/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom_dsp/bitwriter.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/recenter.h" #include "aom_ports/bitops.h" #include "av1/common/common.h" // Codes a symbol v in [-2^mag_bits, 2^mag_bits]. // mag_bits is number of bits for magnitude. The alphabet is of size // 2 * 2^mag_bits + 1, symmetric around 0, where one bit is used to // indicate 0 or non-zero, mag_bits bits are used to indicate magnitide // and 1 more bit for the sign if non-zero. void aom_write_primitive_symmetric(aom_writer *w, int16_t v, unsigned int abs_bits) { if (v == 0) { aom_write_bit(w, 0); } else { const int x = abs(v); const int s = v < 0; aom_write_bit(w, 1); aom_write_bit(w, s); aom_write_literal(w, x - 1, abs_bits); } } int aom_count_primitive_symmetric(int16_t v, unsigned int abs_bits) { return (v == 0 ? 1 : abs_bits + 2); } // Encodes a value v in [0, n-1] quasi-uniformly void aom_write_primitive_quniform(aom_writer *w, uint16_t n, uint16_t v) { if (n <= 1) return; const int l = get_msb(n) + 1; const int m = (1 << l) - n; if (v < m) { aom_write_literal(w, v, l - 1); } else { aom_write_literal(w, m + ((v - m) >> 1), l - 1); aom_write_bit(w, (v - m) & 1); } } int aom_count_primitive_quniform(uint16_t n, uint16_t v) { if (n <= 1) return 0; const int l = get_msb(n) + 1; const int m = (1 << l) - n; return v < m ? l - 1 : l; } // Finite subexponential code that codes a symbol v in [0, n-1] with parameter k void aom_write_primitive_subexpfin(aom_writer *w, uint16_t n, uint16_t k, uint16_t v) { int i = 0; int mk = 0; while (1) { int b = (i ? k + i - 1 : k); int a = (1 << b); if (n <= mk + 3 * a) { aom_write_primitive_quniform(w, n - mk, v - mk); break; } else { int t = (v >= mk + a); aom_write_bit(w, t); if (t) { i = i + 1; mk += a; } else { aom_write_literal(w, v - mk, b); break; } } } } int aom_count_primitive_subexpfin(uint16_t n, uint16_t k, uint16_t v) { int count = 0; int i = 0; int mk = 0; while (1) { int b = (i ? k + i - 1 : k); int a = (1 << b); if (n <= mk + 3 * a) { count += aom_count_primitive_quniform(n - mk, v - mk); break; } else { int t = (v >= mk + a); count++; if (t) { i = i + 1; mk += a; } else { count += b; break; } } } return count; } // Finite subexponential code that codes a symbol v in [0, n-1] with parameter k // based on a reference ref also in [0, n-1]. // Recenters symbol around r first and then uses a finite subexponential code. void aom_write_primitive_refsubexpfin(aom_writer *w, uint16_t n, uint16_t k, uint16_t ref, uint16_t v) { aom_write_primitive_subexpfin(w, n, k, recenter_finite_nonneg(n, ref, v)); } void aom_write_signed_primitive_refsubexpfin(aom_writer *w, uint16_t n, uint16_t k, int16_t ref, int16_t v) { ref += n - 1; v += n - 1; const uint16_t scaled_n = (n << 1) - 1; aom_write_primitive_refsubexpfin(w, scaled_n, k, ref, v); } int aom_count_primitive_refsubexpfin(uint16_t n, uint16_t k, uint16_t ref, uint16_t v) { return aom_count_primitive_subexpfin(n, k, recenter_finite_nonneg(n, ref, v)); } int aom_count_signed_primitive_refsubexpfin(uint16_t n, uint16_t k, int16_t ref, int16_t v) { ref += n - 1; v += n - 1; const uint16_t scaled_n = (n << 1) - 1; return aom_count_primitive_refsubexpfin(scaled_n, k, ref, v); }