/* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition data. */ /* By Rod Smith, initial coding January to February, 2009 */ /* This program is copyright (c) 2009-2018 by Roderick W. Smith. It is distributed under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ #define __STDC_LIMIT_MACROS #ifndef __STDC_CONSTANT_MACROS #define __STDC_CONSTANT_MACROS #endif #include #include #include #include #include #include #include #include #include #include #include #include "crc32.h" #include "gpt.h" #include "bsd.h" #include "support.h" #include "parttypes.h" #include "attributes.h" #include "diskio.h" using namespace std; #ifdef __FreeBSD__ #define log2(x) (log(x) / M_LN2) #endif // __FreeBSD__ #ifdef _MSC_VER #define log2(x) (log((double) x) / log(2.0)) #endif // Microsoft Visual C++ #ifdef EFI // in UEFI mode MMX registers are not yet available so using the // x86_64 ABI to move "double" values around is not an option. #ifdef log2 #undef log2 #endif #define log2(x) log2_32( x ) static inline uint32_t log2_32(uint32_t v) { int r = -1; while (v >= 1) { r++; v >>= 1; } return r; } #endif /**************************************** * * * GPTData class and related structures * * * ****************************************/ // Default constructor GPTData::GPTData(void) { blockSize = SECTOR_SIZE; // set a default physBlockSize = 0; // 0 = can't be determined diskSize = 0; partitions = NULL; state = gpt_valid; device = ""; justLooking = 0; mainCrcOk = 0; secondCrcOk = 0; mainPartsCrcOk = 0; secondPartsCrcOk = 0; apmFound = 0; bsdFound = 0; sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default beQuiet = 0; whichWasUsed = use_new; mainHeader.numParts = 0; numParts = 0; SetGPTSize(NUM_GPT_ENTRIES); // Initialize CRC functions... chksum_crc32gentab(); } // GPTData default constructor GPTData::GPTData(const GPTData & orig) { uint32_t i; if (&orig != this) { mainHeader = orig.mainHeader; numParts = orig.numParts; secondHeader = orig.secondHeader; protectiveMBR = orig.protectiveMBR; device = orig.device; blockSize = orig.blockSize; physBlockSize = orig.physBlockSize; diskSize = orig.diskSize; state = orig.state; justLooking = orig.justLooking; mainCrcOk = orig.mainCrcOk; secondCrcOk = orig.secondCrcOk; mainPartsCrcOk = orig.mainPartsCrcOk; secondPartsCrcOk = orig.secondPartsCrcOk; apmFound = orig.apmFound; bsdFound = orig.bsdFound; sectorAlignment = orig.sectorAlignment; beQuiet = orig.beQuiet; whichWasUsed = orig.whichWasUsed; myDisk.OpenForRead(orig.myDisk.GetName()); delete[] partitions; partitions = new GPTPart [numParts]; if (partitions == NULL) { cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n" << "Terminating!\n"; exit(1); } // if for (i = 0; i < numParts; i++) { partitions[i] = orig.partitions[i]; } // for } // if } // GPTData copy constructor // The following constructor loads GPT data from a device file GPTData::GPTData(string filename) { blockSize = SECTOR_SIZE; // set a default diskSize = 0; partitions = NULL; state = gpt_invalid; device = ""; justLooking = 0; mainCrcOk = 0; secondCrcOk = 0; mainPartsCrcOk = 0; secondPartsCrcOk = 0; apmFound = 0; bsdFound = 0; sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default beQuiet = 0; whichWasUsed = use_new; mainHeader.numParts = 0; numParts = 0; // Initialize CRC functions... chksum_crc32gentab(); if (!LoadPartitions(filename)) exit(2); } // GPTData(string filename) constructor // Destructor GPTData::~GPTData(void) { delete[] partitions; } // GPTData destructor // Assignment operator GPTData & GPTData::operator=(const GPTData & orig) { uint32_t i; if (&orig != this) { mainHeader = orig.mainHeader; numParts = orig.numParts; secondHeader = orig.secondHeader; protectiveMBR = orig.protectiveMBR; device = orig.device; blockSize = orig.blockSize; physBlockSize = orig.physBlockSize; diskSize = orig.diskSize; state = orig.state; justLooking = orig.justLooking; mainCrcOk = orig.mainCrcOk; secondCrcOk = orig.secondCrcOk; mainPartsCrcOk = orig.mainPartsCrcOk; secondPartsCrcOk = orig.secondPartsCrcOk; apmFound = orig.apmFound; bsdFound = orig.bsdFound; sectorAlignment = orig.sectorAlignment; beQuiet = orig.beQuiet; whichWasUsed = orig.whichWasUsed; myDisk.OpenForRead(orig.myDisk.GetName()); delete[] partitions; partitions = new GPTPart [numParts]; if (partitions == NULL) { cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n" << "Terminating!\n"; exit(1); } // if for (i = 0; i < numParts; i++) { partitions[i] = orig.partitions[i]; } // for } // if return *this; } // GPTData::operator=() /********************************************************************* * * * Begin functions that verify data, or that adjust the verification * * information (compute CRCs, rebuild headers) * * * *********************************************************************/ // Perform detailed verification, reporting on any problems found, but // do *NOT* recover from these problems. Returns the total number of // problems identified. int GPTData::Verify(void) { int problems = 0, alignProbs = 0; uint32_t i, numSegments, testAlignment = sectorAlignment; uint64_t totalFree, largestSegment; // First, check for CRC errors in the GPT data.... if (!mainCrcOk) { problems++; cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n" << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n" << "header ('b' on the recovery & transformation menu). This report may be a false\n" << "alarm if you've already corrected other problems.\n"; } // if if (!mainPartsCrcOk) { problems++; cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n" << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n" << "transformation menu). This report may be a false alarm if you've already\n" << "corrected other problems.\n"; } // if if (!secondCrcOk) { problems++; cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n" << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n" << "header ('d' on the recovery & transformation menu). This report may be a false\n" << "alarm if you've already corrected other problems.\n"; } // if if (!secondPartsCrcOk) { problems++; cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n" << "be corrupt. This program will automatically create a new backup partition\n" << "table when you save your partitions.\n"; } // if // Now check that the main and backup headers both point to themselves.... if (mainHeader.currentLBA != 1) { problems++; cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n" << "is being automatically corrected, but it may be a symptom of more serious\n" << "problems. Think carefully before saving changes with 'w' or using this disk.\n"; mainHeader.currentLBA = 1; } // if if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) { problems++; cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n" << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n" << "option on the experts' menu to adjust the secondary header's and partition\n" << "table's locations.\n"; } // if // Now check that critical main and backup GPT entries match each other if (mainHeader.currentLBA != secondHeader.backupLBA) { problems++; cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA << ") doesn't\nmatch the backup GPT header's alternate LBA pointer(" << secondHeader.backupLBA << ").\n"; } // if if (mainHeader.backupLBA != secondHeader.currentLBA) { problems++; cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA << ") doesn't\nmatch the backup GPT header's current LBA pointer (" << secondHeader.currentLBA << ").\n" << "The 'e' option on the experts' menu may fix this problem.\n"; } // if if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) { problems++; cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA << ") doesn't\nmatch the backup GPT header's first usable LBA pointer (" << secondHeader.firstUsableLBA << ")\n"; } // if if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) { problems++; cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA << ") doesn't\nmatch the backup GPT header's last usable LBA pointer (" << secondHeader.lastUsableLBA << ")\n" << "The 'e' option on the experts' menu can probably fix this problem.\n"; } // if if ((mainHeader.diskGUID != secondHeader.diskGUID)) { problems++; cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID << ") doesn't\nmatch the backup GPT header's disk GUID (" << secondHeader.diskGUID << ")\n" << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" << "select one or the other header.\n"; } // if if (mainHeader.numParts != secondHeader.numParts) { problems++; cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts << ") doesn't\nmatch the backup GPT header's number of partitions (" << secondHeader.numParts << ")\n" << "Resizing the partition table ('s' on the experts' menu) may help.\n"; } // if if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) { problems++; cout << "\nProblem: main GPT header's size of partition entries (" << mainHeader.sizeOfPartitionEntries << ") doesn't\n" << "match the backup GPT header's size of partition entries (" << secondHeader.sizeOfPartitionEntries << ")\n" << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" << "select one or the other header.\n"; } // if // Now check for a few other miscellaneous problems... // Check that the disk size will hold the data... if (mainHeader.backupLBA >= diskSize) { problems++; cout << "\nProblem: Disk is too small to hold all the data!\n" << "(Disk size is " << diskSize << " sectors, needs to be " << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n" << "The 'e' option on the experts' menu may fix this problem.\n"; } // if // Check the main and backup partition tables for overlap with things and unusual gaps if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) { problems++; cout << "\nProblem: Main partition table extends past the first usable LBA.\n" << "Using 'j' on the experts' menu may enable fixing this problem.\n"; } // if if (mainHeader.partitionEntriesLBA < 2) { problems++; cout << "\nProblem: Main partition table appears impossibly early on the disk.\n" << "Using 'j' on the experts' menu may enable fixing this problem.\n"; } // if if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) { problems++; cout << "\nProblem: The backup partition table overlaps the backup header.\n" << "Using 'e' on the experts' menu may fix this problem.\n"; } // if if (mainHeader.partitionEntriesLBA != 2) { cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n" << "partition table (sector " << mainHeader.partitionEntriesLBA << "). This is helpful in some exotic configurations,\n" << "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n" << "gap.\n"; } // if if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) { cout << "\nWarning: There is a gap between the main partition table (ending sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n" << "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n" << "but is unusual. The util-linux fdisk program often creates disks like this.\n" << "Using 'j' on the experts' menu can adjust this gap.\n"; } // if if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) { cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts << " bytes) is less than the minimum\n" << "required by the GPT specification. Most OSes and tools seem to work fine on\n" << "such disks, but this is a violation of the GPT specification and so may cause\n" << "problems.\n"; } // if if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { problems++; cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n" << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n" << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n" << "The 'e' option on the experts' menu will probably fix this problem\n"; } // Check for overlapping partitions.... problems += FindOverlaps(); // Check for insane partitions (start after end, hugely big, etc.) problems += FindInsanePartitions(); // Check for mismatched MBR and GPT partitions... problems += FindHybridMismatches(); // Check for MBR-specific problems.... problems += VerifyMBR(); // Check for a 0xEE protective partition that's marked as active.... if (protectiveMBR.IsEEActive()) { cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n" << "technically a violation of the GPT specification, and can cause some EFIs to\n" << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n" << "computers. You can clear this flag by creating a fresh protective MBR using\n" << "the 'n' option on the experts' menu.\n"; } // Verify that partitions don't run into GPT data areas.... problems += CheckGPTSize(); if (!protectiveMBR.DoTheyFit()) { cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" << "fresh protective or hybrid MBR is recommended.\n"; problems++; } // Check that partitions are aligned on proper boundaries (for WD Advanced // Format and similar disks).... if ((physBlockSize != 0) && (blockSize != 0)) testAlignment = physBlockSize / blockSize; testAlignment = max(testAlignment, sectorAlignment); if (testAlignment == 0) // Should not happen; just being paranoid. testAlignment = sectorAlignment; for (i = 0; i < numParts; i++) { if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) { cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a " << testAlignment << "-sector boundary. This may\nresult " << "in degraded performance on some modern (2009 and later) hard disks.\n"; alignProbs++; } // if } // for if (alignProbs > 0) cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n" << "for information on disk alignment.\n"; // Now compute available space, but only if no problems found, since // problems could affect the results if (problems == 0) { totalFree = FindFreeBlocks(&numSegments, &largestSegment); cout << "\nNo problems found. " << totalFree << " free sectors (" << BytesToIeee(totalFree, blockSize) << ") available in " << numSegments << "\nsegments, the largest of which is " << largestSegment << " (" << BytesToIeee(largestSegment, blockSize) << ") in size.\n"; } else { cout << "\nIdentified " << problems << " problems!\n"; } // if/else return (problems); } // GPTData::Verify() // Checks to see if the GPT tables overrun existing partitions; if they // do, issues a warning but takes no action. Returns number of problems // detected (0 if OK, 1 to 2 if problems). int GPTData::CheckGPTSize(void) { uint64_t overlap, firstUsedBlock, lastUsedBlock; uint32_t i; int numProbs = 0; // first, locate the first & last used blocks firstUsedBlock = UINT64_MAX; lastUsedBlock = 0; for (i = 0; i < numParts; i++) { if (partitions[i].IsUsed()) { if (partitions[i].GetFirstLBA() < firstUsedBlock) firstUsedBlock = partitions[i].GetFirstLBA(); if (partitions[i].GetLastLBA() > lastUsedBlock) { lastUsedBlock = partitions[i].GetLastLBA(); } // if } // if } // for // If the disk size is 0 (the default), then it means that various // variables aren't yet set, so the below tests will be useless; // therefore we should skip everything if (diskSize != 0) { if (mainHeader.firstUsableLBA > firstUsedBlock) { overlap = mainHeader.firstUsableLBA - firstUsedBlock; cout << "Warning! Main partition table overlaps the first partition by " << overlap << " blocks!\n"; if (firstUsedBlock > 2) { cout << "Try reducing the partition table size by " << overlap * 4 << " entries.\n(Use the 's' item on the experts' menu.)\n"; } else { cout << "You will need to delete this partition or resize it in another utility.\n"; } // if/else numProbs++; } // Problem at start of disk if (mainHeader.lastUsableLBA < lastUsedBlock) { overlap = lastUsedBlock - mainHeader.lastUsableLBA; cout << "\nWarning! Secondary partition table overlaps the last partition by\n" << overlap << " blocks!\n"; if (lastUsedBlock > (diskSize - 2)) { cout << "You will need to delete this partition or resize it in another utility.\n"; } else { cout << "Try reducing the partition table size by " << overlap * 4 << " entries.\n(Use the 's' item on the experts' menu.)\n"; } // if/else numProbs++; } // Problem at end of disk } // if (diskSize != 0) return numProbs; } // GPTData::CheckGPTSize() // Check the validity of the GPT header. Returns 1 if the main header // is valid, 2 if the backup header is valid, 3 if both are valid, and // 0 if neither is valid. Note that this function checks the GPT signature, // revision value, and CRCs in both headers. int GPTData::CheckHeaderValidity(void) { int valid = 3; cout.setf(ios::uppercase); cout.fill('0'); // Note: failed GPT signature checks produce no error message because // a message is displayed in the ReversePartitionBytes() function if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) { valid -= 1; } else if ((mainHeader.revision != 0x00010000) && valid) { valid -= 1; cout << "Unsupported GPT version in main header; read 0x"; cout.width(8); cout << hex << mainHeader.revision << ", should be\n0x"; cout.width(8); cout << UINT32_C(0x00010000) << dec << "\n"; } // if/else/if if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) { valid -= 2; } else if ((secondHeader.revision != 0x00010000) && valid) { valid -= 2; cout << "Unsupported GPT version in backup header; read 0x"; cout.width(8); cout << hex << secondHeader.revision << ", should be\n0x"; cout.width(8); cout << UINT32_C(0x00010000) << dec << "\n"; } // if/else/if // Check for an Apple disk signature if (((mainHeader.signature << 32) == APM_SIGNATURE1) || (mainHeader.signature << 32) == APM_SIGNATURE2) { apmFound = 1; // Will display warning message later } // if cout.fill(' '); return valid; } // GPTData::CheckHeaderValidity() // Check the header CRC to see if it's OK... // Note: Must be called with header in platform-ordered byte order. // Returns 1 if header's computed CRC matches the stored value, 0 if the // computed and stored values don't match int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) { uint32_t oldCRC, newCRC, hSize; uint8_t *temp; // Back up old header CRC and then blank it, since it must be 0 for // computation to be valid oldCRC = header->headerCRC; header->headerCRC = UINT32_C(0); hSize = header->headerSize; if (IsLittleEndian() == 0) ReverseHeaderBytes(header); if ((hSize > blockSize) || (hSize < HEADER_SIZE)) { if (warn) { cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n"; cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n"; } // if hSize = HEADER_SIZE; } else if ((hSize > sizeof(GPTHeader)) && warn) { cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n"; cout << "If stray data exists after the header on the header sector, it will be ignored,\n" << "which may result in a CRC false alarm.\n"; } // if/elseif temp = new uint8_t[hSize]; if (temp != NULL) { memset(temp, 0, hSize); if (hSize < sizeof(GPTHeader)) memcpy(temp, header, hSize); else memcpy(temp, header, sizeof(GPTHeader)); newCRC = chksum_crc32((unsigned char*) temp, hSize); delete[] temp; } else { cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n"; exit(1); } if (IsLittleEndian() == 0) ReverseHeaderBytes(header); header->headerCRC = oldCRC; return (oldCRC == newCRC); } // GPTData::CheckHeaderCRC() // Recompute all the CRCs. Must be called before saving if any changes have // been made. Must be called on platform-ordered data (this function reverses // byte order and then undoes that reversal.) void GPTData::RecomputeCRCs(void) { uint32_t crc, hSize; int littleEndian = 1; // If the header size is bigger than the GPT header data structure, reset it; // otherwise, set both header sizes to whatever the main one is.... if (mainHeader.headerSize > sizeof(GPTHeader)) hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE; else hSize = secondHeader.headerSize = mainHeader.headerSize; if ((littleEndian = IsLittleEndian()) == 0) { ReversePartitionBytes(); ReverseHeaderBytes(&mainHeader); ReverseHeaderBytes(&secondHeader); } // if // Compute CRC of partition tables & store in main and secondary headers crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE); mainHeader.partitionEntriesCRC = crc; secondHeader.partitionEntriesCRC = crc; if (littleEndian == 0) { ReverseBytes(&mainHeader.partitionEntriesCRC, 4); ReverseBytes(&secondHeader.partitionEntriesCRC, 4); } // if // Zero out GPT headers' own CRCs (required for correct computation) mainHeader.headerCRC = 0; secondHeader.headerCRC = 0; crc = chksum_crc32((unsigned char*) &mainHeader, hSize); if (littleEndian == 0) ReverseBytes(&crc, 4); mainHeader.headerCRC = crc; crc = chksum_crc32((unsigned char*) &secondHeader, hSize); if (littleEndian == 0) ReverseBytes(&crc, 4); secondHeader.headerCRC = crc; if (littleEndian == 0) { ReverseHeaderBytes(&mainHeader); ReverseHeaderBytes(&secondHeader); ReversePartitionBytes(); } // if } // GPTData::RecomputeCRCs() // Rebuild the main GPT header, using the secondary header as a model. // Typically called when the main header has been found to be corrupt. void GPTData::RebuildMainHeader(void) { mainHeader.signature = GPT_SIGNATURE; mainHeader.revision = secondHeader.revision; mainHeader.headerSize = secondHeader.headerSize; mainHeader.headerCRC = UINT32_C(0); mainHeader.reserved = secondHeader.reserved; mainHeader.currentLBA = secondHeader.backupLBA; mainHeader.backupLBA = secondHeader.currentLBA; mainHeader.firstUsableLBA = secondHeader.firstUsableLBA; mainHeader.lastUsableLBA = secondHeader.lastUsableLBA; mainHeader.diskGUID = secondHeader.diskGUID; mainHeader.numParts = secondHeader.numParts; mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors(); mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries; mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC; memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2)); mainCrcOk = secondCrcOk; SetGPTSize(mainHeader.numParts, 0); } // GPTData::RebuildMainHeader() // Rebuild the secondary GPT header, using the main header as a model. void GPTData::RebuildSecondHeader(void) { secondHeader.signature = GPT_SIGNATURE; secondHeader.revision = mainHeader.revision; secondHeader.headerSize = mainHeader.headerSize; secondHeader.headerCRC = UINT32_C(0); secondHeader.reserved = mainHeader.reserved; secondHeader.currentLBA = mainHeader.backupLBA; secondHeader.backupLBA = mainHeader.currentLBA; secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; secondHeader.lastUsableLBA = mainHeader.lastUsableLBA; secondHeader.diskGUID = mainHeader.diskGUID; secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); secondHeader.numParts = mainHeader.numParts; secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries; secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC; memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2)); secondCrcOk = mainCrcOk; SetGPTSize(secondHeader.numParts, 0); } // GPTData::RebuildSecondHeader() // Search for hybrid MBR entries that have no corresponding GPT partition. // Returns number of such mismatches found int GPTData::FindHybridMismatches(void) { int i, found, numFound = 0; uint32_t j; uint64_t mbrFirst, mbrLast; for (i = 0; i < 4; i++) { if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) { j = 0; found = 0; mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i); mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1); do { if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) && (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed())) found = 1; j++; } while ((!found) && (j < numParts)); if (!found) { numFound++; cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition " << i + 1 << ", of type 0x"; cout.fill('0'); cout.setf(ios::uppercase); cout.width(2); cout << hex << (int) protectiveMBR.GetType(i) << ",\n" << "has no corresponding GPT partition! You may continue, but this condition\n" << "might cause data loss in the future!\a\n" << dec; cout.fill(' '); } // if } // if } // for return numFound; } // GPTData::FindHybridMismatches // Find overlapping partitions and warn user about them. Returns number of // overlapping partitions. // Returns number of overlapping segments found. int GPTData::FindOverlaps(void) { int problems = 0; uint32_t i, j; for (i = 1; i < numParts; i++) { for (j = 0; j < i; j++) { if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) && (partitions[i].DoTheyOverlap(partitions[j]))) { problems++; cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n"; cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA() << " to " << partitions[i].GetLastLBA() << "\n"; cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA() << " to " << partitions[j].GetLastLBA() << "\n"; } // if } // for j... } // for i... return problems; } // GPTData::FindOverlaps() // Find partitions that are insane -- they start after they end or are too // big for the disk. (The latter should duplicate detection of overlaps // with GPT backup data structures, but better to err on the side of // redundant tests than to miss something....) // Returns number of problems found. int GPTData::FindInsanePartitions(void) { uint32_t i; int problems = 0; for (i = 0; i < numParts; i++) { if (partitions[i].IsUsed()) { if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) { problems++; cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n"; } // if if (partitions[i].GetLastLBA() >= diskSize) { problems++; cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n"; } // if } // if } // for return problems; } // GPTData::FindInsanePartitions(void) /****************************************************************** * * * Begin functions that load data from disk or save data to disk. * * * ******************************************************************/ // Change the filename associated with the GPT. Used for duplicating // the partition table to a new disk and saving backups. // Returns 1 on success, 0 on failure. int GPTData::SetDisk(const string & deviceFilename) { int err, allOK = 1; device = deviceFilename; if (allOK && myDisk.OpenForRead(deviceFilename)) { // store disk information.... diskSize = myDisk.DiskSize(&err); blockSize = (uint32_t) myDisk.GetBlockSize(); physBlockSize = (uint32_t) myDisk.GetPhysBlockSize(); } // if protectiveMBR.SetDisk(&myDisk); protectiveMBR.SetDiskSize(diskSize); protectiveMBR.SetBlockSize(blockSize); return allOK; } // GPTData::SetDisk() int GPTData::SetDisk(const DiskIO & disk) { myDisk = disk; return 1; } // GPTData::SetDisk() // Scan for partition data. This function loads the MBR data (regular MBR or // protective MBR) and loads BSD disklabel data (which is probably invalid). // It also looks for APM data, forces a load of GPT data, and summarizes // the results. void GPTData::PartitionScan(void) { BSDData bsdDisklabel; // Read the MBR & check for BSD disklabel protectiveMBR.ReadMBRData(&myDisk); bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); // Load the GPT data, whether or not it's valid ForceLoadGPTData(); // Some tools create a 0xEE partition that's too big. If this is detected, // normalize it.... if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) { if (!beQuiet) { cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n"; } // if protectiveMBR.MakeProtectiveMBR(); } // if if (!beQuiet) { cout << "Partition table scan:\n"; protectiveMBR.ShowState(); bsdDisklabel.ShowState(); ShowAPMState(); // Show whether there's an Apple Partition Map present ShowGPTState(); // Show GPT status cout << "\n"; } // if if (apmFound) { cout << "\n*******************************************************************\n" << "This disk appears to contain an Apple-format (APM) partition table!\n"; if (!justLooking) { cout << "It will be destroyed if you continue!\n"; } // if cout << "*******************************************************************\n\n\a"; } // if } // GPTData::PartitionScan() // Read GPT data from a disk. int GPTData::LoadPartitions(const string & deviceFilename) { BSDData bsdDisklabel; int err, allOK = 1; MBRValidity mbrState; if (myDisk.OpenForRead(deviceFilename)) { err = myDisk.OpenForWrite(deviceFilename); if ((err == 0) && (!justLooking)) { cout << "\aNOTE: Write test failed with error number " << errno << ". It will be impossible to save\nchanges to this disk's partition table!\n"; #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__) cout << "You may be able to enable writes by exiting this program, typing\n" << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n" << "program.\n"; #endif #if defined (__APPLE__) cout << "You may need to deactivate System Integrity Protection to use this program. See\n" << "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n" << "for more information.\n"; #endif cout << "\n"; } // if myDisk.Close(); // Close and re-open read-only in case of bugs } else allOK = 0; // if if (allOK && myDisk.OpenForRead(deviceFilename)) { // store disk information.... diskSize = myDisk.DiskSize(&err); blockSize = (uint32_t) myDisk.GetBlockSize(); physBlockSize = (uint32_t) myDisk.GetPhysBlockSize(); device = deviceFilename; PartitionScan(); // Check for partition types, load GPT, & print summary whichWasUsed = UseWhichPartitions(); switch (whichWasUsed) { case use_mbr: XFormPartitions(); break; case use_bsd: bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); // bsdDisklabel.DisplayBSDData(); ClearGPTData(); protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1) XFormDisklabel(&bsdDisklabel); break; case use_gpt: mbrState = protectiveMBR.GetValidity(); if ((mbrState == invalid) || (mbrState == mbr)) protectiveMBR.MakeProtectiveMBR(); break; case use_new: ClearGPTData(); protectiveMBR.MakeProtectiveMBR(); break; case use_abort: allOK = 0; cerr << "Invalid partition data!\n"; break; } // switch if (allOK) CheckGPTSize(); myDisk.Close(); ComputeAlignment(); } else { allOK = 0; } // if/else return (allOK); } // GPTData::LoadPartitions() // Loads the GPT, as much as possible. Returns 1 if this seems to have // succeeded, 0 if there are obvious problems.... int GPTData::ForceLoadGPTData(void) { int allOK, validHeaders, loadedTable = 1; allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk); if (mainCrcOk && (mainHeader.backupLBA < diskSize)) { allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK; } else { allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK; if (mainCrcOk && (mainHeader.backupLBA >= diskSize)) cout << "Warning! Disk size is smaller than the main header indicates! Loading\n" << "secondary header from the last sector of the disk! You should use 'v' to\n" << "verify disk integrity, and perhaps options on the experts' menu to repair\n" << "the disk.\n"; } // if/else if (!allOK) state = gpt_invalid; // Return valid headers code: 0 = both headers bad; 1 = main header // good, backup bad; 2 = backup header good, main header bad; // 3 = both headers good. Note these codes refer to valid GPT // signatures, version numbers, and CRCs. validHeaders = CheckHeaderValidity(); // Read partitions (from primary array) if (validHeaders > 0) { // if at least one header is OK.... // GPT appears to be valid.... state = gpt_valid; // We're calling the GPT valid, but there's a possibility that one // of the two headers is corrupt. If so, use the one that seems to // be in better shape to regenerate the bad one if (validHeaders == 1) { // valid main header, invalid backup header cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n" << "backup header from main header.\n\n"; RebuildSecondHeader(); state = gpt_corrupt; secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main } else if (validHeaders == 2) { // valid backup header, invalid main header cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n" << "from backup!\n\n"; RebuildMainHeader(); state = gpt_corrupt; mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup } // if/else/if // Figure out which partition table to load.... // Load the main partition table, if its header's CRC is OK if (validHeaders != 2) { if (LoadMainTable() == 0) allOK = 0; } else { // bad main header CRC and backup header CRC is OK state = gpt_corrupt; if (LoadSecondTableAsMain()) { loadedTable = 2; cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n"; } else { // backup table bad, bad main header CRC, but try main table in desperation.... if (LoadMainTable() == 0) { allOK = 0; loadedTable = 0; cerr << "\a\aWarning! Unable to load either main or backup partition table!\n"; } // if } // if/else (LoadSecondTableAsMain()) } // if/else (load partition table) if (loadedTable == 1) secondPartsCrcOk = CheckTable(&secondHeader); else if (loadedTable == 2) mainPartsCrcOk = CheckTable(&mainHeader); else mainPartsCrcOk = secondPartsCrcOk = 0; // Problem with main partition table; if backup is OK, use it instead.... if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) { state = gpt_corrupt; allOK = allOK && LoadSecondTableAsMain(); mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup " << "partition table\ninstead of main partition table!\n\n"; } // if */ // Check for valid CRCs and warn if there are problems if ((validHeaders != 3) || (mainPartsCrcOk == 0) || (secondPartsCrcOk == 0)) { cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n"; // Show detail status of header and table if (validHeaders & 0x1) cerr << "Main header: OK\n"; else cerr << "Main header: ERROR\n"; if (validHeaders & 0x2) cerr << "Backup header: OK\n"; else cerr << "Backup header: ERROR\n"; if (mainPartsCrcOk) cerr << "Main partition table: OK\n"; else cerr << "Main partition table: ERROR\n"; if (secondPartsCrcOk) cerr << "Backup partition table: OK\n"; else cerr << "Backup partition table: ERROR\n"; cerr << "\n"; state = gpt_corrupt; } // if } else { state = gpt_invalid; } // if/else return allOK; } // GPTData::ForceLoadGPTData() // Loads the partition table pointed to by the main GPT header. The // main GPT header in memory MUST be valid for this call to do anything // sensible! // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. int GPTData::LoadMainTable(void) { return LoadPartitionTable(mainHeader, myDisk); } // GPTData::LoadMainTable() // Load the second (backup) partition table as the primary partition // table. Used in repair functions, and when starting up if the main // partition table is damaged. // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. int GPTData::LoadSecondTableAsMain(void) { return LoadPartitionTable(secondHeader, myDisk); } // GPTData::LoadSecondTableAsMain() // Load a single GPT header (main or backup) from the specified disk device and // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk // value appropriately. // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as // failure. int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) { int allOK = 1; GPTHeader tempHeader; disk.Seek(sector); if (disk.Read(&tempHeader, 512) != 512) { cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n"; allOK = 0; } // if // Reverse byte order, if necessary if (IsLittleEndian() == 0) { ReverseHeaderBytes(&tempHeader); } // if *crcOk = CheckHeaderCRC(&tempHeader); if (allOK && (numParts != tempHeader.numParts) && *crcOk) { allOK = SetGPTSize(tempHeader.numParts, 0); } *header = tempHeader; return allOK; } // GPTData::LoadHeader // Load a partition table (either main or secondary) from the specified disk, // using header as a reference for what to load. If sector != 0 (the default // is 0), loads from the specified sector; otherwise loads from the sector // indicated in header. // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) { uint32_t sizeOfParts, newCRC; int retval; if (header.sizeOfPartitionEntries != sizeof(GPTPart)) { cerr << "Error! GPT header contains invalid partition entry size!\n"; retval = 0; } else if (disk.OpenForRead()) { if (sector == 0) { retval = disk.Seek(header.partitionEntriesLBA); } else { retval = disk.Seek(sector); } // if/else if (retval == 1) retval = SetGPTSize(header.numParts, 0); if (retval == 1) { sizeOfParts = header.numParts * header.sizeOfPartitionEntries; if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) { cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n"; retval = 0; } // if newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts); mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC); if (IsLittleEndian() == 0) ReversePartitionBytes(); if (!mainPartsCrcOk) { cout << "Caution! After loading partitions, the CRC doesn't check out!\n"; } // if } else { cerr << "Error! Couldn't seek to partition table!\n"; } // if/else } else { cerr << "Error! Couldn't open device " << device << " when reading partition table!\n"; retval = 0; } // if/else return retval; } // GPTData::LoadPartitionsTable() // Check the partition table pointed to by header, but don't keep it // around. // Returns 1 if the CRC is OK & this table matches the one already in memory, // 0 if not or if there was a read error. int GPTData::CheckTable(struct GPTHeader *header) { uint32_t sizeOfParts, newCRC; GPTPart *partsToCheck; GPTHeader *otherHeader; int allOK = 0; // Load partition table into temporary storage to check // its CRC and store the results, then discard this temporary // storage, since we don't use it in any but recovery operations if (myDisk.Seek(header->partitionEntriesLBA)) { partsToCheck = new GPTPart[header->numParts]; sizeOfParts = header->numParts * header->sizeOfPartitionEntries; if (partsToCheck == NULL) { cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n"; exit(1); } // if if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) { cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n"; } else { newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts); allOK = (newCRC == header->partitionEntriesCRC); if (header == &mainHeader) otherHeader = &secondHeader; else otherHeader = &mainHeader; if (newCRC != otherHeader->partitionEntriesCRC) { cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n" << "on the recovery & transformation menu to examine the two tables.\n\n"; allOK = 0; } // if } // if/else delete[] partsToCheck; } // if return allOK; } // GPTData::CheckTable() // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second // header later on the disk without asking for permission, if necessary, and // doesn't confirm the operation before writing. If quiet==0, asks permission // before moving the second header and asks for final confirmation of any // write. // Returns 1 on successful write, 0 if there was a problem. int GPTData::SaveGPTData(int quiet) { int allOK = 1, syncIt = 1; char answer; // First do some final sanity checks.... // This test should only fail on read-only disks.... if (justLooking) { cout << "The justLooking flag is set. This probably means you can't write to the disk.\n"; allOK = 0; } // if // Check that disk is really big enough to handle the second header... if (mainHeader.backupLBA >= diskSize) { cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n" << "header, but other problems may occur!\n"; MoveSecondHeaderToEnd(); } // if // Is there enough space to hold the GPT headers and partition tables, // given the partition sizes? if (CheckGPTSize() > 0) { allOK = 0; } // if // Check that second header is properly placed. Warn and ask if this should // be corrected if the test fails.... if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) { if (quiet == 0) { cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n" << "correct this problem? "; if (GetYN() == 'Y') { MoveSecondHeaderToEnd(); cout << "Have moved second header and partition table to correct location.\n"; } else { cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; } // if correction requested } else { // Go ahead and do correction automatically MoveSecondHeaderToEnd(); } // if/else quiet } // if if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { if (quiet == 0) { cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n" << "this problem? "; if (GetYN() == 'Y') { MoveSecondHeaderToEnd(); cout << "Have adjusted the second header and last usable sector value.\n"; } else { cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; } // if correction requested } else { // go ahead and do correction automatically MoveSecondHeaderToEnd(); } // if/else quiet } // if // Check for overlapping or insane partitions.... if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) { allOK = 0; cerr << "Aborting write operation!\n"; } // if // Check that protective MBR fits, and warn if it doesn't.... if (!protectiveMBR.DoTheyFit()) { cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" << "fresh protective or hybrid MBR is recommended.\n"; } // Check for mismatched MBR and GPT data, but let it pass if found // (function displays warning message) FindHybridMismatches(); RecomputeCRCs(); if ((allOK) && (!quiet)) { cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n" << "PARTITIONS!!\n\nDo you want to proceed? "; answer = GetYN(); if (answer == 'Y') { cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n"; } else { allOK = 0; } // if/else } // if // Do it! if (allOK) { if (myDisk.OpenForWrite()) { // As per UEFI specs, write the secondary table and GPT first.... allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA); if (!allOK) { cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n" << "menu will resolve this problem.\n"; syncIt = 0; } // if // Now write the secondary GPT header... allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA); // Now write the main partition tables... allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA); // Now write the main GPT header... allOK = allOK && SaveHeader(&mainHeader, myDisk, 1); // To top it off, write the protective MBR... allOK = allOK && protectiveMBR.WriteMBRData(&myDisk); // re-read the partition table // Note: Done even if some write operations failed, but not if all of them failed. // Done this way because I've received one problem report from a user one whose // system the MBR write failed but everything else was OK (on a GPT disk under // Windows), and the failure to sync therefore caused Windows to restore the // original partition table from its cache. OTOH, such restoration might be // desirable if the error occurs later; but that seems unlikely unless the initial // write fails.... if (syncIt) myDisk.DiskSync(); if (allOK) { // writes completed OK cout << "The operation has completed successfully.\n"; } else { cerr << "Warning! An error was reported when writing the partition table! This error\n" << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n"; } // if/else myDisk.Close(); } else { cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is " << errno << "! Aborting write!\n"; allOK = 0; } // if/else } else { cout << "Aborting write of new partition table.\n"; } // if return (allOK); } // GPTData::SaveGPTData() // Save GPT data to a backup file. This function does much less error // checking than SaveGPTData(). It can therefore preserve many types of // corruption for later analysis; however, it preserves only the MBR, // the main GPT header, the backup GPT header, and the main partition // table; it discards the backup partition table, since it should be // identical to the main partition table on healthy disks. int GPTData::SaveGPTBackup(const string & filename) { int allOK = 1; DiskIO backupFile; if (backupFile.OpenForWrite(filename)) { // Recomputing the CRCs is likely to alter them, which could be bad // if the intent is to save a potentially bad GPT for later analysis; // but if we don't do this, we get bogus errors when we load the // backup. I'm favoring misses over false alarms.... RecomputeCRCs(); protectiveMBR.WriteMBRData(&backupFile); protectiveMBR.SetDisk(&myDisk); if (allOK) { // MBR write closed disk, so re-open and seek to end.... backupFile.OpenForWrite(); allOK = SaveHeader(&mainHeader, backupFile, 1); } // if (allOK) if (allOK) allOK = SaveHeader(&secondHeader, backupFile, 2); if (allOK) allOK = SavePartitionTable(backupFile, 3); if (allOK) { // writes completed OK cout << "The operation has completed successfully.\n"; } else { cerr << "Warning! An error was reported when writing the backup file.\n" << "It may not be usable!\n"; } // if/else backupFile.Close(); } else { cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n"; allOK = 0; } // if/else return allOK; } // GPTData::SaveGPTBackup() // Write a GPT header (main or backup) to the specified sector. Used by both // the SaveGPTData() and SaveGPTBackup() functions. // Should be passed an architecture-appropriate header (DO NOT call // ReverseHeaderBytes() on the header before calling this function) // Returns 1 on success, 0 on failure int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) { int littleEndian, allOK = 1; littleEndian = IsLittleEndian(); if (!littleEndian) ReverseHeaderBytes(header); if (disk.Seek(sector)) { if (disk.Write(header, 512) == -1) allOK = 0; } else allOK = 0; // if (disk.Seek()...) if (!littleEndian) ReverseHeaderBytes(header); return allOK; } // GPTData::SaveHeader() // Save the partitions to the specified sector. Used by both the SaveGPTData() // and SaveGPTBackup() functions. // Should be passed an architecture-appropriate header (DO NOT call // ReverseHeaderBytes() on the header before calling this function) // Returns 1 on success, 0 on failure int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) { int littleEndian, allOK = 1; littleEndian = IsLittleEndian(); if (disk.Seek(sector)) { if (!littleEndian) ReversePartitionBytes(); if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1) allOK = 0; if (!littleEndian) ReversePartitionBytes(); } else allOK = 0; // if (myDisk.Seek()...) return allOK; } // GPTData::SavePartitionTable() // Load GPT data from a backup file created by SaveGPTBackup(). This function // does minimal error checking. It returns 1 if it completed successfully, // 0 if there was a problem. In the latter case, it creates a new empty // set of partitions. int GPTData::LoadGPTBackup(const string & filename) { int allOK = 1, val, err; int shortBackup = 0; DiskIO backupFile; if (backupFile.OpenForRead(filename)) { // Let the MBRData class load the saved MBR... protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size protectiveMBR.SetDisk(&myDisk); LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk); // Check backup file size and rebuild second header if file is right // size to be direct dd copy of MBR, main header, and main partition // table; if other size, treat it like a GPT fdisk-generated backup // file shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) == (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024); if (shortBackup) { RebuildSecondHeader(); secondCrcOk = mainCrcOk; } else { LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk); } // if/else // Return valid headers code: 0 = both headers bad; 1 = main header // good, backup bad; 2 = backup header good, main header bad; // 3 = both headers good. Note these codes refer to valid GPT // signatures and version numbers; more subtle problems will elude // this check! if ((val = CheckHeaderValidity()) > 0) { if (val == 2) { // only backup header seems to be good SetGPTSize(secondHeader.numParts, 0); } else { // main header is OK SetGPTSize(mainHeader.numParts, 0); } // if/else if (secondHeader.currentLBA != diskSize - UINT64_C(1)) { cout << "Warning! Current disk size doesn't match that of the backup!\n" << "Adjusting sizes to match, but subsequent problems are possible!\n"; MoveSecondHeaderToEnd(); } // if if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup))) cerr << "Warning! Read error " << errno << " loading partition table; strange behavior now likely!\n"; } else { allOK = 0; } // if/else // Something went badly wrong, so blank out partitions if (allOK == 0) { cerr << "Improper backup file! Clearing all partition data!\n"; ClearGPTData(); protectiveMBR.MakeProtectiveMBR(); } // if } else { allOK = 0; cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n"; } // if/else return allOK; } // GPTData::LoadGPTBackup() int GPTData::SaveMBR(void) { return protectiveMBR.WriteMBRData(&myDisk); } // GPTData::SaveMBR() // This function destroys the on-disk GPT structures, but NOT the on-disk // MBR. // Returns 1 if the operation succeeds, 0 if not. int GPTData::DestroyGPT(void) { int sum, tableSize, allOK = 1; uint8_t blankSector[512]; uint8_t* emptyTable; memset(blankSector, 0, sizeof(blankSector)); ClearGPTData(); if (myDisk.OpenForWrite()) { if (!myDisk.Seek(mainHeader.currentLBA)) allOK = 0; if (myDisk.Write(blankSector, 512) != 512) { // blank it out cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n"; allOK = 0; } // if if (!myDisk.Seek(mainHeader.partitionEntriesLBA)) allOK = 0; tableSize = numParts * mainHeader.sizeOfPartitionEntries; emptyTable = new uint8_t[tableSize]; if (emptyTable == NULL) { cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n"; exit(1); } // if memset(emptyTable, 0, tableSize); if (allOK) { sum = myDisk.Write(emptyTable, tableSize); if (sum != tableSize) { cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n"; allOK = 0; } // if write failed } // if if (!myDisk.Seek(secondHeader.partitionEntriesLBA)) allOK = 0; if (allOK) { sum = myDisk.Write(emptyTable, tableSize); if (sum != tableSize) { cerr << "Warning! GPT backup partition table not overwritten! Error is " << errno << "\n"; allOK = 0; } // if wrong size written } // if if (!myDisk.Seek(secondHeader.currentLBA)) allOK = 0; if (allOK) { if (myDisk.Write(blankSector, 512) != 512) { // blank it out cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n"; allOK = 0; } // if } // if myDisk.DiskSync(); myDisk.Close(); cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n" << "other utilities.\n"; delete[] emptyTable; } else { cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n"; } // if/else (fd != -1) return (allOK); } // GPTDataTextUI::DestroyGPT() // Wipe MBR data from the disk (zero it out completely) // Returns 1 on success, 0 on failure. int GPTData::DestroyMBR(void) { int allOK; uint8_t blankSector[512]; memset(blankSector, 0, sizeof(blankSector)); allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512); if (!allOK) cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n"; return allOK; } // GPTData::DestroyMBR(void) // Tell user whether Apple Partition Map (APM) was discovered.... void GPTData::ShowAPMState(void) { if (apmFound) cout << " APM: present\n"; else cout << " APM: not present\n"; } // GPTData::ShowAPMState() // Tell user about the state of the GPT data.... void GPTData::ShowGPTState(void) { switch (state) { case gpt_invalid: cout << " GPT: not present\n"; break; case gpt_valid: cout << " GPT: present\n"; break; case gpt_corrupt: cout << " GPT: damaged\n"; break; default: cout << "\a GPT: unknown -- bug!\n"; break; } // switch } // GPTData::ShowGPTState() // Display the basic GPT data void GPTData::DisplayGPTData(void) { uint32_t i; uint64_t temp, totalFree; cout << "Disk " << device << ": " << diskSize << " sectors, " << BytesToIeee(diskSize, blockSize) << "\n"; if (myDisk.GetModel() != "") cout << "Model: " << myDisk.GetModel() << "\n"; if (physBlockSize > 0) cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n"; else cout << "Sector size (logical): " << blockSize << " bytes\n"; cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n"; cout << "Partition table holds up to " << numParts << " entries\n"; cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA << " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n"; cout << "First usable sector is " << mainHeader.firstUsableLBA << ", last usable sector is " << mainHeader.lastUsableLBA << "\n"; totalFree = FindFreeBlocks(&i, &temp); cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n"; cout << "Total free space is " << totalFree << " sectors (" << BytesToIeee(totalFree, blockSize) << ")\n"; cout << "\nNumber Start (sector) End (sector) Size Code Name\n"; for (i = 0; i < numParts; i++) { partitions[i].ShowSummary(i, blockSize); } // for } // GPTData::DisplayGPTData() // Show detailed information on the specified partition void GPTData::ShowPartDetails(uint32_t partNum) { if ((partNum < numParts) && !IsFreePartNum(partNum)) { partitions[partNum].ShowDetails(blockSize); } else { cout << "Partition #" << partNum + 1 << " does not exist.\n"; } // if } // GPTData::ShowPartDetails() /************************************************************************** * * * Partition table transformation functions (MBR or BSD disklabel to GPT) * * (some of these functions may require user interaction) * * * **************************************************************************/ // Examines the MBR & GPT data to determine which set of data to use: the // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create // a new set of partitions (use_new). A return value of use_abort indicates // that this function couldn't determine what to do. Overriding functions // in derived classes may ask users questions in such cases. WhichToUse GPTData::UseWhichPartitions(void) { WhichToUse which = use_new; MBRValidity mbrState; mbrState = protectiveMBR.GetValidity(); if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) { cout << "\n***************************************************************\n" << "Found invalid GPT and valid MBR; converting MBR to GPT format\n" << "in memory. "; if (!justLooking) { cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n" << "typing 'q' if you don't want to convert your MBR partitions\n" << "to GPT format!"; } // if cout << "\n***************************************************************\n\n"; which = use_mbr; } // if if ((state == gpt_invalid) && bsdFound) { cout << "\n**********************************************************************\n" << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n" << "to GPT format."; if ((!justLooking) && (!beQuiet)) { cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n" << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n" << "want to convert your BSD partitions to GPT format!"; } // if cout << "\n**********************************************************************\n\n"; which = use_bsd; } // if if ((state == gpt_valid) && (mbrState == gpt)) { which = use_gpt; if (!beQuiet) cout << "Found valid GPT with protective MBR; using GPT.\n"; } // if if ((state == gpt_valid) && (mbrState == hybrid)) { which = use_gpt; if (!beQuiet) cout << "Found valid GPT with hybrid MBR; using GPT.\n"; } // if if ((state == gpt_valid) && (mbrState == invalid)) { cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n" << "protective MBR on save.\n"; which = use_gpt; } // if if ((state == gpt_valid) && (mbrState == mbr)) { which = use_abort; } // if if (state == gpt_corrupt) { if (mbrState == gpt) { cout << "\a\a****************************************************************************\n" << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n" << "verification and recovery are STRONGLY recommended.\n" << "****************************************************************************\n"; which = use_gpt; } else { which = use_abort; } // if/else MBR says disk is GPT } // if GPT corrupt if (which == use_new) cout << "Creating new GPT entries in memory.\n"; return which; } // UseWhichPartitions() // Convert MBR partition table into GPT form. void GPTData::XFormPartitions(void) { int i, numToConvert; uint8_t origType; // Clear out old data & prepare basics.... ClearGPTData(); // Convert the smaller of the # of GPT or MBR partitions if (numParts > MAX_MBR_PARTS) numToConvert = MAX_MBR_PARTS; else numToConvert = numParts; for (i = 0; i < numToConvert; i++) { origType = protectiveMBR.GetType(i); // don't waste CPU time trying to convert extended, hybrid protective, or // null (non-existent) partitions if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) && (origType != 0x00) && (origType != 0xEE)) partitions[i] = protectiveMBR.AsGPT(i); } // for // Convert MBR into protective MBR protectiveMBR.MakeProtectiveMBR(); // Record that all original CRCs were OK so as not to raise flags // when doing a disk verification mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; } // GPTData::XFormPartitions() // Transforms BSD disklabel on the specified partition (numbered from 0). // If an invalid partition number is given, the program does nothing. // Returns the number of new partitions created. int GPTData::XFormDisklabel(uint32_t partNum) { uint32_t low, high; int goOn = 1, numDone = 0; BSDData disklabel; if (GetPartRange(&low, &high) == 0) { goOn = 0; cout << "No partitions!\n"; } // if if (partNum > high) { goOn = 0; cout << "Specified partition is invalid!\n"; } // if // If all is OK, read the disklabel and convert it. if (goOn) { goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(), partitions[partNum].GetLastLBA()); if ((goOn) && (disklabel.IsDisklabel())) { numDone = XFormDisklabel(&disklabel); if (numDone == 1) cout << "Converted 1 BSD partition.\n"; else cout << "Converted " << numDone << " BSD partitions.\n"; } else { cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n"; } // if/else } // if if (numDone > 0) { // converted partitions; delete carrier partitions[partNum].BlankPartition(); } // if return numDone; } // GPTData::XFormDisklabel(uint32_t i) // Transform the partitions on an already-loaded BSD disklabel... int GPTData::XFormDisklabel(BSDData* disklabel) { int i, partNum = 0, numDone = 0; if (disklabel->IsDisklabel()) { for (i = 0; i < disklabel->GetNumParts(); i++) { partNum = FindFirstFreePart(); if (partNum >= 0) { partitions[partNum] = disklabel->AsGPT(i); if (partitions[partNum].IsUsed()) numDone++; } // if } // for if (partNum == -1) cerr << "Warning! Too many partitions to convert!\n"; } // if // Record that all original CRCs were OK so as not to raise flags // when doing a disk verification mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; return numDone; } // GPTData::XFormDisklabel(BSDData* disklabel) // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created // partition has the active/bootable flag UNset and uses the GPT fdisk // type code divided by 0x0100 as the MBR type code. // Returns 1 if operation was 100% successful, 0 if there were ANY // problems. int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) { int allOK = 1; if ((mbrPart < 0) || (mbrPart > 3)) { cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n"; allOK = 0; } // if if (gptPart >= numParts) { cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n"; allOK = 0; } // if if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) { cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n"; allOK = 0; } // if if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) && (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) { if (partitions[gptPart].GetLastLBA() > UINT32_MAX) { cout << "Caution: Partition end point past 32-bit pointer boundary;" << " some OSes may\nreact strangely.\n"; } // if protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(), (uint32_t) partitions[gptPart].GetLengthLBA(), partitions[gptPart].GetHexType() / 256, 0); } else { // partition out of range if (allOK) // Display only if "else" triggered by out-of-bounds condition cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR " << "partitions, or is\n too big; omitting it.\n"; allOK = 0; } // if/else return allOK; } // GPTData::OnePartToMBR() /********************************************************************** * * * Functions that adjust GPT data structures WITHOUT user interaction * * (they may display information for the user's benefit, though) * * * **********************************************************************/ // Resizes GPT to specified number of entries. Creates a new table if // necessary, copies data if it already exists. If fillGPTSectors is 1 // (the default), rounds numEntries to fill all the sectors necessary to // hold the GPT. // Returns 1 if all goes well, 0 if an error is encountered. int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) { GPTPart* newParts; uint32_t i, high, copyNum, entriesPerSector; int allOK = 1; // First, adjust numEntries upward, if necessary, to get a number // that fills the allocated sectors entriesPerSector = blockSize / GPT_SIZE; if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) { cout << "Adjusting GPT size from " << numEntries << " to "; numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector; cout << numEntries << " to fill the sector\n"; } // if // Do the work only if the # of partitions is changing. Along with being // efficient, this prevents mucking with the location of the secondary // partition table, which causes problems when loading data from a RAID // array that's been expanded because this function is called when loading // data. if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) { newParts = new GPTPart [numEntries]; if (newParts != NULL) { if (partitions != NULL) { // existing partitions; copy them over GetPartRange(&i, &high); if (numEntries < (high + 1)) { // Highest entry too high for new # cout << "The highest-numbered partition is " << high + 1 << ", which is greater than the requested\n" << "partition table size of " << numEntries << "; cannot resize. Perhaps sorting will help.\n"; allOK = 0; delete[] newParts; } else { // go ahead with copy if (numEntries < numParts) copyNum = numEntries; else copyNum = numParts; for (i = 0; i < copyNum; i++) { newParts[i] = partitions[i]; } // for delete[] partitions; partitions = newParts; } // if } else { // No existing partition table; just create it partitions = newParts; } // if/else existing partitions numParts = numEntries; mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA; secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; MoveSecondHeaderToEnd(); if (diskSize > 0) CheckGPTSize(); } else { // Bad memory allocation cerr << "Error allocating memory for partition table! Size is unchanged!\n"; allOK = 0; } // if/else } // if/else mainHeader.numParts = numParts; secondHeader.numParts = numParts; return (allOK); } // GPTData::SetGPTSize() // Change the start sector for the main partition table. // Returns 1 on success, 0 on failure int GPTData::MoveMainTable(uint64_t pteSector) { uint64_t pteSize = GetTableSizeInSectors(); int retval = 1; if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) { mainHeader.partitionEntriesLBA = pteSector; mainHeader.firstUsableLBA = pteSector + pteSize; RebuildSecondHeader(); } else { cerr << "Unable to set the main partition table's location to " << pteSector << "!\n"; retval = 0; } // if/else return retval; } // GPTData::MoveMainTable() // Blank the partition array void GPTData::BlankPartitions(void) { uint32_t i; for (i = 0; i < numParts; i++) { partitions[i].BlankPartition(); } // for } // GPTData::BlankPartitions() // Delete a partition by number. Returns 1 if successful, // 0 if there was a problem. Returns 1 if partition was in // range, 0 if it was out of range. int GPTData::DeletePartition(uint32_t partNum) { uint64_t startSector, length; uint32_t low, high, numUsedParts, retval = 1;; numUsedParts = GetPartRange(&low, &high); if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) { // In case there's a protective MBR, look for & delete matching // MBR partition.... startSector = partitions[partNum].GetFirstLBA(); length = partitions[partNum].GetLengthLBA(); protectiveMBR.DeleteByLocation(startSector, length); // Now delete the GPT partition partitions[partNum].BlankPartition(); } else { cerr << "Partition number " << partNum + 1 << " out of range!\n"; retval = 0; } // if/else return retval; } // GPTData::DeletePartition(uint32_t partNum) // Non-interactively create a partition. // Returns 1 if the operation was successful, 0 if a problem was discovered. uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) { int retval = 1; // assume there'll be no problems uint64_t origSector = startSector; if (IsFreePartNum(partNum)) { if (Align(&startSector)) { cout << "Information: Moved requested sector from " << origSector << " to " << startSector << " in\norder to align on " << sectorAlignment << "-sector boundaries.\n"; } // if if (IsFree(startSector) && (startSector <= endSector)) { if (FindLastInFree(startSector) >= endSector) { partitions[partNum].SetFirstLBA(startSector); partitions[partNum].SetLastLBA(endSector); partitions[partNum].SetType(DEFAULT_GPT_TYPE); partitions[partNum].RandomizeUniqueGUID(); } else retval = 0; // if free space until endSector } else retval = 0; // if startSector is free } else retval = 0; // if legal partition number return retval; } // GPTData::CreatePartition(partNum, startSector, endSector) // Sort the GPT entries, eliminating gaps and making for a logical // ordering. void GPTData::SortGPT(void) { if (numParts > 0) sort(partitions, partitions + numParts); } // GPTData::SortGPT() // Swap the contents of two partitions. // Returns 1 if successful, 0 if either partition is out of range // (that is, not a legal number; either or both can be empty). // Note that if partNum1 = partNum2 and this number is in range, // it will be considered successful. int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) { GPTPart temp; int allOK = 1; if ((partNum1 < numParts) && (partNum2 < numParts)) { if (partNum1 != partNum2) { temp = partitions[partNum1]; partitions[partNum1] = partitions[partNum2]; partitions[partNum2] = temp; } // if } else allOK = 0; // partition numbers are valid return allOK; } // GPTData::SwapPartitions() // Set up data structures for entirely new set of partitions on the // specified device. Returns 1 if OK, 0 if there were problems. // Note that this function does NOT clear the protectiveMBR data // structure, since it may hold the original MBR partitions if the // program was launched on an MBR disk, and those may need to be // converted to GPT format. int GPTData::ClearGPTData(void) { int goOn = 1, i; // Set up the partition table.... delete[] partitions; partitions = NULL; SetGPTSize(NUM_GPT_ENTRIES); // Now initialize a bunch of stuff that's static.... mainHeader.signature = GPT_SIGNATURE; mainHeader.revision = 0x00010000; mainHeader.headerSize = HEADER_SIZE; mainHeader.reserved = 0; mainHeader.currentLBA = UINT64_C(1); mainHeader.partitionEntriesLBA = (uint64_t) 2; mainHeader.sizeOfPartitionEntries = GPT_SIZE; mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA; for (i = 0; i < GPT_RESERVED; i++) { mainHeader.reserved2[i] = '\0'; } // for if (blockSize > 0) sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; else sectorAlignment = DEFAULT_ALIGNMENT; // Now some semi-static items (computed based on end of disk) mainHeader.backupLBA = diskSize - UINT64_C(1); mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; // Set a unique GUID for the disk, based on random numbers mainHeader.diskGUID.Randomize(); // Copy main header to backup header RebuildSecondHeader(); // Blank out the partitions array.... BlankPartitions(); // Flag all CRCs as being OK.... mainCrcOk = 1; secondCrcOk = 1; mainPartsCrcOk = 1; secondPartsCrcOk = 1; return (goOn); } // GPTData::ClearGPTData() // Set the location of the second GPT header data to the end of the disk. // If the disk size has actually changed, this also adjusts the protective // entry in the MBR, since it's probably no longer correct. // Used internally and called by the 'e' option on the recovery & // transformation menu, to help users of RAID arrays who add disk space // to their arrays or to adjust data structures in restore operations // involving unequal-sized disks. void GPTData::MoveSecondHeaderToEnd() { mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1); if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) { if (protectiveMBR.GetValidity() == hybrid) { protectiveMBR.OptimizeEESize(); RecomputeCHS(); } // if if (protectiveMBR.GetValidity() == gpt) MakeProtectiveMBR(); } // if mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); } // GPTData::FixSecondHeaderLocation() // Sets the partition's name to the specified UnicodeString without // user interaction. // Returns 1 on success, 0 on failure (invalid partition number). int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) { int retval = 1; if (IsUsedPartNum(partNum)) partitions[partNum].SetName(theName); else retval = 0; return retval; } // GPTData::SetName // Set the disk GUID to the specified value. Note that the header CRCs must // be recomputed after calling this function. void GPTData::SetDiskGUID(GUIDData newGUID) { mainHeader.diskGUID = newGUID; secondHeader.diskGUID = newGUID; } // SetDiskGUID() // Set the unique GUID of the specified partition. Returns 1 on // successful completion, 0 if there were problems (invalid // partition number). int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) { int retval = 0; if (pn < numParts) { if (partitions[pn].IsUsed()) { partitions[pn].SetUniqueGUID(theGUID); retval = 1; } // if } // if return retval; } // GPTData::SetPartitionGUID() // Set new random GUIDs for the disk and all partitions. Intended to be used // after disk cloning or similar operations that don't randomize the GUIDs. void GPTData::RandomizeGUIDs(void) { uint32_t i; mainHeader.diskGUID.Randomize(); secondHeader.diskGUID = mainHeader.diskGUID; for (i = 0; i < numParts; i++) if (partitions[i].IsUsed()) partitions[i].RandomizeUniqueGUID(); } // GPTData::RandomizeGUIDs() // Change partition type code non-interactively. Returns 1 if // successful, 0 if not.... int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) { int retval = 1; if (!IsFreePartNum(partNum)) { partitions[partNum].SetType(theGUID); } else retval = 0; return retval; } // GPTData::ChangePartType() // Recompute the CHS values of all the MBR partitions. Used to reset // CHS values that some BIOSes require, despite the fact that the // resulting CHS values violate the GPT standard. void GPTData::RecomputeCHS(void) { int i; for (i = 0; i < 4; i++) protectiveMBR.RecomputeCHS(i); } // GPTData::RecomputeCHS() // Adjust sector number so that it falls on a sector boundary that's a // multiple of sectorAlignment. This is done to improve the performance // of Western Digital Advanced Format disks and disks with similar // technology from other companies, which use 4096-byte sectors // internally although they translate to 512-byte sectors for the // benefit of the OS. If partitions aren't properly aligned on these // disks, some filesystem data structures can span multiple physical // sectors, degrading performance. This function should be called // only on the FIRST sector of the partition, not the last! // This function returns 1 if the alignment was altered, 0 if it // was unchanged. int GPTData::Align(uint64_t* sector) { int retval = 0, sectorOK = 0; uint64_t earlier, later, testSector; if ((*sector % sectorAlignment) != 0) { earlier = (*sector / sectorAlignment) * sectorAlignment; later = earlier + (uint64_t) sectorAlignment; // Check to see that every sector between the earlier one and the // requested one is clear, and that it's not too early.... if (earlier >= mainHeader.firstUsableLBA) { sectorOK = 1; testSector = earlier; do { sectorOK = IsFree(testSector++); } while ((sectorOK == 1) && (testSector < *sector)); if (sectorOK == 1) { *sector = earlier; retval = 1; } // if } // if firstUsableLBA check // If couldn't move the sector earlier, try to move it later instead.... if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) { sectorOK = 1; testSector = later; do { sectorOK = IsFree(testSector--); } while ((sectorOK == 1) && (testSector > *sector)); if (sectorOK == 1) { *sector = later; retval = 1; } // if } // if } // if return retval; } // GPTData::Align() /******************************************************** * * * Functions that return data about GPT data structures * * (most of these are inline in gpt.h) * * * ********************************************************/ // Find the low and high used partition numbers (numbered from 0). // Return value is the number of partitions found. Note that the // *low and *high values are both set to 0 when no partitions // are found, as well as when a single partition in the first // position exists. Thus, the return value is the only way to // tell when no partitions exist. int GPTData::GetPartRange(uint32_t *low, uint32_t *high) { uint32_t i; int numFound = 0; *low = numParts + 1; // code for "not found" *high = 0; for (i = 0; i < numParts; i++) { if (partitions[i].IsUsed()) { // it exists *high = i; // since we're counting up, set the high value // Set the low value only if it's not yet found... if (*low == (numParts + 1)) *low = i; numFound++; } // if } // for // Above will leave *low pointing to its "not found" value if no partitions // are defined, so reset to 0 if this is the case.... if (*low == (numParts + 1)) *low = 0; return numFound; } // GPTData::GetPartRange() // Returns the value of the first free partition, or -1 if none is // unused. int GPTData::FindFirstFreePart(void) { int i = 0; if (partitions != NULL) { while ((i < (int) numParts) && (partitions[i].IsUsed())) i++; if (i >= (int) numParts) i = -1; } else i = -1; return i; } // GPTData::FindFirstFreePart() // Returns the number of defined partitions. uint32_t GPTData::CountParts(void) { uint32_t i, counted = 0; for (i = 0; i < numParts; i++) { if (partitions[i].IsUsed()) counted++; } // for return counted; } // GPTData::CountParts() /**************************************************** * * * Functions that return data about disk free space * * * ****************************************************/ // Find the first available block after the starting point; returns 0 if // there are no available blocks left uint64_t GPTData::FindFirstAvailable(uint64_t start) { uint64_t first; uint32_t i; int firstMoved = 0; // Begin from the specified starting point or from the first usable // LBA, whichever is greater... if (start < mainHeader.firstUsableLBA) first = mainHeader.firstUsableLBA; else first = start; // ...now search through all partitions; if first is within an // existing partition, move it to the next sector after that // partition and repeat. If first was moved, set firstMoved // flag; repeat until firstMoved is not set, so as to catch // cases where partitions are out of sequential order.... do { firstMoved = 0; for (i = 0; i < numParts; i++) { if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) && (first <= partitions[i].GetLastLBA())) { // in existing part. first = partitions[i].GetLastLBA() + 1; firstMoved = 1; } // if } // for } while (firstMoved == 1); if (first > mainHeader.lastUsableLBA) first = 0; return (first); } // GPTData::FindFirstAvailable() // Returns the LBA of the start of the first partition on the disk (by // sector number), or 0 if there are no partitions defined. uint64_t GPTData::FindFirstUsedLBA(void) { uint32_t i; uint64_t firstFound = UINT64_MAX; for (i = 0; i < numParts; i++) { if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) { firstFound = partitions[i].GetFirstLBA(); } // if } // for return firstFound; } // GPTData::FindFirstUsedLBA() // Finds the first available sector in the largest block of unallocated // space on the disk. Returns 0 if there are no available blocks left uint64_t GPTData::FindFirstInLargest(void) { uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0; start = 0; do { firstBlock = FindFirstAvailable(start); if (firstBlock != UINT32_C(0)) { // something's free... lastBlock = FindLastInFree(firstBlock); segmentSize = lastBlock - firstBlock + UINT32_C(1); if (segmentSize > selectedSize) { selectedSize = segmentSize; selectedSegment = firstBlock; } // if start = lastBlock + 1; } // if } while (firstBlock != 0); return selectedSegment; } // GPTData::FindFirstInLargest() // Find the last available block on the disk. // Returns 0 if there are no available sectors uint64_t GPTData::FindLastAvailable(void) { uint64_t last; uint32_t i; int lastMoved = 0; // Start by assuming the last usable LBA is available.... last = mainHeader.lastUsableLBA; // ...now, similar to algorithm in FindFirstAvailable(), search // through all partitions, moving last when it's in an existing // partition. Set the lastMoved flag so we repeat to catch cases // where partitions are out of logical order. do { lastMoved = 0; for (i = 0; i < numParts; i++) { if ((last >= partitions[i].GetFirstLBA()) && (last <= partitions[i].GetLastLBA())) { // in existing part. last = partitions[i].GetFirstLBA() - 1; lastMoved = 1; } // if } // for } while (lastMoved == 1); if (last < mainHeader.firstUsableLBA) last = 0; return (last); } // GPTData::FindLastAvailable() // Find the last available block in the free space pointed to by start. uint64_t GPTData::FindLastInFree(uint64_t start) { uint64_t nearestStart; uint32_t i; nearestStart = mainHeader.lastUsableLBA; for (i = 0; i < numParts; i++) { if ((nearestStart > partitions[i].GetFirstLBA()) && (partitions[i].GetFirstLBA() > start)) { nearestStart = partitions[i].GetFirstLBA() - 1; } // if } // for return (nearestStart); } // GPTData::FindLastInFree() // Finds the total number of free blocks, the number of segments in which // they reside, and the size of the largest of those segments uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) { uint64_t start = UINT64_C(0); // starting point for each search uint64_t totalFound = UINT64_C(0); // running total uint64_t firstBlock; // first block in a segment uint64_t lastBlock; // last block in a segment uint64_t segmentSize; // size of segment in blocks uint32_t num = 0; *largestSegment = UINT64_C(0); if (diskSize > 0) { do { firstBlock = FindFirstAvailable(start); if (firstBlock != UINT64_C(0)) { // something's free... lastBlock = FindLastInFree(firstBlock); segmentSize = lastBlock - firstBlock + UINT64_C(1); if (segmentSize > *largestSegment) { *largestSegment = segmentSize; } // if totalFound += segmentSize; num++; start = lastBlock + 1; } // if } while (firstBlock != 0); } // if *numSegments = num; return totalFound; } // GPTData::FindFreeBlocks() // Returns 1 if sector is unallocated, 0 if it's allocated to a partition. // If it's allocated, return the partition number to which it's allocated // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is // returned in partNum if the sector is in use by basic GPT data structures.) int GPTData::IsFree(uint64_t sector, uint32_t *partNum) { int isFree = 1; uint32_t i; for (i = 0; i < numParts; i++) { if ((sector >= partitions[i].GetFirstLBA()) && (sector <= partitions[i].GetLastLBA())) { isFree = 0; if (partNum != NULL) *partNum = i; } // if } // for if ((sector < mainHeader.firstUsableLBA) || (sector > mainHeader.lastUsableLBA)) { isFree = 0; if (partNum != NULL) *partNum = UINT32_MAX; } // if return (isFree); } // GPTData::IsFree() // Returns 1 if partNum is unused AND if it's a legal value. int GPTData::IsFreePartNum(uint32_t partNum) { return ((partNum < numParts) && (partitions != NULL) && (!partitions[partNum].IsUsed())); } // GPTData::IsFreePartNum() // Returns 1 if partNum is in use. int GPTData::IsUsedPartNum(uint32_t partNum) { return ((partNum < numParts) && (partitions != NULL) && (partitions[partNum].IsUsed())); } // GPTData::IsUsedPartNum() /*********************************************************** * * * Change how functions work or return information on them * * * ***********************************************************/ // Set partition alignment value; partitions will begin on multiples of // the specified value void GPTData::SetAlignment(uint32_t n) { if (n > 0) { sectorAlignment = n; if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) { cout << "Warning: Setting alignment to a value that does not match the disk's\n" << "physical block size! Performance degradation may result!\n" << "Physical block size = " << physBlockSize << "\n" << "Logical block size = " << blockSize << "\n" << "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n"; } // if } else { cerr << "Attempt to set partition alignment to 0!\n"; } // if/else } // GPTData::SetAlignment() // Compute sector alignment based on the current partitions (if any). Each // partition's starting LBA is examined, and if it's divisible by a power-of-2 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the // sector size), but not by the previously-located alignment value, then the // alignment value is adjusted down. If the computed alignment is less than 8 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This // is a safety measure for Advanced Format drives. If no partitions are // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an // adjustment of that based on the current sector size). The result is that new // drives are aligned to 2048-sector multiples but the program won't complain // about other alignments on existing disks unless a smaller-than-8 alignment // is used on big disks (as safety for Advanced Format drives). // Returns the computed alignment value. uint32_t GPTData::ComputeAlignment(void) { uint32_t i = 0, found, exponent = 31; uint32_t align = DEFAULT_ALIGNMENT; if (blockSize > 0) align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; exponent = (uint32_t) log2(align); for (i = 0; i < numParts; i++) { if (partitions[i].IsUsed()) { found = 0; while (!found) { align = UINT64_C(1) << exponent; if ((partitions[i].GetFirstLBA() % align) == 0) { found = 1; } else { exponent--; } // if/else } // while } // if } // for if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT)) align = MIN_AF_ALIGNMENT; sectorAlignment = align; return align; } // GPTData::ComputeAlignment() /******************************** * * * Endianness support functions * * * ********************************/ void GPTData::ReverseHeaderBytes(struct GPTHeader* header) { ReverseBytes(&header->signature, 8); ReverseBytes(&header->revision, 4); ReverseBytes(&header->headerSize, 4); ReverseBytes(&header->headerCRC, 4); ReverseBytes(&header->reserved, 4); ReverseBytes(&header->currentLBA, 8); ReverseBytes(&header->backupLBA, 8); ReverseBytes(&header->firstUsableLBA, 8); ReverseBytes(&header->lastUsableLBA, 8); ReverseBytes(&header->partitionEntriesLBA, 8); ReverseBytes(&header->numParts, 4); ReverseBytes(&header->sizeOfPartitionEntries, 4); ReverseBytes(&header->partitionEntriesCRC, 4); ReverseBytes(header->reserved2, GPT_RESERVED); } // GPTData::ReverseHeaderBytes() // Reverse byte order for all partitions. void GPTData::ReversePartitionBytes() { uint32_t i; for (i = 0; i < numParts; i++) { partitions[i].ReversePartBytes(); } // for } // GPTData::ReversePartitionBytes() // Validate partition number bool GPTData::ValidPartNum (const uint32_t partNum) { if (partNum >= numParts) { cerr << "Partition number out of range: " << partNum << "\n"; return false; } // if return true; } // GPTData::ValidPartNum // Return a single partition for inspection (not modification!) by other // functions. const GPTPart & GPTData::operator[](uint32_t partNum) const { if (partNum >= numParts) { cerr << "Partition number out of range (" << partNum << " requested, but only " << numParts << " available)\n"; exit(1); } // if if (partitions == NULL) { cerr << "No partitions defined in GPTData::operator[]; fatal error!\n"; exit(1); } // if return partitions[partNum]; } // operator[] // Return (not for modification!) the disk's GUID value const GUIDData & GPTData::GetDiskGUID(void) const { return mainHeader.diskGUID; } // GPTData::GetDiskGUID() // Manage attributes for a partition, based on commands passed to this function. // (Function is non-interactive.) // Returns 1 if a modification command succeeded, 0 if the command should not have // modified data, and -1 if a modification command failed. int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) { int retval = 0; Attributes theAttr; if (partNum >= (int) numParts) { cerr << "Invalid partition number (" << partNum + 1 << ")\n"; retval = -1; } else { if (command == "show") { ShowAttributes(partNum); } else if (command == "get") { GetAttribute(partNum, bits); } else { theAttr = partitions[partNum].GetAttributes(); if (theAttr.OperateOnAttributes(partNum, command, bits)) { partitions[partNum].SetAttributes(theAttr.GetAttributes()); retval = 1; } else { retval = -1; } // if/else } // if/elseif/else } // if/else invalid partition # return retval; } // GPTData::ManageAttributes() // Show all attributes for a specified partition.... void GPTData::ShowAttributes(const uint32_t partNum) { if ((partNum < numParts) && partitions[partNum].IsUsed()) partitions[partNum].ShowAttributes(partNum); } // GPTData::ShowAttributes // Show whether a single attribute bit is set (terse output)... void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) { if (partNum < numParts) partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits); } // GPTData::GetAttribute /****************************************** * * * Additional non-class support functions * * * ******************************************/ // Check to be sure that data type sizes are correct. The basic types (uint*_t) should // never fail these tests, but the struct types may fail depending on compile options. // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure // sizes. int SizesOK(void) { int allOK = 1; if (sizeof(uint8_t) != 1) { cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n"; allOK = 0; } // if if (sizeof(uint16_t) != 2) { cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(uint32_t) != 4) { cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(uint64_t) != 8) { cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(struct MBRRecord) != 16) { cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(struct TempMBR) != 512) { cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(struct GPTHeader) != 512) { cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(GPTPart) != 128) { cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(GUIDData) != 16) { cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n"; allOK = 0; } // if if (sizeof(PartType) != 16) { cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n"; allOK = 0; } // if return (allOK); } // SizesOK()