENGTH_OF_ARRAY(methods); ++methodNdx) for (int specNdx = 0; specNdx < DE_LENGTH_OF_ARRAY(specs); ++specNdx) { const std::string name = std::string("") + ((methods[methodNdx].method == ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS) ? ("drawarrays") : ("drawelements")) + ((methods[methodNdx].separateCompute) ? ("_separate") : ("_combined")) + "_grid_" + de::toString(specs[specNdx].gridSize) + "x" + de::toString(specs[specNdx].gridSize) + "_drawcount_" + de::toString(specs[specNdx].numDrawCommands); const std::string desc = std::string("Draw grid with ") + ((methods[methodNdx].method == ComputeShaderGeneratedCase::DRAWMETHOD_DRAWARRAYS) ? ("drawarrays indirect") : ("drawelements indirect")) + " calculating buffers in " + ((methods[methodNdx].separateCompute) ? ("separate") : ("combined")) + " compute shader." + " Grid size is " + de::toString(specs[specNdx].gridSize) + "x" + de::toString(specs[specNdx].gridSize) + ", draw count is " + de::toString(specs[specNdx].numDrawCommands); const bool computeIndices = (methods[methodNdx].method == ComputeShaderGeneratedCase::DRAWMETHOD_DRAWELEMENTS); if (methods[methodNdx].separateCompute) largeGroup->addChild(new ComputeShaderGeneratedSeparateCase(m_context, name.c_str(), desc.c_str(), methods[methodNdx].method, false, true, computeIndices, specs[specNdx].gridSize, specs[specNdx].numDrawCommands)); else largeGroup->addChild(new ComputeShaderGeneratedCombinedCase(m_context, name.c_str(), desc.c_str(), methods[methodNdx].method, false, true, computeIndices, specs[specNdx].gridSize, specs[specNdx].numDrawCommands)); } } } class RandomGroup : public TestCaseGroup { public: RandomGroup (Context& context, const char* name, const char* descr); ~RandomGroup (void); void init (void); }; template struct UniformWeightArray { float weights[SIZE]; UniformWeightArray (void) { for (int i=0; i primitiveWeights; gls::DrawTestSpec::DrawMethod drawMethods[] = { gls::DrawTestSpec::DRAWMETHOD_DRAWARRAYS_INDIRECT, gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_INDIRECT, }; const UniformWeightArray drawMethodWeights; gls::DrawTestSpec::IndexType indexTypes[] = { gls::DrawTestSpec::INDEXTYPE_BYTE, gls::DrawTestSpec::INDEXTYPE_SHORT, gls::DrawTestSpec::INDEXTYPE_INT, }; const UniformWeightArray indexTypeWeights; gls::DrawTestSpec::InputType inputTypes[] = { gls::DrawTestSpec::INPUTTYPE_FLOAT, gls::DrawTestSpec::INPUTTYPE_FIXED, gls::DrawTestSpec::INPUTTYPE_BYTE, gls::DrawTestSpec::INPUTTYPE_SHORT, gls::DrawTestSpec::INPUTTYPE_UNSIGNED_BYTE, gls::DrawTestSpec::INPUTTYPE_UNSIGNED_SHORT, gls::DrawTestSpec::INPUTTYPE_INT, gls::DrawTestSpec::INPUTTYPE_UNSIGNED_INT, gls::DrawTestSpec::INPUTTYPE_HALF, gls::DrawTestSpec::INPUTTYPE_UNSIGNED_INT_2_10_10_10, gls::DrawTestSpec::INPUTTYPE_INT_2_10_10_10, }; const UniformWeightArray inputTypeWeights; gls::DrawTestSpec::OutputType outputTypes[] = { gls::DrawTestSpec::OUTPUTTYPE_FLOAT, gls::DrawTestSpec::OUTPUTTYPE_VEC2, gls::DrawTestSpec::OUTPUTTYPE_VEC3, gls::DrawTestSpec::OUTPUTTYPE_VEC4, gls::DrawTestSpec::OUTPUTTYPE_INT, gls::DrawTestSpec::OUTPUTTYPE_UINT, gls::DrawTestSpec::OUTPUTTYPE_IVEC2, gls::DrawTestSpec::OUTPUTTYPE_IVEC3, gls::DrawTestSpec::OUTPUTTYPE_IVEC4, gls::DrawTestSpec::OUTPUTTYPE_UVEC2, gls::DrawTestSpec::OUTPUTTYPE_UVEC3, gls::DrawTestSpec::OUTPUTTYPE_UVEC4, }; const UniformWeightArray outputTypeWeights; gls::DrawTestSpec::Usage usages[] = { gls::DrawTestSpec::USAGE_DYNAMIC_DRAW, gls::DrawTestSpec::USAGE_STATIC_DRAW, gls::DrawTestSpec::USAGE_STREAM_DRAW, gls::DrawTestSpec::USAGE_STREAM_READ, gls::DrawTestSpec::USAGE_STREAM_COPY, gls::DrawTestSpec::USAGE_STATIC_READ, gls::DrawTestSpec::USAGE_STATIC_COPY, gls::DrawTestSpec::USAGE_DYNAMIC_READ, gls::DrawTestSpec::USAGE_DYNAMIC_COPY, }; const UniformWeightArray usageWeights; std::set insertedHashes; size_t insertedCount = 0; glu::ContextType contextType = m_context.getRenderContext().getType(); glu::ApiType apiType = glu::isContextTypeES(contextType) ? glu::ApiType::es(3,1) : contextType.getAPI(); for (int ndx = 0; ndx < numAttempts; ++ndx) { de::Random random(0xc551393 + ndx); // random does not depend on previous cases int attributeCount = random.chooseWeighted(DE_ARRAY_BEGIN(attribCounts), DE_ARRAY_END(attribCounts), attribWeights); int drawCommandSize; gls::DrawTestSpec spec; spec.apiType = apiType; spec.primitive = random.chooseWeighted (DE_ARRAY_BEGIN(primitives), DE_ARRAY_END(primitives), primitiveWeights.weights); spec.primitiveCount = random.chooseWeighted (DE_ARRAY_BEGIN(primitiveCounts), DE_ARRAY_END(primitiveCounts), primitiveCountWeights); spec.drawMethod = random.chooseWeighted (DE_ARRAY_BEGIN(drawMethods), DE_ARRAY_END(drawMethods), drawMethodWeights.weights); if (spec.drawMethod == gls::DrawTestSpec::DRAWMETHOD_DRAWARRAYS_INDIRECT) drawCommandSize = sizeof(deUint32[4]); else if (spec.drawMethod == gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_INDIRECT) drawCommandSize = sizeof(deUint32[5]); else { DE_ASSERT(DE_FALSE); return; } spec.indexType = random.chooseWeighted (DE_ARRAY_BEGIN(indexTypes), DE_ARRAY_END(indexTypes), indexTypeWeights.weights); spec.indexPointerOffset = random.chooseWeighted (DE_ARRAY_BEGIN(indexOffsets), DE_ARRAY_END(indexOffsets), indexOffsetWeights); spec.indexStorage = gls::DrawTestSpec::STORAGE_BUFFER; spec.first = random.chooseWeighted (DE_ARRAY_BEGIN(firsts), DE_ARRAY_END(firsts), firstWeights); spec.indexMin = random.chooseWeighted (DE_ARRAY_BEGIN(indexMins), DE_ARRAY_END(indexMins), indexWeights); spec.indexMax = random.chooseWeighted (DE_ARRAY_BEGIN(indexMaxs), DE_ARRAY_END(indexMaxs), indexWeights); spec.instanceCount = random.chooseWeighted (DE_ARRAY_BEGIN(instanceCounts), DE_ARRAY_END(instanceCounts), instanceWeights); spec.indirectOffset = random.chooseWeighted (DE_ARRAY_BEGIN(indirectOffsets), DE_ARRAY_END(indirectOffsets), indirectOffsetWeigths) * drawCommandSize; spec.baseVertex = random.chooseWeighted (DE_ARRAY_BEGIN(baseVertices), DE_ARRAY_END(baseVertices), baseVertexWeigths); // check spec is legal if (!spec.valid()) continue; for (int attrNdx = 0; attrNdx < attributeCount;) { bool valid; gls::DrawTestSpec::AttributeSpec attribSpec; attribSpec.inputType = random.chooseWeighted (DE_ARRAY_BEGIN(inputTypes), DE_ARRAY_END(inputTypes), inputTypeWeights.weights); attribSpec.outputType = random.chooseWeighted (DE_ARRAY_BEGIN(outputTypes), DE_ARRAY_END(outputTypes), outputTypeWeights.weights); attribSpec.storage = gls::DrawTestSpec::STORAGE_BUFFER; attribSpec.usage = random.chooseWeighted (DE_ARRAY_BEGIN(usages), DE_ARRAY_END(usages), usageWeights.weights); attribSpec.componentCount = random.getInt(1, 4); attribSpec.offset = random.chooseWeighted(DE_ARRAY_BEGIN(offsets), DE_ARRAY_END(offsets), offsetWeights); attribSpec.stride = random.chooseWeighted(DE_ARRAY_BEGIN(strides), DE_ARRAY_END(strides), strideWeights); attribSpec.normalize = random.getBool(); attribSpec.instanceDivisor = random.chooseWeighted(DE_ARRAY_BEGIN(instanceDivisors), DE_ARRAY_END(instanceDivisors), instanceDivisorWeights); attribSpec.useDefaultAttribute = random.getBool(); // check spec is legal valid = attribSpec.valid(spec.apiType); // we do not want interleaved elements. (Might result in some weird floating point values) if (attribSpec.stride && attribSpec.componentCount * gls::DrawTestSpec::inputTypeSize(attribSpec.inputType) > attribSpec.stride) valid = false; // try again if not valid if (valid) { spec.attribs.push_back(attribSpec); ++attrNdx; } } // Do not collapse all vertex positions to a single positions if (spec.primitive != gls::DrawTestSpec::PRIMITIVE_POINTS) spec.attribs[0].instanceDivisor = 0; // Is render result meaningful? { // Only one vertex if (spec.drawMethod == gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_RANGED && spec.indexMin == spec.indexMax && spec.primitive != gls::DrawTestSpec::PRIMITIVE_POINTS) continue; if (spec.attribs[0].useDefaultAttribute && spec.primitive != gls::DrawTestSpec::PRIMITIVE_POINTS) continue; // Triangle only on one axis if (spec.primitive == gls::DrawTestSpec::PRIMITIVE_TRIANGLES || spec.primitive == gls::DrawTestSpec::PRIMITIVE_TRIANGLE_FAN || spec.primitive == gls::DrawTestSpec::PRIMITIVE_TRIANGLE_STRIP) { if (spec.attribs[0].componentCount == 1) continue; if (spec.attribs[0].outputType == gls::DrawTestSpec::OUTPUTTYPE_FLOAT || spec.attribs[0].outputType == gls::DrawTestSpec::OUTPUTTYPE_INT || spec.attribs[0].outputType == gls::DrawTestSpec::OUTPUTTYPE_UINT) continue; if (spec.drawMethod == gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_RANGED && (spec.indexMax - spec.indexMin) < 2) continue; } } // Add case { deUint32 hash = spec.hash(); for (int attrNdx = 0; attrNdx < attributeCount; ++attrNdx) hash = (hash << 2) ^ (deUint32)spec.attribs[attrNdx].hash(); if (insertedHashes.find(hash) == insertedHashes.end()) { // Only aligned cases if (spec.isCompatibilityTest() != gls::DrawTestSpec::COMPATIBILITY_UNALIGNED_OFFSET && spec.isCompatibilityTest() != gls::DrawTestSpec::COMPATIBILITY_UNALIGNED_STRIDE) this->addChild(new gls::DrawTest(m_testCtx, m_context.getRenderContext(), spec, de::toString(insertedCount).c_str(), spec.getDesc().c_str())); insertedHashes.insert(hash); ++insertedCount; } } } } class BadCommandBufferCase : public TestCase { public: enum { CommandSize = 20 }; BadCommandBufferCase (Context& context, const char* name, const char* desc, deUint32 alignment, deUint32 bufferSize, bool writeCommandToBuffer, deUint32 m_expectedError); ~BadCommandBufferCase (void); IterateResult iterate (void); private: const deUint32 m_alignment; const deUint32 m_bufferSize; const bool m_writeCommandToBuffer; const deUint32 m_expectedError; }; BadCommandBufferCase::BadCommandBufferCase (Context& context, const char* name, const char* desc, deUint32 alignment, deUint32 bufferSize, bool writeCommandToBuffer, deUint32 expectedError) : TestCase (context, name, desc) , m_alignment (alignment) , m_bufferSize (bufferSize) , m_writeCommandToBuffer (writeCommandToBuffer) , m_expectedError (expectedError) { } BadCommandBufferCase::~BadCommandBufferCase (void) { } BadCommandBufferCase::IterateResult BadCommandBufferCase::iterate (void) { const tcu::Vec4 vertexPositions[] = { tcu::Vec4(0, 0, 0, 1), tcu::Vec4(1, 0, 0, 1), tcu::Vec4(0, 1, 0, 1), }; const deUint16 indices[] = { 0, 2, 1, }; DE_STATIC_ASSERT(CommandSize == sizeof(DrawElementsCommand)); sglr::GLContext gl(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS, tcu::IVec4(0, 0, 1, 1)); deUint32 vaoID = 0; deUint32 positionBuf = 0; deUint32 indexBuf = 0; deUint32 drawIndirectBuf= 0; deUint32 error; glu::ShaderProgram program (m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(s_commonVertexShaderSource) << glu::FragmentSource(s_commonFragmentShaderSource)); deUint32 programID = program.getProgram(); deInt32 posLocation = gl.getAttribLocation(programID, "a_position"); DrawElementsCommand drawCommand; drawCommand.count = 3; drawCommand.primCount = 1; drawCommand.firstIndex = 0; drawCommand.baseVertex = 0; drawCommand.reservedMustBeZero = 0; std::vector drawCommandBuffer; drawCommandBuffer.resize(m_bufferSize); deMemset(&drawCommandBuffer[0], 0, (int)drawCommandBuffer.size()); if (m_writeCommandToBuffer) { DE_ASSERT(drawCommandBuffer.size() >= sizeof(drawCommand) + m_alignment); deMemcpy(&drawCommandBuffer[m_alignment], &drawCommand, sizeof(drawCommand)); } glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.genVertexArrays(1, &vaoID); gl.bindVertexArray(vaoID); gl.genBuffers(1, &positionBuf); gl.bindBuffer(GL_ARRAY_BUFFER, positionBuf); gl.bufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.vertexAttribDivisor(posLocation, 0); gl.enableVertexAttribArray(posLocation); glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.genBuffers(1, &indexBuf); gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuf); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.genBuffers(1, &drawIndirectBuf); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, drawIndirectBuf); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, drawCommandBuffer.size(), &drawCommandBuffer[0], GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.viewport(0, 0, 1, 1); gl.useProgram(programID); gl.drawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, (const void*)(deUintptr)m_alignment); error = gl.getError(); gl.useProgram(0); gl.deleteBuffers(1, &drawIndirectBuf); gl.deleteBuffers(1, &indexBuf); gl.deleteBuffers(1, &positionBuf); gl.deleteVertexArrays(1, &vaoID); m_testCtx.getLog() << tcu::TestLog::Message << "drawElementsIndirect generated " << glu::getErrorStr(error) << ", expecting " << glu::getErrorStr(m_expectedError) << "." << tcu::TestLog::EndMessage; if (error == m_expectedError) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else { m_testCtx.getLog() << tcu::TestLog::Message << "\tUnexpected error." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got unexpected error."); } return STOP; } class BadAlignmentCase : public BadCommandBufferCase { public: BadAlignmentCase (Context& context, const char* name, const char* desc, deUint32 alignment); ~BadAlignmentCase (void); }; BadAlignmentCase::BadAlignmentCase (Context& context, const char* name, const char* desc, deUint32 alignment) : BadCommandBufferCase(context, name, desc, alignment, CommandSize+alignment, true, GL_INVALID_VALUE) { } BadAlignmentCase::~BadAlignmentCase (void) { } class BadBufferRangeCase : public BadCommandBufferCase { public: BadBufferRangeCase (Context& context, const char* name, const char* desc, deUint32 offset); ~BadBufferRangeCase (void); }; BadBufferRangeCase::BadBufferRangeCase (Context& context, const char* name, const char* desc, deUint32 offset) : BadCommandBufferCase(context, name, desc, offset, CommandSize, false, GL_INVALID_OPERATION) { } BadBufferRangeCase::~BadBufferRangeCase (void) { } class BadStateCase : public TestCase { public: enum CaseType { CASE_CLIENT_BUFFER_VERTEXATTR = 0, CASE_CLIENT_BUFFER_COMMAND, CASE_DEFAULT_VAO, CASE_CLIENT_LAST }; BadStateCase (Context& context, const char* name, const char* desc, CaseType type); ~BadStateCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: const CaseType m_caseType; }; BadStateCase::BadStateCase (Context& context, const char* name, const char* desc, CaseType type) : TestCase (context, name, desc) , m_caseType (type) { DE_ASSERT(type < CASE_CLIENT_LAST); } BadStateCase::~BadStateCase (void) { deinit(); } void BadStateCase::init (void) { if (!glu::isContextTypeES(m_context.getRenderContext().getType())) { if (m_caseType == CASE_CLIENT_BUFFER_VERTEXATTR) throw tcu::NotSupportedError("The negative test for vertex attrib array in the client memory is not supported in the GL context"); if (m_caseType == CASE_DEFAULT_VAO) throw tcu::NotSupportedError("The negative test for use with default vao is not supported in the GL context"); } } void BadStateCase::deinit (void) { } BadStateCase::IterateResult BadStateCase::iterate (void) { const tcu::Vec4 vertexPositions[] = { tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f), }; const deUint16 indices[] = { 0, 2, 1, }; sglr::GLContext gl(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS, tcu::IVec4(0, 0, 1, 1)); deUint32 error; glu::ShaderProgram program (m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(s_commonVertexShaderSource) << glu::FragmentSource(s_commonFragmentShaderSource)); deUint32 vaoID = 0; deUint32 dataBufferID = 0; deUint32 indexBufferID = 0; deUint32 cmdBufferID = 0; const deUint32 programID = program.getProgram(); const deInt32 posLocation = gl.getAttribLocation(programID, "a_position"); DrawElementsCommand drawCommand; drawCommand.count = 3; drawCommand.primCount = 1; drawCommand.firstIndex = 0; drawCommand.baseVertex = 0; drawCommand.reservedMustBeZero = 0; glu::checkError(gl.getError(), "", __FILE__, __LINE__); if (m_caseType == CASE_CLIENT_BUFFER_VERTEXATTR) { // \note We use default VAO since we use client pointers. Trying indirect draw with default VAO is also an error. => This test does two illegal operations gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, vertexPositions); gl.enableVertexAttribArray(posLocation); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } else if (m_caseType == CASE_CLIENT_BUFFER_COMMAND) { gl.genVertexArrays(1, &vaoID); gl.bindVertexArray(vaoID); gl.genBuffers(1, &dataBufferID); gl.bindBuffer(GL_ARRAY_BUFFER, dataBufferID); gl.bufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } else if (m_caseType == CASE_DEFAULT_VAO) { gl.genBuffers(1, &dataBufferID); gl.bindBuffer(GL_ARRAY_BUFFER, dataBufferID); gl.bufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } else DE_ASSERT(DE_FALSE); gl.genBuffers(1, &indexBufferID); gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferID); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); if (m_caseType != CASE_CLIENT_BUFFER_COMMAND) { gl.genBuffers(1, &cmdBufferID); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, cmdBufferID); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(drawCommand), &drawCommand, GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } gl.viewport(0, 0, 1, 1); gl.useProgram(programID); gl.drawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, (m_caseType != CASE_CLIENT_BUFFER_COMMAND) ? (DE_NULL) : (&drawCommand)); error = gl.getError(); gl.bindVertexArray(0); gl.useProgram(0); if (error == GL_INVALID_OPERATION) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else { m_testCtx.getLog() << tcu::TestLog::Message << "Unexpected error. Expected GL_INVALID_OPERATION, got " << glu::getErrorStr(error) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got unexpected error."); } return STOP; } class BadDrawModeCase : public TestCase { public: enum DrawType { DRAW_ARRAYS = 0, DRAW_ELEMENTS, DRAW_ELEMENTS_BAD_INDEX, DRAW_LAST }; BadDrawModeCase (Context& context, const char* name, const char* desc, DrawType type); ~BadDrawModeCase(void); void init (void); void deinit (void); IterateResult iterate (void); private: const DrawType m_drawType; }; BadDrawModeCase::BadDrawModeCase (Context& context, const char* name, const char* desc, DrawType type) : TestCase (context, name, desc) , m_drawType (type) { DE_ASSERT(type < DRAW_LAST); } BadDrawModeCase::~BadDrawModeCase (void) { deinit(); } void BadDrawModeCase::init (void) { } void BadDrawModeCase::deinit (void) { } BadDrawModeCase::IterateResult BadDrawModeCase::iterate (void) { const tcu::Vec4 vertexPositions[] = { tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f), }; const deUint16 indices[] = { 0, 2, 1, }; sglr::GLContext gl (m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS, tcu::IVec4(0, 0, 1, 1)); deUint32 error; glu::ShaderProgram program (m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(s_commonVertexShaderSource) << glu::FragmentSource(s_commonFragmentShaderSource)); deUint32 vaoID = 0; deUint32 dataBufferID = 0; deUint32 indexBufferID = 0; deUint32 cmdBufferID = 0; const deUint32 programID = program.getProgram(); const deInt32 posLocation = gl.getAttribLocation(programID, "a_position"); const glw::GLenum mode = (m_drawType == DRAW_ELEMENTS_BAD_INDEX) ? (GL_TRIANGLES) : (0x123); const glw::GLenum indexType = (m_drawType == DRAW_ELEMENTS_BAD_INDEX) ? (0x123) : (GL_UNSIGNED_SHORT); glu::checkError(gl.getError(), "", __FILE__, __LINE__); // vao gl.genVertexArrays(1, &vaoID); gl.bindVertexArray(vaoID); // va gl.genBuffers(1, &dataBufferID); gl.bindBuffer(GL_ARRAY_BUFFER, dataBufferID); gl.bufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); glu::checkError(gl.getError(), "", __FILE__, __LINE__); // index if (m_drawType == DRAW_ELEMENTS || m_drawType == DRAW_ELEMENTS_BAD_INDEX) { gl.genBuffers(1, &indexBufferID); gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferID); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glu::checkError(gl.getError(), "", __FILE__, __LINE__); } // cmd gl.genBuffers(1, &cmdBufferID); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, cmdBufferID); if (m_drawType == DRAW_ELEMENTS || m_drawType == DRAW_ELEMENTS_BAD_INDEX) { DrawElementsCommand drawCommand; drawCommand.count = 3; drawCommand.primCount = 1; drawCommand.firstIndex = 0; drawCommand.baseVertex = 0; drawCommand.reservedMustBeZero = 0; gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(drawCommand), &drawCommand, GL_STATIC_DRAW); } else if (m_drawType == DRAW_ARRAYS) { DrawArraysCommand drawCommand; drawCommand.count = 3; drawCommand.primCount = 1; drawCommand.first = 0; drawCommand.reservedMustBeZero = 0; gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(drawCommand), &drawCommand, GL_STATIC_DRAW); } else DE_ASSERT(DE_FALSE); glu::checkError(gl.getError(), "", __FILE__, __LINE__); gl.viewport(0, 0, 1, 1); gl.useProgram(programID); if (m_drawType == DRAW_ELEMENTS || m_drawType == DRAW_ELEMENTS_BAD_INDEX) gl.drawElementsIndirect(mode, indexType, DE_NULL); else if (m_drawType == DRAW_ARRAYS) gl.drawArraysIndirect(mode, DE_NULL); else DE_ASSERT(DE_FALSE); error = gl.getError(); gl.useProgram(0); if (error == GL_INVALID_ENUM) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else { m_testCtx.getLog() << tcu::TestLog::Message << "Unexpected error. Expected GL_INVALID_ENUM, got " << glu::getErrorStr(error) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got unexpected error."); } return STOP; } class NegativeGroup : public TestCaseGroup { public: NegativeGroup (Context& context, const char* name, const char* descr); ~NegativeGroup (void); void init (void); }; NegativeGroup::NegativeGroup (Context& context, const char* name, const char* descr) : TestCaseGroup (context, name, descr) { } NegativeGroup::~NegativeGroup (void) { } void NegativeGroup::init (void) { // invalid alignment addChild(new BadAlignmentCase (m_context, "command_bad_alignment_1", "Bad command alignment", 1)); addChild(new BadAlignmentCase (m_context, "command_bad_alignment_2", "Bad command alignment", 2)); addChild(new BadAlignmentCase (m_context, "command_bad_alignment_3", "Bad command alignment", 3)); // command only partially or not at all in the buffer addChild(new BadBufferRangeCase (m_context, "command_offset_partially_in_buffer", "Command not fully in the buffer range", BadBufferRangeCase::CommandSize - 16)); addChild(new BadBufferRangeCase (m_context, "command_offset_not_in_buffer", "Command not in the buffer range", BadBufferRangeCase::CommandSize)); addChild(new BadBufferRangeCase (m_context, "command_offset_not_in_buffer_unsigned32_wrap", "Command not in the buffer range", 0xFFFFFFFC)); addChild(new BadBufferRangeCase (m_context, "command_offset_not_in_buffer_signed32_wrap", "Command not in the buffer range", 0x7FFFFFFC)); // use with client data and default vao addChild(new BadStateCase (m_context, "client_vertex_attrib_array", "Vertex attrib array in the client memory", BadStateCase::CASE_CLIENT_BUFFER_VERTEXATTR)); addChild(new BadStateCase (m_context, "client_command_array", "Command array in the client memory", BadStateCase::CASE_CLIENT_BUFFER_COMMAND)); addChild(new BadStateCase (m_context, "default_vao", "Use with default vao", BadStateCase::CASE_DEFAULT_VAO)); // invalid mode & type addChild(new BadDrawModeCase (m_context, "invalid_mode_draw_arrays", "Call DrawArraysIndirect with bad mode", BadDrawModeCase::DRAW_ARRAYS)); addChild(new BadDrawModeCase (m_context, "invalid_mode_draw_elements", "Call DrawelementsIndirect with bad mode", BadDrawModeCase::DRAW_ELEMENTS)); addChild(new BadDrawModeCase (m_context, "invalid_type_draw_elements", "Call DrawelementsIndirect with bad type", BadDrawModeCase::DRAW_ELEMENTS_BAD_INDEX)); } } // anonymous DrawTests::DrawTests (Context& context) : TestCaseGroup(context, "draw_indirect", "Indirect drawing tests") { } DrawTests::~DrawTests (void) { } void DrawTests::init (void) { // Basic { const gls::DrawTestSpec::DrawMethod basicMethods[] = { gls::DrawTestSpec::DRAWMETHOD_DRAWARRAYS_INDIRECT, gls::DrawTestSpec::DRAWMETHOD_DRAWELEMENTS_INDIRECT, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(basicMethods); ++ndx) { const std::string name = gls::DrawTestSpec::drawMethodToString(basicMethods[ndx]); const std::string desc = gls::DrawTestSpec::drawMethodToString(basicMethods[ndx]); this->addChild(new MethodGroup(m_context, name.c_str(), desc.c_str(), basicMethods[ndx])); } } // extreme instancing this->addChild(new InstancingGroup(m_context, "instancing", "draw tests with a large instance count.")); // compute shader generated commands this->addChild(new ComputeShaderGeneratedGroup(m_context, "compute_interop", "draw tests with a draw command generated in compute shader.")); // Random this->addChild(new RandomGroup(m_context, "random", "random draw commands.")); // negative this->addChild(new NegativeGroup(m_context, "negative", "invalid draw commands with defined error codes.")); } } // Functional } // gles31 } // deqp