/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include #include #include #include #include #include #include #include #include "igt_aux.h" #include "intel_io.h" #include "intel_chipset.h" #include "drmtest.h" /* kernel types for intel_vbt_defs.h */ typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define __packed __attribute__ ((packed)) #define _INTEL_BIOS_PRIVATE #include "intel_vbt_defs.h" /* no bother to include "edid.h" */ #define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4)) #define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2)) #define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4)) #define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8)) #define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4)) #define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2)) #define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4)) #define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8)) #define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000 #define YESNO(val) ((val) ? "yes" : "no") /* This is not for mapping to memory layout. */ struct bdb_block { uint8_t id; uint32_t size; const void *data; }; struct context { const struct vbt_header *vbt; const struct bdb_header *bdb; int size; uint32_t devid; int panel_type; bool dump_all_panel_types; bool hexdump; }; /* Get BDB block size given a pointer to Block ID. */ static uint32_t _get_blocksize(const uint8_t *block_base) { /* The MIPI Sequence Block v3+ has a separate size field. */ if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) return *((const uint32_t *)(block_base + 4)); else return *((const uint16_t *)(block_base + 1)); } static struct bdb_block *find_section(struct context *context, int section_id) { const struct bdb_header *bdb = context->bdb; int length = context->size; struct bdb_block *block; const uint8_t *base = (const uint8_t *)bdb; int index = 0; uint32_t total, current_size; unsigned char current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; if (total > length) total = length; block = malloc(sizeof(*block)); if (!block) { fprintf(stderr, "out of memory\n"); exit(EXIT_FAILURE); } /* walk the sections looking for section_id */ while (index + 3 < total) { current_id = *(base + index); current_size = _get_blocksize(base + index); index += 3; if (index + current_size > total) return NULL; if (current_id == section_id) { block->id = current_id; block->size = current_size; block->data = base + index; return block; } index += current_size; } free(block); return NULL; } static void dump_general_features(struct context *context, const struct bdb_block *block) { const struct bdb_general_features *features = block->data; printf("\tPanel fitting: "); switch (features->panel_fitting) { case 0: printf("disabled\n"); break; case 1: printf("text only\n"); break; case 2: printf("graphics only\n"); break; case 3: printf("text & graphics\n"); break; } printf("\tFlexaim: %s\n", YESNO(features->flexaim)); printf("\tMessage: %s\n", YESNO(features->msg_enable)); printf("\tClear screen: %d\n", features->clear_screen); printf("\tDVO color flip required: %s\n", YESNO(features->color_flip)); printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt)); printf("\tEnable SSC: %s\n", YESNO(features->enable_ssc)); if (features->enable_ssc) { if (!context->devid) printf("\tSSC frequency: \n"); else if (IS_VALLEYVIEW(context->devid) || IS_CHERRYVIEW(context->devid) || IS_BROXTON(context->devid)) printf("\tSSC frequency: 100 MHz\n"); else if (HAS_PCH_SPLIT(context->devid)) printf("\tSSC frequency: %s\n", features->ssc_freq ? "100 MHz" : "120 MHz"); else printf("\tSSC frequency: %s\n", features->ssc_freq ? "100 MHz (66 MHz on 855)" : "96 MHz (48 MHz on 855)"); } printf("\tLFP on override: %s\n", YESNO(features->enable_lfp_on_override)); printf("\tDisable SSC on clone: %s\n", YESNO(features->disable_ssc_ddt)); printf("\tUnderscan support for VGA timings: %s\n", YESNO(features->underscan_vga_timings)); if (context->bdb->version >= 183) printf("\tDynamic CD clock: %s\n", YESNO(features->display_clock_mode)); printf("\tHotplug support in VBIOS: %s\n", YESNO(features->vbios_hotplug_support)); printf("\tDisable smooth vision: %s\n", YESNO(features->disable_smooth_vision)); printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi)); if (context->bdb->version >= 181) printf("\tEnable 180 degree rotation: %s\n", YESNO(features->rotate_180)); printf("\tInverted FDI Rx polarity: %s\n", YESNO(features->fdi_rx_polarity_inverted)); if (context->bdb->version >= 160) { printf("\tExtended VBIOS mode: %s\n", YESNO(features->vbios_extended_mode)); printf("\tCopy iLFP DTD to SDVO LVDS DTD: %s\n", YESNO(features->copy_ilfp_dtd_to_sdvo_lvds_dtd)); printf("\tBest fit panel timing algorithm: %s\n", YESNO(features->panel_best_fit_timing)); printf("\tIgnore strap state: %s\n", YESNO(features->ignore_strap_state)); } printf("\tLegacy monitor detect: %s\n", YESNO(features->legacy_monitor_detect)); printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support)); printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support)); printf("\tIntegrated EFP: %s\n", YESNO(features->int_efp_support)); printf("\tDP SSC enable: %s\n", YESNO(features->dp_ssc_enable)); if (features->dp_ssc_enable) { if (IS_VALLEYVIEW(context->devid) || IS_CHERRYVIEW(context->devid) || IS_BROXTON(context->devid)) printf("\tSSC frequency: 100 MHz\n"); else if (HAS_PCH_SPLIT(context->devid)) printf("\tSSC frequency: %s\n", features->dp_ssc_freq ? "100 MHz" : "120 MHz"); else printf("\tSSC frequency: %s\n", features->dp_ssc_freq ? "100 MHz" : "96 MHz"); } printf("\tDP SSC dongle supported: %s\n", YESNO(features->dp_ssc_dongle_supported)); } static void dump_backlight_info(struct context *context, const struct bdb_block *block) { const struct bdb_lfp_backlight_data *backlight = block->data; const struct lfp_backlight_data_entry *blc; if (sizeof(*blc) != backlight->entry_size) { printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n", sizeof(*blc), backlight->entry_size); return; } blc = &backlight->data[context->panel_type]; printf("\tInverter type: %d\n", blc->type); printf("\t polarity: %d\n", blc->active_low_pwm); printf("\t PWM freq: %d\n", blc->pwm_freq_hz); printf("\tMinimum brightness: %d\n", blc->min_brightness); } static const struct { unsigned short type; const char *name; } child_device_types[] = { { DEVICE_TYPE_NONE, "none" }, { DEVICE_TYPE_CRT, "CRT" }, { DEVICE_TYPE_TV, "TV" }, { DEVICE_TYPE_EFP, "EFP" }, { DEVICE_TYPE_LFP, "LFP" }, { DEVICE_TYPE_CRT_DPMS, "CRT" }, { DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" }, { DEVICE_TYPE_TV_COMPOSITE, "TV composite" }, { DEVICE_TYPE_TV_MACROVISION, "TV" }, { DEVICE_TYPE_TV_RF_COMPOSITE, "TV" }, { DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" }, { DEVICE_TYPE_TV_SCART, "TV SCART" }, { DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" }, { DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" }, { DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" }, { DEVICE_TYPE_EFP_DVI_I, "DVI-I" }, { DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" }, { DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" }, { DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" }, { DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" }, { DEVICE_TYPE_LFP_PANELLINK, "PanelLink" }, { DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" }, { DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" }, { DEVICE_TYPE_INT_LFP, "LFP" }, { DEVICE_TYPE_INT_TV, "TV" }, { DEVICE_TYPE_DP, "DisplayPort" }, { DEVICE_TYPE_DP_DUAL_MODE, "DisplayPort/HDMI/DVI" }, { DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" }, { DEVICE_TYPE_HDMI, "HDMI/DVI" }, { DEVICE_TYPE_DVI, "DVI" }, { DEVICE_TYPE_eDP, "eDP" }, { DEVICE_TYPE_MIPI, "MIPI" }, }; static const int num_child_device_types = sizeof(child_device_types) / sizeof(child_device_types[0]); static const char *child_device_type(unsigned short type) { int i; for (i = 0; i < num_child_device_types; i++) if (child_device_types[i].type == type) return child_device_types[i].name; return "unknown"; } static const struct { unsigned short mask; const char *name; } child_device_type_bits[] = { { DEVICE_TYPE_CLASS_EXTENSION, "Class extension" }, { DEVICE_TYPE_POWER_MANAGEMENT, "Power management" }, { DEVICE_TYPE_HOTPLUG_SIGNALING, "Hotplug signaling" }, { DEVICE_TYPE_INTERNAL_CONNECTOR, "Internal connector" }, { DEVICE_TYPE_NOT_HDMI_OUTPUT, "HDMI output" }, /* decoded as inverse */ { DEVICE_TYPE_MIPI_OUTPUT, "MIPI output" }, { DEVICE_TYPE_COMPOSITE_OUTPUT, "Composite output" }, { DEVICE_TYPE_DUAL_CHANNEL, "Dual channel" }, { 1 << 7, "Content protection" }, { DEVICE_TYPE_HIGH_SPEED_LINK, "High speed link" }, { DEVICE_TYPE_LVDS_SIGNALING, "LVDS signaling" }, { DEVICE_TYPE_TMDS_DVI_SIGNALING, "TMDS/DVI signaling" }, { DEVICE_TYPE_VIDEO_SIGNALING, "Video signaling" }, { DEVICE_TYPE_DISPLAYPORT_OUTPUT, "DisplayPort output" }, { DEVICE_TYPE_DIGITAL_OUTPUT, "Digital output" }, { DEVICE_TYPE_ANALOG_OUTPUT, "Analog output" }, }; static void dump_child_device_type_bits(uint16_t type) { int i; type ^= DEVICE_TYPE_NOT_HDMI_OUTPUT; for (i = 0; i < ARRAY_SIZE(child_device_type_bits); i++) { if (child_device_type_bits[i].mask & type) printf("\t\t\t%s\n", child_device_type_bits[i].name); } } static const struct { unsigned char handle; const char *name; } child_device_handles[] = { { DEVICE_HANDLE_CRT, "CRT" }, { DEVICE_HANDLE_EFP1, "EFP 1 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP2, "EFP 2 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP3, "EFP 3 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP4, "EFP 4 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_LPF1, "LFP 1 (eDP)" }, { DEVICE_HANDLE_LFP2, "LFP 2 (eDP)" }, }; static const int num_child_device_handles = sizeof(child_device_handles) / sizeof(child_device_handles[0]); static const char *child_device_handle(unsigned char handle) { int i; for (i = 0; i < num_child_device_handles; i++) if (child_device_handles[i].handle == handle) return child_device_handles[i].name; return "unknown"; } static const char *dvo_port_names[] = { [DVO_PORT_HDMIA] = "HDMI-A", [DVO_PORT_HDMIB] = "HDMI-B", [DVO_PORT_HDMIC] = "HDMI-C", [DVO_PORT_HDMID] = "HDMI-D", [DVO_PORT_LVDS] = "LVDS", [DVO_PORT_TV] = "TV", [DVO_PORT_CRT] = "CRT", [DVO_PORT_DPB] = "DP-B", [DVO_PORT_DPC] = "DP-C", [DVO_PORT_DPD] = "DP-D", [DVO_PORT_DPA] = "DP-A", [DVO_PORT_DPE] = "DP-E", [DVO_PORT_HDMIE] = "HDMI-E", [DVO_PORT_MIPIA] = "MIPI-A", [DVO_PORT_MIPIB] = "MIPI-B", [DVO_PORT_MIPIC] = "MIPI-C", [DVO_PORT_MIPID] = "MIPI-D", }; static const char *dvo_port(uint8_t type) { if (type < ARRAY_SIZE(dvo_port_names) && dvo_port_names[type]) return dvo_port_names[type]; else return "unknown"; } static const char *mipi_bridge_type(uint8_t type) { switch (type) { case 1: return "ASUS"; case 2: return "Toshiba"; case 3: return "Renesas"; default: return "unknown"; } } static void dump_hmdi_max_data_rate(uint8_t hdmi_max_data_rate) { static const uint16_t max_data_rate[] = { [HDMI_MAX_DATA_RATE_PLATFORM] = 0, [HDMI_MAX_DATA_RATE_297] = 297, [HDMI_MAX_DATA_RATE_165] = 165, }; if (hdmi_max_data_rate >= ARRAY_SIZE(max_data_rate)) printf("\t\tHDMI max data rate: (0x%02x)\n", hdmi_max_data_rate); else if (hdmi_max_data_rate == HDMI_MAX_DATA_RATE_PLATFORM) printf("\t\tHDMI max data rate: (0x%02x)\n", hdmi_max_data_rate); else printf("\t\tHDMI max data rate: %d MHz (0x%02x)\n", max_data_rate[hdmi_max_data_rate], hdmi_max_data_rate); } static void dump_child_device(struct context *context, const struct child_device_config *child) { if (!child->device_type) return; printf("\tChild device info:\n"); printf("\t\tDevice handle: 0x%04x (%s)\n", child->handle, child_device_handle(child->handle)); printf("\t\tDevice type: 0x%04x (%s)\n", child->device_type, child_device_type(child->device_type)); dump_child_device_type_bits(child->device_type); if (context->bdb->version < 152) { printf("\t\tSignature: %.*s\n", (int)sizeof(child->device_id), child->device_id); } else { printf("\t\tI2C speed: 0x%02x\n", child->i2c_speed); printf("\t\tDP onboard redriver: 0x%02x\n", child->dp_onboard_redriver); printf("\t\tDP ondock redriver: 0x%02x\n", child->dp_ondock_redriver); printf("\t\tHDMI level shifter value: 0x%02x\n", child->hdmi_level_shifter_value); dump_hmdi_max_data_rate(child->hdmi_max_data_rate); printf("\t\tOffset to DTD buffer for edidless CHILD: 0x%02x\n", child->dtd_buf_ptr); printf("\t\tEdidless EFP: %s\n", YESNO(child->edidless_efp)); printf("\t\tCompression enable: %s\n", YESNO(child->compression_enable)); printf("\t\tCompression method CPS: %s\n", YESNO(child->compression_method)); printf("\t\tDual pipe ganged eDP: %s\n", YESNO(child->ganged_edp)); printf("\t\tCompression structure index: 0x%02x)\n", child->compression_structure_index); printf("\t\tSlave DDI port: 0x%02x (%s)\n", child->slave_port, dvo_port(child->slave_port)); } printf("\t\tAIM offset: %d\n", child->addin_offset); printf("\t\tDVO Port: 0x%02x (%s)\n", child->dvo_port, dvo_port(child->dvo_port)); printf("\t\tAIM I2C pin: 0x%02x\n", child->i2c_pin); printf("\t\tAIM Slave address: 0x%02x\n", child->slave_addr); printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin); printf("\t\tEDID buffer ptr: 0x%02x\n", child->edid_ptr); printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg); if (context->bdb->version < 155) { printf("\t\tDVO2 Port: 0x%02x (%s)\n", child->dvo2_port, dvo_port(child->dvo2_port)); printf("\t\tI2C2 pin: 0x%02x\n", child->i2c2_pin); printf("\t\tSlave2 address: 0x%02x\n", child->slave2_addr); printf("\t\tDDC2 pin: 0x%02x\n", child->ddc2_pin); } else { printf("\t\tEFP routed through dock: %s\n", YESNO(child->efp_routed)); printf("\t\tLane reversal: %s\n", YESNO(child->lane_reversal)); printf("\t\tOnboard LSPCON: %s\n", YESNO(child->lspcon)); printf("\t\tIboost enable: %s\n", YESNO(child->iboost)); printf("\t\tHPD sense invert: %s\n", YESNO(child->hpd_invert)); printf("\t\tHDMI compatible? %s\n", YESNO(child->hdmi_support)); printf("\t\tDP compatible? %s\n", YESNO(child->dp_support)); printf("\t\tTMDS compatible? %s\n", YESNO(child->tmds_support)); printf("\t\tAux channel: 0x%02x\n", child->aux_channel); printf("\t\tDongle detect: 0x%02x\n", child->dongle_detect); } printf("\t\tPipe capabilities: 0x%02x\n", child->pipe_cap); printf("\t\tSDVO stall signal available: %s\n", YESNO(child->sdvo_stall)); printf("\t\tHotplug connect status: 0x%02x\n", child->hpd_status); printf("\t\tIntegrated encoder instead of SDVO: %s\n", YESNO(child->integrated_encoder)); printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring); if (context->bdb->version < 171) { printf("\t\tDVO2 wiring: 0x%02x\n", child->dvo2_wiring); } else { printf("\t\tMIPI bridge type: %02x (%s)\n", child->mipi_bridge_type, mipi_bridge_type(child->mipi_bridge_type)); } printf("\t\tDevice class extension: 0x%02x\n", child->extended_type); printf("\t\tDVO function: 0x%02x\n", child->dvo_function); if (context->bdb->version >= 195) { printf("\t\tDP USB type C support: %s\n", YESNO(child->dp_usb_type_c)); printf("\t\t2X DP GPIO index: 0x%02x\n", child->dp_gpio_index); printf("\t\t2X DP GPIO pin number: 0x%02x\n", child->dp_gpio_pin_num); } if (context->bdb->version >= 196) { printf("\t\tIBoost level for HDMI: 0x%02x\n", child->hdmi_iboost_level); printf("\t\tIBoost level for DP/eDP: 0x%02x\n", child->dp_iboost_level); } } static void dump_child_devices(struct context *context, const uint8_t *devices, uint8_t child_dev_num, uint8_t child_dev_size) { struct child_device_config *child; int i; /* * Use a temp buffer so dump_child_device() doesn't have to worry about * accessing the struct beyond child_dev_size. The tail, if any, remains * initialized to zero. */ child = calloc(1, sizeof(*child)); for (i = 0; i < child_dev_num; i++) { memcpy(child, devices + i * child_dev_size, min(sizeof(*child), child_dev_size)); dump_child_device(context, child); } free(child); } static void dump_general_definitions(struct context *context, const struct bdb_block *block) { const struct bdb_general_definitions *defs = block->data; int child_dev_num; child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size; printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin); printf("\tUse ACPI DPMS CRT power states: %s\n", YESNO(defs->dpms_acpi)); printf("\tSkip CRT detect at boot: %s\n", YESNO(defs->skip_boot_crt_detect)); printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim)); printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1], defs->boot_display[0]); printf("\tChild device size: %d\n", defs->child_dev_size); printf("\tChild device count: %d\n", child_dev_num); dump_child_devices(context, defs->devices, child_dev_num, defs->child_dev_size); } static void dump_legacy_child_devices(struct context *context, const struct bdb_block *block) { const struct bdb_legacy_child_devices *defs = block->data; int child_dev_num; child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size; printf("\tChild device size: %d\n", defs->child_dev_size); printf("\tChild device count: %d\n", child_dev_num); dump_child_devices(context, defs->devices, child_dev_num, defs->child_dev_size); } static void dump_lvds_options(struct context *context, const struct bdb_block *block) { const struct bdb_lvds_options *options = block->data; if (context->panel_type == options->panel_type) printf("\tPanel type: %d\n", options->panel_type); else printf("\tPanel type: %d (override %d)\n", options->panel_type, context->panel_type); printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid)); printf("\tPixel dither: %s\n", YESNO(options->pixel_dither)); printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto)); printf("\tPFIT enhanced graphics mode: %s\n", YESNO(options->pfit_gfx_mode_enhanced)); printf("\tPFIT enhanced text mode: %s\n", YESNO(options->pfit_text_mode_enhanced)); printf("\tPFIT mode: %d\n", options->pfit_mode); } static void dump_lvds_ptr_data(struct context *context, const struct bdb_block *block) { const struct bdb_lvds_lfp_data_ptrs *ptrs = block->data; printf("\tNumber of entries: %d\n", ptrs->lvds_entries); } static void dump_lvds_data(struct context *context, const struct bdb_block *block) { const struct bdb_lvds_lfp_data *lvds_data = block->data; struct bdb_block *ptrs_block; const struct bdb_lvds_lfp_data_ptrs *ptrs; int num_entries; int i; int hdisplay, hsyncstart, hsyncend, htotal; int vdisplay, vsyncstart, vsyncend, vtotal; float clock; int lfp_data_size, dvo_offset; ptrs_block = find_section(context, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs_block) { printf("No LVDS ptr block\n"); return; } ptrs = ptrs_block->data; lfp_data_size = ptrs->ptr[1].fp_timing_offset - ptrs->ptr[0].fp_timing_offset; dvo_offset = ptrs->ptr[0].dvo_timing_offset - ptrs->ptr[0].fp_timing_offset; num_entries = block->size / lfp_data_size; printf(" Number of entries: %d (preferred block marked with '*')\n", num_entries); for (i = 0; i < num_entries; i++) { const uint8_t *lfp_data_ptr = (const uint8_t *) lvds_data->data + lfp_data_size * i; const uint8_t *timing_data = lfp_data_ptr + dvo_offset; const struct lvds_lfp_data_entry *lfp_data = (const struct lvds_lfp_data_entry *)lfp_data_ptr; char marker; if (i != context->panel_type && !context->dump_all_panel_types) continue; if (i == context->panel_type) marker = '*'; else marker = ' '; hdisplay = _H_ACTIVE(timing_data); hsyncstart = hdisplay + _H_SYNC_OFF(timing_data); hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data); htotal = hdisplay + _H_BLANK(timing_data); vdisplay = _V_ACTIVE(timing_data); vsyncstart = vdisplay + _V_SYNC_OFF(timing_data); vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data); vtotal = vdisplay + _V_BLANK(timing_data); clock = _PIXEL_CLOCK(timing_data) / 1000; printf("%c\tpanel type %02i: %dx%d clock %d\n", marker, i, lfp_data->fp_timing.x_res, lfp_data->fp_timing.y_res, _PIXEL_CLOCK(timing_data)); printf("\t\tinfo:\n"); printf("\t\t LVDS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.lvds_reg_val); printf("\t\t PP_ON_DELAYS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_on_reg_val); printf("\t\t PP_OFF_DELAYS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_off_reg_val); printf("\t\t PP_DIVISOR: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_cycle_reg_val); printf("\t\t PFIT: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pfit_reg_val); printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n", hdisplay, hsyncstart, hsyncend, htotal, vdisplay, vsyncstart, vsyncend, vtotal, clock, (hsyncend > htotal || vsyncend > vtotal) ? "BAD!" : "good"); } free(ptrs_block); } static void dump_driver_feature(struct context *context, const struct bdb_block *block) { const struct bdb_driver_features *feature = block->data; printf("\tBoot Device Algorithm: %s\n", feature->boot_dev_algorithm ? "driver default" : "os default"); printf("\tBlock display switching when DVD active: %s\n", YESNO(feature->block_display_switch)); printf("\tAllow display switching when in Full Screen DOS: %s\n", YESNO(feature->allow_display_switch)); printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo)); printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom)); printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook)); printf("\tEnable Sprite in Clone Mode: %s\n", YESNO(feature->sprite_in_clone)); printf("\tUse 00000110h ID for Primary LFP: %s\n", YESNO(feature->primary_lfp_id)); printf("\tBoot Mode X: %u\n", feature->boot_mode_x); printf("\tBoot Mode Y: %u\n", feature->boot_mode_y); printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp); printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh); printf("\tEnable LFP as primary: %s\n", YESNO(feature->enable_lfp_primary)); printf("\tSelective Mode Pruning: %s\n", YESNO(feature->selective_mode_pruning)); printf("\tDual-Frequency Graphics Technology: %s\n", YESNO(feature->dual_frequency)); printf("\tDefault Render Clock Frequency: %s\n", feature->render_clock_freq ? "low" : "high"); printf("\tNT 4.0 Dual Display Clone Support: %s\n", YESNO(feature->nt_clone_support)); printf("\tDefault Power Scheme user interface: %s\n", feature->power_scheme_ui ? "3rd party" : "CUI"); printf ("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n", feature->sprite_display_assign ? "primary" : "secondary"); printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n", YESNO(feature->cui_aspect_scaling)); printf("\tPreserve Aspect Ratio: %s\n", YESNO(feature->preserve_aspect_ratio)); printf("\tEnable SDVO device power down: %s\n", YESNO(feature->sdvo_device_power_down)); printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug)); printf("\tLVDS config: "); switch (feature->lvds_config) { case BDB_DRIVER_NO_LVDS: printf("No LVDS\n"); break; case BDB_DRIVER_INT_LVDS: printf("Integrated LVDS\n"); break; case BDB_DRIVER_SDVO_LVDS: printf("SDVO LVDS\n"); break; case BDB_DRIVER_EDP: printf("Embedded DisplayPort\n"); break; } printf("\tDefine Display statically: %s\n", YESNO(feature->static_display)); printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x); printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y); printf("\tLegacy CRT max refresh: %d\n", feature->legacy_crt_max_refresh); printf("\tEnable DRRS: %s\n", YESNO(feature->drrs_enabled)); printf("\tEnable PSR: %s\n", YESNO(feature->psr_enabled)); } static void dump_edp(struct context *context, const struct bdb_block *block) { const struct bdb_edp *edp = block->data; int bpp, msa; int i; for (i = 0; i < 16; i++) { if (i != context->panel_type && !context->dump_all_panel_types) continue; printf("\tPanel %d%s\n", i, context->panel_type == i ? " *" : ""); printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n", edp->power_seqs[i].t3, edp->power_seqs[i].t7, edp->power_seqs[i].t9, edp->power_seqs[i].t10, edp->power_seqs[i].t12); bpp = (edp->color_depth >> (i * 2)) & 3; printf("\t\tPanel color depth: "); switch (bpp) { case EDP_18BPP: printf("18 bpp\n"); break; case EDP_24BPP: printf("24 bpp\n"); break; case EDP_30BPP: printf("30 bpp\n"); break; default: printf("(unknown value %d)\n", bpp); break; } msa = (edp->sdrrs_msa_timing_delay >> (i * 2)) & 3; printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1); printf("\t\tFast link params:\n"); printf("\t\t\trate: "); if (edp->fast_link_params[i].rate == EDP_RATE_1_62) printf("1.62G\n"); else if (edp->fast_link_params[i].rate == EDP_RATE_2_7) printf("2.7G\n"); printf("\t\t\tlanes: "); switch (edp->fast_link_params[i].lanes) { case EDP_LANE_1: printf("x1 mode\n"); break; case EDP_LANE_2: printf("x2 mode\n"); break; case EDP_LANE_4: printf("x4 mode\n"); break; default: printf("(unknown value %d)\n", edp->fast_link_params[i].lanes); break; } printf("\t\t\tpre-emphasis: "); switch (edp->fast_link_params[i].preemphasis) { case EDP_PREEMPHASIS_NONE: printf("none\n"); break; case EDP_PREEMPHASIS_3_5dB: printf("3.5dB\n"); break; case EDP_PREEMPHASIS_6dB: printf("6dB\n"); break; case EDP_PREEMPHASIS_9_5dB: printf("9.5dB\n"); break; default: printf("(unknown value %d)\n", edp->fast_link_params[i].preemphasis); break; } printf("\t\t\tvswing: "); switch (edp->fast_link_params[i].vswing) { case EDP_VSWING_0_4V: printf("0.4V\n"); break; case EDP_VSWING_0_6V: printf("0.6V\n"); break; case EDP_VSWING_0_8V: printf("0.8V\n"); break; case EDP_VSWING_1_2V: printf("1.2V\n"); break; default: printf("(unknown value %d)\n", edp->fast_link_params[i].vswing); break; } if (context->bdb->version >= 162) { bool val = (edp->edp_s3d_feature >> i) & 1; printf("\t\tStereo 3D feature: %s\n", YESNO(val)); } if (context->bdb->version >= 165) { bool val = (edp->edp_t3_optimization >> i) & 1; printf("\t\tT3 optimization: %s\n", YESNO(val)); } if (context->bdb->version >= 173) { int val = (edp->edp_vswing_preemph >> (i * 4)) & 0xf; printf("\t\tVswing/preemphasis table selection: "); switch (val) { case 0: printf("Low power (200 mV)\n"); break; case 1: printf("Default (400 mV)\n"); break; default: printf("(unknown value %d)\n", val); break; } } if (context->bdb->version >= 182) { bool val = (edp->fast_link_training >> i) & 1; printf("\t\tFast link training: %s\n", YESNO(val)); } if (context->bdb->version >= 185) { bool val = (edp->dpcd_600h_write_required >> i) & 1; printf("\t\tDPCD 600h write required: %s\n", YESNO(val)); } if (context->bdb->version >= 186) { printf("\t\tPWM delays:\n" "\t\t\tPWM on to backlight enable: %d\n" "\t\t\tBacklight disable to PWM off: %d\n", edp->pwm_delays[i].pwm_on_to_backlight_enable, edp->pwm_delays[i].backlight_disable_to_pwm_off); } if (context->bdb->version >= 199) { bool val = (edp->full_link_params_provided >> i) & 1; printf("\t\tFull link params provided: %s\n", YESNO(val)); printf("\t\tFull link params:\n"); printf("\t\t\tpre-emphasis: "); switch (edp->full_link_params[i].preemphasis) { case EDP_PREEMPHASIS_NONE: printf("none\n"); break; case EDP_PREEMPHASIS_3_5dB: printf("3.5dB\n"); break; case EDP_PREEMPHASIS_6dB: printf("6dB\n"); break; case EDP_PREEMPHASIS_9_5dB: printf("9.5dB\n"); break; default: printf("(unknown value %d)\n", edp->full_link_params[i].preemphasis); break; } printf("\t\t\tvswing: "); switch (edp->full_link_params[i].vswing) { case EDP_VSWING_0_4V: printf("0.4V\n"); break; case EDP_VSWING_0_6V: printf("0.6V\n"); break; case EDP_VSWING_0_8V: printf("0.8V\n"); break; case EDP_VSWING_1_2V: printf("1.2V\n"); break; default: printf("(unknown value %d)\n", edp->full_link_params[i].vswing); break; } } } } static void dump_psr(struct context *context, const struct bdb_block *block) { const struct bdb_psr *psr_block = block->data; int i; uint32_t psr2_tp_time; /* The same block ID was used for something else before? */ if (context->bdb->version < 165) return; psr2_tp_time = psr_block->psr2_tp2_tp3_wakeup_time; for (i = 0; i < 16; i++) { const struct psr_table *psr = &psr_block->psr_table[i]; if (i != context->panel_type && !context->dump_all_panel_types) continue; printf("\tPanel %d%s\n", i, context->panel_type == i ? " *" : ""); printf("\t\tFull link: %s\n", YESNO(psr->full_link)); printf("\t\tRequire AUX to wakeup: %s\n", YESNO(psr->require_aux_to_wakeup)); switch (psr->lines_to_wait) { case 0: case 1: printf("\t\tLines to wait before link standby: %d\n", psr->lines_to_wait); break; case 2: case 3: printf("\t\tLines to wait before link standby: %d\n", 1 << psr->lines_to_wait); break; default: printf("\t\tLines to wait before link standby: (unknown) (0x%x)\n", psr->lines_to_wait); break; } printf("\t\tIdle frames to for PSR enable: %d\n", psr->idle_frames); printf("\t\tTP1 wakeup time: %d usec (0x%x)\n", psr->tp1_wakeup_time * 100, psr->tp1_wakeup_time); printf("\t\tTP2/TP3 wakeup time: %d usec (0x%x)\n", psr->tp2_tp3_wakeup_time * 100, psr->tp2_tp3_wakeup_time); if (context->bdb->version >= 226) { int index; static const uint16_t psr2_tp_times[] = {500, 100, 2500, 5}; index = (psr2_tp_time >> (i * 2)) & 0x3; printf("\t\tPSR2 TP2/TP3 wakeup time: %d usec (0x%x)\n", psr2_tp_times[index], index); } } } static void print_detail_timing_data(const struct lvds_dvo_timing *dvo_timing) { int display, sync_start, sync_end, total; display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; sync_start = display + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); sync_end = sync_start + ((dvo_timing->hsync_pulse_width_hi << 8) | dvo_timing->hsync_pulse_width_lo); total = display + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); printf("\thdisplay: %d\n", display); printf("\thsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->hsync_positive ? "+sync" : "-sync"); printf("\thtotal: %d\n", total); display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; sync_start = display + ((dvo_timing->vsync_off_hi << 8) | dvo_timing->vsync_off_lo); sync_end = sync_start + ((dvo_timing->vsync_pulse_width_hi << 8) | dvo_timing->vsync_pulse_width_lo); total = display + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); printf("\tvdisplay: %d\n", display); printf("\tvsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->vsync_positive ? "+sync" : "-sync"); printf("\tvtotal: %d\n", total); printf("\tclock: %d\n", dvo_timing->clock * 10); } static void dump_sdvo_panel_dtds(struct context *context, const struct bdb_block *block) { const struct lvds_dvo_timing *dvo_timing = block->data; int n, count; count = block->size / sizeof(struct lvds_dvo_timing); for (n = 0; n < count; n++) { printf("%d:\n", n); print_detail_timing_data(dvo_timing++); } } static void dump_sdvo_lvds_options(struct context *context, const struct bdb_block *block) { const struct bdb_sdvo_lvds_options *options = block->data; printf("\tbacklight: %d\n", options->panel_backlight); printf("\th40 type: %d\n", options->h40_set_panel_type); printf("\ttype: %d\n", options->panel_type); printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq); printf("\tals_low_trip: %d\n", options->als_low_trip); printf("\tals_high_trip: %d\n", options->als_high_trip); /* u8 sclalarcoeff_tab_row_num; u8 sclalarcoeff_tab_row_size; u8 coefficient[8]; */ printf("\tmisc[0]: %x\n", options->panel_misc_bits_1); printf("\tmisc[1]: %x\n", options->panel_misc_bits_2); printf("\tmisc[2]: %x\n", options->panel_misc_bits_3); printf("\tmisc[3]: %x\n", options->panel_misc_bits_4); } static void dump_mipi_config(struct context *context, const struct bdb_block *block) { const struct bdb_mipi_config *start = block->data; const struct mipi_config *config; const struct mipi_pps_data *pps; config = &start->config[context->panel_type]; pps = &start->pps[context->panel_type]; printf("\tGeneral Param\n"); printf("\t\t BTA disable: %s\n", config->bta ? "Disabled" : "Enabled"); printf("\t\t Panel Rotation: %d degrees\n", config->rotation * 90); printf("\t\t Video Mode Color Format: "); if (config->videomode_color_format == 0) printf("Not supported\n"); else if (config->videomode_color_format == 1) printf("RGB565\n"); else if (config->videomode_color_format == 2) printf("RGB666\n"); else if (config->videomode_color_format == 3) printf("RGB666 Loosely Packed\n"); else if (config->videomode_color_format == 4) printf("RGB888\n"); printf("\t\t PPS GPIO Pins: %s \n", config->pwm_blc ? "Using SOC" : "Using PMIC"); printf("\t\t CABC Support: %s\n", config->cabc ? "supported" : "not supported"); printf("\t\t Mode: %s\n", config->cmd_mode ? "COMMAND" : "VIDEO"); printf("\t\t Video transfer mode: %s (0x%x)\n", config->vtm == 1 ? "non-burst with sync pulse" : config->vtm == 2 ? "non-burst with sync events" : config->vtm == 3 ? "burst" : "", config->vtm); printf("\t\t Dithering: %s\n", config->dithering ? "done in Display Controller" : "done in Panel Controller"); printf("\tPort Desc\n"); printf("\t\t Pixel overlap: %d\n", config->pixel_overlap); printf("\t\t Lane Count: %d\n", config->lane_cnt + 1); printf("\t\t Dual Link Support: "); if (config->dual_link == 0) printf("not supported\n"); else if (config->dual_link == 1) printf("Front Back mode\n"); else printf("Pixel Alternative Mode\n"); printf("\tDphy Flags\n"); printf("\t\t Clock Stop: %s\n", config->clk_stop ? "ENABLED" : "DISABLED"); printf("\t\t EOT disabled: %s\n\n", config->eot_disabled ? "EOT not to be sent" : "EOT to be sent"); printf("\tHSTxTimeOut: 0x%x\n", config->hs_tx_timeout); printf("\tLPRXTimeOut: 0x%x\n", config->lp_rx_timeout); printf("\tTurnAroundTimeOut: 0x%x\n", config->turn_around_timeout); printf("\tDeviceResetTimer: 0x%x\n", config->device_reset_timer); printf("\tMasterinitTimer: 0x%x\n", config->master_init_timer); printf("\tDBIBandwidthTimer: 0x%x\n", config->dbi_bw_timer); printf("\tLpByteClkValue: 0x%x\n\n", config->lp_byte_clk_val); printf("\tDphy Params\n"); printf("\t\tExit to zero Count: 0x%x\n", config->exit_zero_cnt); printf("\t\tTrail Count: 0x%X\n", config->trail_cnt); printf("\t\tClk zero count: 0x%x\n", config->clk_zero_cnt); printf("\t\tPrepare count:0x%x\n\n", config->prepare_cnt); printf("\tClockLaneSwitchingCount: 0x%x\n", config->clk_lane_switch_cnt); printf("\tHighToLowSwitchingCount: 0x%x\n\n", config->hl_switch_cnt); printf("\tTimings based on Dphy spec\n"); printf("\t\tTClkMiss: 0x%x\n", config->tclk_miss); printf("\t\tTClkPost: 0x%x\n", config->tclk_post); printf("\t\tTClkPre: 0x%x\n", config->tclk_pre); printf("\t\tTClkPrepare: 0x%x\n", config->tclk_prepare); printf("\t\tTClkSettle: 0x%x\n", config->tclk_settle); printf("\t\tTClkTermEnable: 0x%x\n\n", config->tclk_term_enable); printf("\tTClkTrail: 0x%x\n", config->tclk_trail); printf("\tTClkPrepareTClkZero: 0x%x\n", config->tclk_prepare_clkzero); printf("\tTHSExit: 0x%x\n", config->ths_exit); printf("\tTHsPrepare: 0x%x\n", config->ths_prepare); printf("\tTHsPrepareTHsZero: 0x%x\n", config->ths_prepare_hszero); printf("\tTHSSettle: 0x%x\n", config->ths_settle); printf("\tTHSSkip: 0x%x\n", config->ths_skip); printf("\tTHsTrail: 0x%x\n", config->ths_trail); printf("\tTInit: 0x%x\n", config->tinit); printf("\tTLPX: 0x%x\n", config->tlpx); printf("\tMIPI PPS\n"); printf("\t\tPanel power ON delay: %d\n", pps->panel_on_delay); printf("\t\tPanel power on to Backlight enable delay: %d\n", pps->bl_enable_delay); printf("\t\tBacklight disable to Panel power OFF delay: %d\n", pps->bl_disable_delay); printf("\t\tPanel power OFF delay: %d\n", pps->panel_off_delay); printf("\t\tPanel power cycle delay: %d\n", pps->panel_power_cycle_delay); } static const uint8_t *mipi_dump_send_packet(const uint8_t *data, uint8_t seq_version) { uint8_t flags, type; uint16_t len, i; flags = *data++; type = *data++; len = *((const uint16_t *) data); data += 2; printf("\t\tSend DCS: Port %s, VC %d, %s, Type %02x, Length %u, Data", (flags >> 3) & 1 ? "C" : "A", (flags >> 1) & 3, flags & 1 ? "HS" : "LP", type, len); for (i = 0; i < len; i++) printf(" %02x", *data++); printf("\n"); return data; } static const uint8_t *mipi_dump_delay(const uint8_t *data, uint8_t seq_version) { printf("\t\tDelay: %u us\n", *((const uint32_t *)data)); return data + 4; } static const uint8_t *mipi_dump_gpio(const uint8_t *data, uint8_t seq_version) { uint8_t index, number, flags; if (seq_version >= 3) { index = *data++; number = *data++; flags = *data++; printf("\t\tGPIO index %u, number %u, set %d (0x%02x)\n", index, number, flags & 1, flags); } else { index = *data++; flags = *data++; printf("\t\tGPIO index %u, source %d, set %d (0x%02x)\n", index, (flags >> 1) & 3, flags & 1, flags); } return data; } static const uint8_t *mipi_dump_i2c(const uint8_t *data, uint8_t seq_version) { uint8_t flags, index, bus, offset, len, i; uint16_t address; flags = *data++; index = *data++; bus = *data++; address = *((const uint16_t *) data); data += 2; offset = *data++; len = *data++; printf("\t\tSend I2C: Flags %02x, Index %02x, Bus %02x, Address %04x, Offset %02x, Length %u, Data", flags, index, bus, address, offset, len); for (i = 0; i < len; i++) printf(" %02x", *data++); printf("\n"); return data; } typedef const uint8_t * (*fn_mipi_elem_dump)(const uint8_t *data, uint8_t seq_version); static const fn_mipi_elem_dump dump_elem[] = { [MIPI_SEQ_ELEM_SEND_PKT] = mipi_dump_send_packet, [MIPI_SEQ_ELEM_DELAY] = mipi_dump_delay, [MIPI_SEQ_ELEM_GPIO] = mipi_dump_gpio, [MIPI_SEQ_ELEM_I2C] = mipi_dump_i2c, }; static const char * const seq_name[] = { [MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET", [MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP", [MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON", [MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF", [MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET", [MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON", [MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF", [MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON", [MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF", [MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON", [MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF", }; static const char *sequence_name(enum mipi_seq seq_id) { if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id]) return seq_name[seq_id]; else return "(unknown)"; } static const uint8_t *dump_sequence(const uint8_t *data, uint8_t seq_version) { fn_mipi_elem_dump mipi_elem_dump; printf("\tSequence %u - %s\n", *data, sequence_name(*data)); /* Skip Sequence Byte. */ data++; /* Skip Size of Sequence. */ if (seq_version >= 3) data += 4; while (1) { uint8_t operation_byte = *data++; uint8_t operation_size = 0; if (operation_byte == MIPI_SEQ_ELEM_END) break; if (operation_byte < ARRAY_SIZE(dump_elem)) mipi_elem_dump = dump_elem[operation_byte]; else mipi_elem_dump = NULL; /* Size of Operation. */ if (seq_version >= 3) operation_size = *data++; if (mipi_elem_dump) { const uint8_t *next = data + operation_size; data = mipi_elem_dump(data, seq_version); if (operation_size && next != data) printf("Error: Inconsistent operation size: %d\n", operation_size); } else if (operation_size) { /* We have size, skip. */ data += operation_size; } else { /* No size, can't skip without parsing. */ printf("Error: Unsupported MIPI element %u\n", operation_byte); return NULL; } } return data; } /* Find the sequence block and size for the given panel. */ static const uint8_t * find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, uint16_t panel_id, uint32_t total, uint32_t *seq_size) { const uint8_t *data = &sequence->data[0]; uint8_t current_id; uint32_t current_size; int header_size = sequence->version >= 3 ? 5 : 3; int index = 0; int i; /* skip new block size */ if (sequence->version >= 3) data += 4; for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { if (index + header_size > total) { fprintf(stderr, "Invalid sequence block (header)\n"); return NULL; } current_id = *(data + index); if (sequence->version >= 3) current_size = *((const uint32_t *)(data + index + 1)); else current_size = *((const uint16_t *)(data + index + 1)); index += header_size; if (index + current_size > total) { fprintf(stderr, "Invalid sequence block\n"); return NULL; } if (current_id == panel_id) { *seq_size = current_size; return data + index; } index += current_size; } fprintf(stderr, "Sequence block detected but no valid configuration\n"); return NULL; } static int goto_next_sequence(const uint8_t *data, int index, int total) { uint16_t len; /* Skip Sequence Byte. */ for (index = index + 1; index < total; index += len) { uint8_t operation_byte = *(data + index); index++; switch (operation_byte) { case MIPI_SEQ_ELEM_END: return index; case MIPI_SEQ_ELEM_SEND_PKT: if (index + 4 > total) return 0; len = *((const uint16_t *)(data + index + 2)) + 4; break; case MIPI_SEQ_ELEM_DELAY: len = 4; break; case MIPI_SEQ_ELEM_GPIO: len = 2; break; case MIPI_SEQ_ELEM_I2C: if (index + 7 > total) return 0; len = *(data + index + 6) + 7; break; default: fprintf(stderr, "Unknown operation byte\n"); return 0; } } return 0; } static int goto_next_sequence_v3(const uint8_t *data, int index, int total) { int seq_end; uint16_t len; uint32_t size_of_sequence; /* * Could skip sequence based on Size of Sequence alone, but also do some * checking on the structure. */ if (total < 5) { fprintf(stderr, "Too small sequence size\n"); return 0; } /* Skip Sequence Byte. */ index++; /* * Size of Sequence. Excludes the Sequence Byte and the size itself, * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END * byte. */ size_of_sequence = *((const uint32_t *)(data + index)); index += 4; seq_end = index + size_of_sequence; if (seq_end > total) { fprintf(stderr, "Invalid sequence size\n"); return 0; } for (; index < total; index += len) { uint8_t operation_byte = *(data + index); index++; if (operation_byte == MIPI_SEQ_ELEM_END) { if (index != seq_end) { fprintf(stderr, "Invalid element structure\n"); return 0; } return index; } len = *(data + index); index++; /* * FIXME: Would be nice to check elements like for v1/v2 in * goto_next_sequence() above. */ switch (operation_byte) { case MIPI_SEQ_ELEM_SEND_PKT: case MIPI_SEQ_ELEM_DELAY: case MIPI_SEQ_ELEM_GPIO: case MIPI_SEQ_ELEM_I2C: case MIPI_SEQ_ELEM_SPI: case MIPI_SEQ_ELEM_PMIC: break; default: fprintf(stderr, "Unknown operation byte %u\n", operation_byte); break; } } return 0; } static void dump_mipi_sequence(struct context *context, const struct bdb_block *block) { const struct bdb_mipi_sequence *sequence = block->data; const uint8_t *data; uint32_t seq_size; int index = 0, i; const uint8_t *sequence_ptrs[MIPI_SEQ_MAX] = {}; /* Check if we have sequence block as well */ if (!sequence) { printf("No MIPI Sequence found\n"); return; } printf("\tSequence block version v%u\n", sequence->version); /* Fail gracefully for forward incompatible sequence block. */ if (sequence->version >= 4) { fprintf(stderr, "Unable to parse MIPI Sequence Block v%u\n", sequence->version); return; } data = find_panel_sequence_block(sequence, context->panel_type, block->size, &seq_size); if (!data) return; /* Parse the sequences. Corresponds to VBT parsing in the kernel. */ for (;;) { uint8_t seq_id = *(data + index); if (seq_id == MIPI_SEQ_END) break; if (seq_id >= MIPI_SEQ_MAX) { fprintf(stderr, "Unknown sequence %u\n", seq_id); return; } sequence_ptrs[seq_id] = data + index; if (sequence->version >= 3) index = goto_next_sequence_v3(data, index, seq_size); else index = goto_next_sequence(data, index, seq_size); if (!index) { fprintf(stderr, "Invalid sequence %u\n", seq_id); return; } } /* Dump the sequences. Corresponds to sequence execution in kernel. */ for (i = 0; i < ARRAY_SIZE(sequence_ptrs); i++) if (sequence_ptrs[i]) dump_sequence(sequence_ptrs[i], sequence->version); } /* get panel type from lvds options block, or -1 if block not found */ static int get_panel_type(struct context *context) { struct bdb_block *block; const struct bdb_lvds_options *options; int panel_type; block = find_section(context, BDB_LVDS_OPTIONS); if (!block) return -1; options = block->data; panel_type = options->panel_type; free(block); return panel_type; } static int get_device_id(unsigned char *bios, int size) { int device; int offset = (bios[0x19] << 8) + bios[0x18]; if (offset + 7 >= size) return -1; if (bios[offset] != 'P' || bios[offset+1] != 'C' || bios[offset+2] != 'I' || bios[offset+3] != 'R') return -1; device = (bios[offset+7] << 8) + bios[offset+6]; return device; } struct dumper { uint8_t id; const char *name; void (*dump)(struct context *context, const struct bdb_block *block); }; struct dumper dumpers[] = { { .id = BDB_GENERAL_FEATURES, .name = "General features block", .dump = dump_general_features, }, { .id = BDB_GENERAL_DEFINITIONS, .name = "General definitions block", .dump = dump_general_definitions, }, { .id = BDB_CHILD_DEVICE_TABLE, .name = "Legacy child devices block", .dump = dump_legacy_child_devices, }, { .id = BDB_LVDS_OPTIONS, .name = "LVDS options block", .dump = dump_lvds_options, }, { .id = BDB_LVDS_LFP_DATA_PTRS, .name = "LVDS timing pointer data", .dump = dump_lvds_ptr_data, }, { .id = BDB_LVDS_LFP_DATA, .name = "LVDS panel data block", .dump = dump_lvds_data, }, { .id = BDB_LVDS_BACKLIGHT, .name = "Backlight info block", .dump = dump_backlight_info, }, { .id = BDB_SDVO_LVDS_OPTIONS, .name = "SDVO LVDS options block", .dump = dump_sdvo_lvds_options, }, { .id = BDB_SDVO_PANEL_DTDS, .name = "SDVO panel dtds", .dump = dump_sdvo_panel_dtds, }, { .id = BDB_DRIVER_FEATURES, .name = "Driver feature data block", .dump = dump_driver_feature, }, { .id = BDB_EDP, .name = "eDP block", .dump = dump_edp, }, { .id = BDB_PSR, .name = "PSR block", .dump = dump_psr, }, { .id = BDB_MIPI_CONFIG, .name = "MIPI configuration block", .dump = dump_mipi_config, }, { .id = BDB_MIPI_SEQUENCE, .name = "MIPI sequence block", .dump = dump_mipi_sequence, }, }; static void hex_dump(const void *data, uint32_t size) { int i; const uint8_t *p = data; for (i = 0; i < size; i++) { if (i % 16 == 0) printf("\t%04x: ", i); printf("%02x", p[i]); if (i % 16 == 15) { if (i + 1 < size) printf("\n"); } else if (i % 8 == 7) { printf(" "); } else { printf(" "); } } printf("\n\n"); } static void hex_dump_block(const struct bdb_block *block) { hex_dump(block->data, block->size); } static bool dump_section(struct context *context, int section_id) { struct dumper *dumper = NULL; struct bdb_block *block; int i; block = find_section(context, section_id); if (!block) return false; for (i = 0; i < ARRAY_SIZE(dumpers); i++) { if (block->id == dumpers[i].id) { dumper = &dumpers[i]; break; } } if (dumper && dumper->name) printf("BDB block %d - %s:\n", block->id, dumper->name); else printf("BDB block %d - Unknown, no decoding available:\n", block->id); if (context->hexdump) hex_dump_block(block); if (dumper && dumper->dump) dumper->dump(context, block); printf("\n"); free(block); return true; } /* print a description of the VBT of the form - */ static void print_description(struct context *context) { const struct vbt_header *vbt = context->vbt; const struct bdb_header *bdb = context->bdb; char *desc = strndup((char *)vbt->signature, sizeof(vbt->signature)); char *p; for (p = desc + strlen(desc) - 1; p >= desc && isspace(*p); p--) *p = '\0'; for (p = desc; *p; p++) { if (!isalnum(*p)) *p = '-'; else *p = tolower(*p); } p = desc; if (strncmp(p, "-vbt-", 5) == 0) p += 5; printf("%d-%s\n", bdb->version, p); free (desc); } static void dump_headers(struct context *context) { const struct vbt_header *vbt = context->vbt; const struct bdb_header *bdb = context->bdb; int i, j = 0; printf("VBT header:\n"); if (context->hexdump) hex_dump(vbt, vbt->header_size); printf("\tVBT signature:\t\t\"%.*s\"\n", (int)sizeof(vbt->signature), vbt->signature); printf("\tVBT version:\t\t0x%04x (%d.%d)\n", vbt->version, vbt->version / 100, vbt->version % 100); printf("\tVBT header size:\t0x%04x (%u)\n", vbt->header_size, vbt->header_size); printf("\tVBT size:\t\t0x%04x (%u)\n", vbt->vbt_size, vbt->vbt_size); printf("\tVBT checksum:\t\t0x%02x\n", vbt->vbt_checksum); printf("\tBDB offset:\t\t0x%08x (%u)\n", vbt->bdb_offset, vbt->bdb_offset); printf("\n"); printf("BDB header:\n"); if (context->hexdump) hex_dump(bdb, bdb->header_size); printf("\tBDB signature:\t\t\"%.*s\"\n", (int)sizeof(bdb->signature), bdb->signature); printf("\tBDB version:\t\t%d\n", bdb->version); printf("\tBDB header size:\t0x%04x (%u)\n", bdb->header_size, bdb->header_size); printf("\tBDB size:\t\t0x%04x (%u)\n", bdb->bdb_size, bdb->bdb_size); printf("\n"); printf("BDB blocks present:"); for (i = 0; i < 256; i++) { struct bdb_block *block; block = find_section(context, i); if (!block) continue; if (j++ % 16) printf(" %3d", i); else printf("\n\t%3d", i); free(block); } printf("\n\n"); } enum opt { OPT_UNKNOWN = '?', OPT_END = -1, OPT_FILE, OPT_DEVID, OPT_PANEL_TYPE, OPT_ALL_PANELS, OPT_HEXDUMP, OPT_BLOCK, OPT_USAGE, OPT_HEADER, OPT_DESCRIBE, }; static void usage(const char *toolname) { fprintf(stderr, "usage: %s", toolname); fprintf(stderr, " --file=" " [--devid=]" " [--panel-type=]" " [--all-panels]" " [--hexdump]" " [--block=]" " [--header]" " [--describe]" " [--help]\n"); } int main(int argc, char **argv) { uint8_t *VBIOS; int index; enum opt opt; int fd; struct vbt_header *vbt = NULL; int vbt_off, bdb_off, i; const char *filename = NULL; const char *toolname = argv[0]; struct stat finfo; int size; struct context context = { .panel_type = -1, }; char *endp; int block_number = -1; bool header_only = false, describe = false; static struct option options[] = { { "file", required_argument, NULL, OPT_FILE }, { "devid", required_argument, NULL, OPT_DEVID }, { "panel-type", required_argument, NULL, OPT_PANEL_TYPE }, { "all-panels", no_argument, NULL, OPT_ALL_PANELS }, { "hexdump", no_argument, NULL, OPT_HEXDUMP }, { "block", required_argument, NULL, OPT_BLOCK }, { "header", no_argument, NULL, OPT_HEADER }, { "describe", no_argument, NULL, OPT_DESCRIBE }, { "help", no_argument, NULL, OPT_USAGE }, { 0 } }; for (opt = 0; opt != OPT_END; ) { opt = getopt_long(argc, argv, "", options, &index); switch (opt) { case OPT_FILE: filename = optarg; break; case OPT_DEVID: context.devid = strtoul(optarg, &endp, 16); if (!context.devid || *endp) { fprintf(stderr, "invalid devid '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_PANEL_TYPE: context.panel_type = strtoul(optarg, &endp, 0); if (*endp || context.panel_type > 15) { fprintf(stderr, "invalid panel type '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_ALL_PANELS: context.dump_all_panel_types = true; break; case OPT_HEXDUMP: context.hexdump = true; break; case OPT_BLOCK: block_number = strtoul(optarg, &endp, 0); if (*endp) { fprintf(stderr, "invalid block number '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_HEADER: header_only = true; break; case OPT_DESCRIBE: describe = true; break; case OPT_END: break; case OPT_USAGE: /* fall-through */ case OPT_UNKNOWN: usage(toolname); return EXIT_FAILURE; } } argc -= optind; argv += optind; if (!filename) { if (argc == 1) { /* for backwards compatibility */ filename = argv[0]; } else { usage(toolname); return EXIT_FAILURE; } } fd = open(filename, O_RDONLY); if (fd == -1) { fprintf(stderr, "Couldn't open \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } if (stat(filename, &finfo)) { fprintf(stderr, "Failed to stat \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } size = finfo.st_size; if (size == 0) { int len = 0, ret; size = 8192; VBIOS = malloc (size); while ((ret = read(fd, VBIOS + len, size - len))) { if (ret < 0) { fprintf(stderr, "Failed to read \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } len += ret; if (len == size) { size *= 2; VBIOS = realloc(VBIOS, size); } } } else { VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (VBIOS == MAP_FAILED) { fprintf(stderr, "Failed to map \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } } /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (!memcmp(VBIOS + i, "$VBT", 4)) { vbt_off = i; vbt = (struct vbt_header *)(VBIOS + i); break; } } if (!vbt) { fprintf(stderr, "VBT signature missing\n"); return EXIT_FAILURE; } bdb_off = vbt_off + vbt->bdb_offset; if (bdb_off >= size - sizeof(struct bdb_header)) { fprintf(stderr, "Invalid VBT found, BDB points beyond end of data block\n"); return EXIT_FAILURE; } context.vbt = vbt; context.bdb = (const struct bdb_header *)(VBIOS + bdb_off); context.size = size; if (!context.devid) { const char *devid_string = getenv("DEVICE"); if (devid_string) context.devid = strtoul(devid_string, NULL, 16); } if (!context.devid) context.devid = get_device_id(VBIOS, size); if (!context.devid) fprintf(stderr, "Warning: could not find PCI device ID!\n"); if (context.panel_type == -1) context.panel_type = get_panel_type(&context); if (context.panel_type == -1) { fprintf(stderr, "Warning: panel type not set, using 0\n"); context.panel_type = 0; } if (describe) { print_description(&context); } else if (header_only) { dump_headers(&context); } else if (block_number != -1) { /* dump specific section only */ if (!dump_section(&context, block_number)) { fprintf(stderr, "Block %d not found\n", block_number); return EXIT_FAILURE; } } else { dump_headers(&context); /* dump all sections */ for (i = 0; i < 256; i++) dump_section(&context, i); } return 0; }