/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ /** @file gem_shrink.c * * Exercise the shrinker by overallocating GEM objects */ #include "igt.h" #include "igt_gt.h" #include "igt_debugfs.h" #include "igt_sysfs.h" #ifndef MADV_FREE #define MADV_FREE 8 #endif static unsigned int engines[16], nengine; static void get_pages(int fd, uint64_t alloc) { uint32_t handle = gem_create(fd, alloc); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, 0); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void get_pages_dirty(int fd, uint64_t alloc) { uint32_t handle = gem_create(fd, alloc); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void pwrite_(int fd, uint64_t alloc) { uint32_t tmp; uint32_t handle = gem_create(fd, alloc); for (int page = 0; page < alloc>>12; page++) gem_write(fd, handle, (page + page % 4095) & ~3, &tmp, 4); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void pread_(int fd, uint64_t alloc) { uint32_t tmp; uint32_t handle = gem_create(fd, alloc); for (int page = 0; page < alloc>>12; page++) gem_read(fd, handle, (page + page % 4095) & ~3, &tmp, 4); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void mmap_gtt(int fd, uint64_t alloc) { uint32_t handle = gem_create(fd, alloc); uint32_t *ptr = gem_mmap__gtt(fd, handle, alloc, PROT_WRITE); for (int page = 0; page < alloc>>12; page++) ptr[page<<10] = 0; munmap(ptr, alloc); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void mmap_cpu(int fd, uint64_t alloc) { uint32_t handle = gem_create(fd, alloc); uint32_t *ptr = gem_mmap__cpu(fd, handle, 0, alloc, PROT_WRITE); for (int page = 0; page < alloc>>12; page++) ptr[page<<10] = 0; munmap(ptr, alloc); gem_madvise(fd, handle, I915_MADV_DONTNEED); } static void execbuf1(int fd, uint64_t alloc) { const uint32_t bbe = MI_BATCH_BUFFER_END; struct drm_i915_gem_exec_object2 obj; struct drm_i915_gem_execbuffer2 execbuf; memset(&obj, 0, sizeof(obj)); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; obj.handle = gem_create(fd, alloc); gem_write(fd, obj.handle, 0, &bbe, sizeof(bbe)); gem_execbuf(fd, &execbuf); gem_madvise(fd, obj.handle, I915_MADV_DONTNEED); } /* Since we want to trigger oom (SIGKILL), we don't want small allocations * to fail and generate a false error (SIGSEGV)! So we redirect allocations * though GEM objects, which should be much more likely to trigger oom. There * are still small allocations within the kernel, so still a small chance of * ENOMEM instead of a full oom. */ static void *__gem_calloc(int fd, size_t count, size_t size, uint64_t *out_size) { uint32_t handle; uint64_t total; void *ptr; total = count * size; total = (total + 4095) & -4096; handle = gem_create(fd, total); ptr = gem_mmap__cpu(fd, handle, 0, total, PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); gem_close(fd, handle); *out_size = total; return ptr; } static void execbufN(int fd, uint64_t alloc) { const uint32_t bbe = MI_BATCH_BUFFER_END; struct drm_i915_gem_exec_object2 *obj; struct drm_i915_gem_execbuffer2 execbuf; int count = alloc >> 20; uint64_t obj_size; obj = __gem_calloc(fd, alloc + 1, sizeof(*obj), &obj_size); memset(&execbuf, 0, sizeof(execbuf)); obj[count].handle = gem_create(fd, 4096); gem_write(fd, obj[count].handle, 0, &bbe, sizeof(bbe)); for (int i = 1; i <= count; i++) { int j = count - i; obj[j].handle = gem_create(fd, 1 << 20); execbuf.buffers_ptr = to_user_pointer(&obj[j]); execbuf.buffer_count = i + 1; gem_execbuf(fd, &execbuf); } for (int i = 0; i <= count; i++) gem_madvise(fd, obj[i].handle, I915_MADV_DONTNEED); munmap(obj, obj_size); } static void execbufX(int fd, uint64_t alloc) { const uint32_t bbe = MI_BATCH_BUFFER_END; struct drm_i915_gem_exec_object2 *obj; struct drm_i915_gem_execbuffer2 execbuf; int count = alloc >> 20; uint64_t obj_size; obj = __gem_calloc(fd, alloc + 1, sizeof(*obj), &obj_size); memset(&execbuf, 0, sizeof(execbuf)); obj[count].handle = gem_create(fd, 4096); gem_write(fd, obj[count].handle, 0, &bbe, sizeof(bbe)); for (int i = 1; i <= count; i++) { int j = count - i; obj[j+1].flags = 0; obj[j].handle = gem_create(fd, 1 << 20); obj[j].flags = EXEC_OBJECT_WRITE; execbuf.buffers_ptr = to_user_pointer(&obj[j]); execbuf.buffer_count = i + 1; execbuf.flags = engines[j % nengine]; gem_execbuf(fd, &execbuf); } for (int i = 0; i <= count; i++) gem_madvise(fd, obj[i].handle, I915_MADV_DONTNEED); munmap(obj, obj_size); } static void hang(int fd, uint64_t alloc) { const uint32_t bbe = MI_BATCH_BUFFER_END; struct drm_i915_gem_exec_object2 *obj; struct drm_i915_gem_execbuffer2 execbuf; int count = alloc >> 20; uint64_t obj_size; obj = __gem_calloc(fd, alloc + 1, sizeof(*obj), &obj_size); memset(&execbuf, 0, sizeof(execbuf)); obj[count].handle = gem_create(fd, 4096); gem_write(fd, obj[count].handle, 0, &bbe, sizeof(bbe)); for (int i = 1; i <= count; i++) { int j = count - i; obj[j].handle = gem_create(fd, 1 << 20); execbuf.buffers_ptr = to_user_pointer(&obj[j]); execbuf.buffer_count = i + 1; gem_execbuf(fd, &execbuf); } gem_close(fd, igt_hang_ring(fd, 0).spin->handle); for (int i = 0; i <= count; i++) gem_madvise(fd, obj[i].handle, I915_MADV_DONTNEED); munmap(obj, obj_size); } static void userptr(int fd, uint64_t alloc, unsigned int flags) #define UDIRTY (1 << 0) { struct local_i915_gem_userptr userptr; void *ptr; igt_assert((alloc & 4095) == 0); ptr = mmap(NULL, alloc, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); igt_assert(ptr != (void *)-1); memset(&userptr, 0, sizeof(userptr)); userptr.user_size = alloc; userptr.user_ptr = to_user_pointer(ptr); do_ioctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); if (flags & UDIRTY) gem_set_domain(fd, userptr.handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); else gem_set_domain(fd, userptr.handle, I915_GEM_DOMAIN_GTT, 0); madvise(ptr, alloc, MADV_FREE); } static bool has_userptr(void) { struct local_i915_gem_userptr userptr; int fd = drm_open_driver(DRIVER_INTEL); int err; memset(&userptr, 0, sizeof(userptr)); userptr.user_size = 8192; userptr.user_ptr = -4096; err = 0; if (drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr)) err = errno; close(fd); return err == EFAULT; } static void leak(int fd, uint64_t alloc) { char *ptr; ptr = mmap(NULL, alloc, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_POPULATE, -1, 0); if (ptr != (char *)-1) return; while (alloc) { alloc -= 4096; ptr[alloc] = 0; } } #define SOLO 1 #define USERPTR 2 #define USERPTR_DIRTY 4 #define OOM 8 static void run_test(int nchildren, uint64_t alloc, void (*func)(int, uint64_t), unsigned flags) { const int timeout = flags & SOLO ? 1 : 20; /* Each pass consumes alloc bytes and doesn't drop * its reference to object (i.e. calls * gem_madvise(DONTNEED) instead of gem_close()). * After nchildren passes we expect each process * to have enough objects to consume all of memory * if left unchecked. */ if (flags & SOLO) nchildren = 1; /* Background load */ if (flags & OOM) { igt_fork(child, nchildren) { igt_until_timeout(timeout) { int fd = drm_open_driver(DRIVER_INTEL); for (int pass = 0; pass < nchildren; pass++) leak(fd, alloc); close(fd); } } } if (flags & USERPTR) { igt_require(has_userptr()); igt_fork(child, (nchildren + 1)/2) { igt_until_timeout(timeout) { int fd = drm_open_driver(DRIVER_INTEL); for (int pass = 0; pass < nchildren; pass++) userptr(fd, alloc, 0); close(fd); } } nchildren = (nchildren + 1)/2; } if (flags & USERPTR_DIRTY) { igt_require(has_userptr()); igt_fork(child, (nchildren + 1)/2) { igt_until_timeout(timeout) { int fd = drm_open_driver(DRIVER_INTEL); for (int pass = 0; pass < nchildren; pass++) userptr(fd, alloc, UDIRTY); close(fd); } } nchildren = (nchildren + 1)/2; } /* Exercise major ioctls */ igt_fork(child, nchildren) { igt_until_timeout(timeout) { int fd = drm_open_driver(DRIVER_INTEL); for (int pass = 0; pass < nchildren; pass++) func(fd, alloc); close(fd); } } igt_waitchildren(); } static void reclaim(unsigned engine, int timeout) { const uint64_t timeout_100ms = 100000000LL; int fd = drm_open_driver(DRIVER_INTEL); int debugfs = igt_debugfs_dir(fd); igt_spin_t *spin; volatile uint32_t *shared; shared = mmap(0, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(shared != MAP_FAILED); igt_fork(child, sysconf(_SC_NPROCESSORS_ONLN)) { do { igt_sysfs_printf(debugfs, "i915_drop_caches", "%d", DROP_BOUND | DROP_UNBOUND); } while (!*shared); } spin = igt_spin_new(fd, .engine = engine); igt_until_timeout(timeout) { igt_spin_t *next = __igt_spin_new(fd, .engine = engine); igt_spin_set_timeout(spin, timeout_100ms); gem_sync(fd, spin->handle); igt_spin_free(fd, spin); spin = next; } igt_spin_free(fd, spin); *shared = 1; igt_waitchildren(); munmap((void *)shared, 4096); close(debugfs); close(fd); } igt_main { const struct test { const char *name; void (*func)(int, uint64_t); } tests[] = { { "get-pages", get_pages }, { "get-pages-dirty", get_pages_dirty }, { "pwrite", pwrite_ }, { "pread", pread_ }, { "mmap-gtt", mmap_gtt }, { "mmap-cpu", mmap_cpu }, { "execbuf1", execbuf1 }, { "execbufN", execbufN }, { "execbufX", execbufX }, { "hang", hang }, { NULL }, }; const struct mode { const char *suffix; unsigned flags; } modes[] = { { "-sanitycheck", SOLO }, { "", 0 }, { "-userptr", USERPTR }, { "-userptr-dirty", USERPTR | USERPTR_DIRTY }, { "-oom", USERPTR | OOM }, { NULL }, }; uint64_t alloc_size = 0; int num_processes = 0; igt_skip_on_simulation(); igt_fixture { uint64_t mem_size = intel_get_total_ram_mb(); unsigned int engine; int fd; fd = drm_open_driver(DRIVER_INTEL); igt_require_gem(fd); /* * Spawn enough processes to use all memory, but each only * uses half the available mappable aperture ~128MiB. * Individually the processes would be ok, but en masse * we expect the shrinker to start purging objects, * and possibly fail. */ alloc_size = gem_mappable_aperture_size() / 2; num_processes = 1 + (mem_size / (alloc_size >> 20)); igt_info("Using %d processes and %'lluMiB per process\n", num_processes, (long long)(alloc_size >> 20)); intel_require_memory(num_processes, alloc_size, CHECK_SWAP | CHECK_RAM); nengine = 0; for_each_engine(fd, engine) engines[nengine++] = engine; igt_require(nengine); close(fd); } igt_subtest("reclaim") reclaim(I915_EXEC_DEFAULT, 2); for(const struct test *t = tests; t->name; t++) { for(const struct mode *m = modes; m->suffix; m++) { igt_subtest_f("%s%s", t->name, m->suffix) run_test(num_processes, alloc_size, t->func, m->flags); } } }