/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom_ports/system_state.h" #include "av1/common/enums.h" #include "av1/common/reconinter.h" #if !CONFIG_REALTIME_ONLY #include "av1/encoder/cnn.h" #include "av1/encoder/partition_model_weights.h" #include "av1/encoder/partition_cnn_weights.h" #endif #include "av1/encoder/encoder.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/partition_strategy.h" #include "av1/encoder/rdopt.h" #if !CONFIG_REALTIME_ONLY static AOM_INLINE void simple_motion_search_prune_part_features( AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, int features_to_get); #endif static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) { switch (bsize) { case BLOCK_128X128: return 0; case BLOCK_64X64: return 1; case BLOCK_32X32: return 2; case BLOCK_16X16: return 3; case BLOCK_8X8: return 4; default: assert(0 && "Invalid bsize"); return -1; } } #if !CONFIG_REALTIME_ONLY // TODO(chiyotsai@google.com): This is very much a work in progress. We still // need to the following: // -- add support for hdres // -- add support for pruning rectangular partitions // -- use reconstructed pixels instead of source pixels for padding // -- use chroma pixels in addition to luma pixels void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x, int bsize, int quad_tree_idx, int *partition_none_allowed, int *partition_horz_allowed, int *partition_vert_allowed, int *do_rectangular_split, int *do_square_split) { assert(cm->seq_params.sb_size >= BLOCK_64X64 && "Invalid sb_size for intra_cnn!"); const int bsize_idx = convert_bsize_to_idx(bsize); if (bsize == BLOCK_128X128) { return; } // Precompute the CNN part and cache the result in MACROBLOCK if (bsize == BLOCK_64X64 && !x->cnn_output_valid) { aom_clear_system_state(); const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config; // Prepare the output const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL }; const int num_outputs = 4; const int output_dims[4] = { 1, 2, 4, 8 }; const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH, CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH }; float *output_buffer[CNN_TOT_OUT_CH]; float **cur_output_buf = output_buffer; float *curr_buf_ptr = x->cnn_buffer; for (int output_idx = 0; output_idx < num_outputs; output_idx++) { const int num_chs = out_chs[output_idx]; const int ch_size = output_dims[output_idx] * output_dims[output_idx]; for (int ch = 0; ch < num_chs; ch++) { cur_output_buf[ch] = curr_buf_ptr; curr_buf_ptr += ch_size; } cur_output_buf += num_chs; } CNN_MULTI_OUT output = { .num_outputs = 4, .output_channels = out_chs, .output_strides = output_dims, .output_buffer = output_buffer, }; // Prepare the input const MACROBLOCKD *xd = &x->e_mbd; const int bit_depth = xd->bd; const int dc_q = av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8); x->log_q = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); x->log_q = (x->log_q - av1_intra_mode_cnn_partition_mean[0]) / av1_intra_mode_cnn_partition_std[0]; const int width = 65, height = 65, stride = x->plane[AOM_PLANE_Y].src.stride; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *image[1] = { CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1 }; av1_cnn_predict_img_multi_out_highbd(image, width, height, stride, cnn_config, &thread_data, bit_depth, &output); } else { uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 }; av1_cnn_predict_img_multi_out(image, width, height, stride, cnn_config, &thread_data, &output); } x->cnn_output_valid = 1; } if (!x->cnn_output_valid) { return; } const NN_CONFIG *dnn_configs[5] = { NULL, &av1_intra_mode_cnn_partition_branch_0_dnn_config, &av1_intra_mode_cnn_partition_branch_1_dnn_config, &av1_intra_mode_cnn_partition_branch_2_dnn_config, &av1_intra_mode_cnn_partition_branch_3_dnn_config, }; const NN_CONFIG *dnn_config = dnn_configs[bsize_idx]; aom_clear_system_state(); float dnn_features[100]; float logits[4] = { 0.0f }; const float *branch_0 = x->cnn_buffer; const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE; const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE; const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE; if (bsize == BLOCK_64X64) { int f_idx = 0; for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_0[ch_idx]; } const int spa_stride = 2 * 2; for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) { for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride]; } } dnn_features[f_idx++] = x->log_q; } else if (bsize == BLOCK_32X32) { int f_idx = 0; for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) { dnn_features[f_idx++] = branch_0[idx]; } const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1]; const int spa_stride = 2 * 2; for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride]; } dnn_features[f_idx++] = x->log_q; } else if (bsize == BLOCK_16X16) { int f_idx = 0; const int prev_quad_idx = (quad_tree_idx - 1) / 4; const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1]; const int prev_spa_stride = 2 * 2; for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride]; } const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5]; const int spa_stride = 4 * 4; for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride]; } dnn_features[f_idx++] = x->log_q; } else if (bsize == BLOCK_8X8) { int f_idx = 0; const int prev_quad_idx = (quad_tree_idx - 1) / 4; const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5]; const int prev_spa_stride = 4 * 4; for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride]; } const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21]; const int spa_stride = 8 * 8; for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) { dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride]; } dnn_features[f_idx++] = x->log_q; } else { assert(0 && "Invalid bsize in intra_cnn partition"); } // Make decision av1_nn_predict(dnn_features, dnn_config, 1, logits); aom_clear_system_state(); const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; float split_only_thresh = 100.0f, no_split_thresh = -100.0f; if (is_720p_or_larger) { split_only_thresh = av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx]; no_split_thresh = av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx]; } else if (is_480p_or_larger) { split_only_thresh = av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx]; no_split_thresh = av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx]; } else { split_only_thresh = av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx]; no_split_thresh = av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx]; } if (logits[0] > split_only_thresh) { *partition_none_allowed = 0; *partition_horz_allowed = 0; *partition_vert_allowed = 0; *do_rectangular_split = 0; } if (logits[0] < no_split_thresh) { *do_square_split = 0; } } void av1_simple_motion_search_based_split( AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, int *partition_none_allowed, int *partition_horz_allowed, int *partition_vert_allowed, int *do_rectangular_split, int *do_square_split) { aom_clear_system_state(); const AV1_COMMON *const cm = &cpi->common; const int bsize_idx = convert_bsize_to_idx(bsize); const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+ const int res_idx = is_480p_or_larger + is_720p_or_larger; assert(bsize_idx >= 0 && bsize_idx <= 4 && "Invalid bsize in simple_motion_search_based_split"); const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx]; const float *ml_std = av1_simple_motion_search_split_std[bsize_idx]; const NN_CONFIG *nn_config = av1_simple_motion_search_split_nn_config[bsize_idx]; const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg; const float split_only_thresh = av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx]; const float no_split_thresh = av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx]; float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f }; simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col, bsize, features, FEATURE_SMS_SPLIT_MODEL_FLAG); for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) { features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx]; } float score = 0.0f; av1_nn_predict(features, nn_config, 1, &score); aom_clear_system_state(); if (score > split_only_thresh) { *partition_none_allowed = 0; *partition_horz_allowed = 0; *partition_vert_allowed = 0; *do_rectangular_split = 0; } if (cpi->sf.part_sf.simple_motion_search_split >= 2 && score < no_split_thresh) { *do_square_split = 0; } } // Given a list of ref frames in refs, performs simple_motion_search on each of // the refs and returns the ref with the smallest sse. Returns -1 if none of the // ref in the list is available. Also stores the best sse and var in best_sse, // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in // pc_tree. If save_mv is 1, update mv_ref_fulls under pc_tree and the // subtrees. static int simple_motion_search_get_best_ref( AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs, int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse, unsigned int *best_var) { const AV1_COMMON *const cm = &cpi->common; int best_ref = -1; if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) { // If the whole block is outside of the image, set the var and sse to 0. *best_var = 0; *best_sse = 0; return best_ref; } // Otherwise do loop through the reference frames and find the one with the // minimum SSE const MACROBLOCKD *xd = &x->e_mbd; const int num_planes = 1; *best_sse = INT_MAX; for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) { const int ref = refs[ref_idx]; if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) { const FULLPEL_MV *start_mvs = pc_tree->start_mvs; unsigned int curr_sse = 0, curr_var = 0; int_mv best_mv = av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref, start_mvs[ref], num_planes, use_subpixel); curr_var = cpi->fn_ptr[bsize].vf( x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, xd->plane[0].dst.stride, &curr_sse); if (curr_sse < *best_sse) { *best_sse = curr_sse; *best_var = curr_var; best_ref = ref; } if (save_mv) { pc_tree->start_mvs[ref].row = best_mv.as_mv.row / 8; pc_tree->start_mvs[ref].col = best_mv.as_mv.col / 8; if (bsize >= BLOCK_8X8) { for (int r_idx = 0; r_idx < 4; r_idx++) { // Propagate the new motion vectors to a lower level PC_TREE *sub_tree = pc_tree->split[r_idx]; sub_tree->start_mvs[ref] = pc_tree->start_mvs[ref]; } } } } } return best_ref; } // Collects features using simple_motion_search and store them in features. The // features are also cached in PC_TREE. By default, the features collected are // the sse and var from the subblocks flagged by features_to_get. Furthermore, // if features is not NULL, then 7 more features are appended to the end of // features: // - log(1.0 + dc_q ** 2) // - whether an above macroblock exists // - width of above macroblock // - height of above macroblock // - whether a left marcoblock exists // - width of left macroblock // - height of left macroblock static AOM_INLINE void simple_motion_search_prune_part_features( AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, int features_to_get) { const int w_mi = mi_size_wide[bsize]; const int h_mi = mi_size_high[bsize]; assert(mi_size_wide[bsize] == mi_size_high[bsize]); assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] || cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]); // Setting up motion search const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME }; const int num_refs = 1; const int use_subpixel = 1; // Doing whole block first to update the mv if (!pc_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) { simple_motion_search_get_best_ref(cpi, x, pc_tree, mi_row, mi_col, bsize, ref_list, num_refs, use_subpixel, 1, &pc_tree->sms_none_feat[0], &pc_tree->sms_none_feat[1]); pc_tree->sms_none_valid = 1; } // Split subblocks if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int r_idx = 0; r_idx < 4; r_idx++) { const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2; const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2; PC_TREE *sub_tree = pc_tree->split[r_idx]; if (!sub_tree->sms_none_valid) { simple_motion_search_get_best_ref( cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0], &sub_tree->sms_none_feat[1]); sub_tree->sms_none_valid = 1; } } } // Rectangular subblocks if (!pc_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) { // Horz subblock BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); for (int r_idx = 0; r_idx < 2; r_idx++) { const int sub_mi_col = mi_col + 0; const int sub_mi_row = mi_row + r_idx * h_mi / 2; simple_motion_search_get_best_ref( cpi, x, pc_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, use_subpixel, 0, &pc_tree->sms_rect_feat[2 * r_idx], &pc_tree->sms_rect_feat[2 * r_idx + 1]); } // Vert subblock subsize = get_partition_subsize(bsize, PARTITION_VERT); for (int r_idx = 0; r_idx < 2; r_idx++) { const int sub_mi_col = mi_col + r_idx * w_mi / 2; const int sub_mi_row = mi_row + 0; simple_motion_search_get_best_ref( cpi, x, pc_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, use_subpixel, 0, &pc_tree->sms_rect_feat[4 + 2 * r_idx], &pc_tree->sms_rect_feat[4 + 2 * r_idx + 1]); } pc_tree->sms_rect_valid = 1; } if (!features) return; aom_clear_system_state(); int f_idx = 0; if (features_to_get & FEATURE_SMS_NONE_FLAG) { for (int sub_idx = 0; sub_idx < 2; sub_idx++) { features[f_idx++] = logf(1.0f + pc_tree->sms_none_feat[sub_idx]); } } if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { for (int sub_idx = 0; sub_idx < 4; sub_idx++) { PC_TREE *sub_tree = pc_tree->split[sub_idx]; features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]); features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]); } } if (features_to_get & FEATURE_SMS_RECT_FLAG) { for (int sub_idx = 0; sub_idx < 8; sub_idx++) { features[f_idx++] = logf(1.0f + pc_tree->sms_rect_feat[sub_idx]); } } const MACROBLOCKD *xd = &x->e_mbd; set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize); // Q_INDEX const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); features[f_idx++] = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); // Neighbor stuff const int has_above = !!xd->above_mbmi; const int has_left = !!xd->left_mbmi; const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->sb_type : bsize; const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->sb_type : bsize; features[f_idx++] = (float)has_above; features[f_idx++] = (float)mi_size_wide_log2[above_bsize]; features[f_idx++] = (float)mi_size_high_log2[above_bsize]; features[f_idx++] = (float)has_left; features[f_idx++] = (float)mi_size_wide_log2[left_bsize]; features[f_idx++] = (float)mi_size_high_log2[left_bsize]; } void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, int *partition_horz_allowed, int *partition_vert_allowed, int *prune_horz, int *prune_vert) { aom_clear_system_state(); const AV1_COMMON *const cm = &cpi->common; const int bsize_idx = convert_bsize_to_idx(bsize); const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+ const int res_idx = is_480p_or_larger + is_720p_or_larger; // Get model parameters const NN_CONFIG *nn_config = av1_simple_motion_search_prune_rect_nn_config[bsize_idx]; const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx], *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx]; const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg; const float prune_thresh = av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx]; // If there is no valid threshold, return immediately. if (!nn_config || prune_thresh == 0.0f) { return; } // Get features float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f }; simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col, bsize, features, FEATURE_SMS_PRUNE_PART_FLAG); for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) { features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; } // Get probabilities float scores[EXT_PARTITION_TYPES] = { 0.0f }, probs[EXT_PARTITION_TYPES] = { 0.0f }; const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8) ? PARTITION_TYPES : EXT_PARTITION_TYPES; av1_nn_predict(features, nn_config, 1, scores); aom_clear_system_state(); av1_nn_softmax(scores, probs, num_classes); // Determine if we should prune rectangular partitions. if (cpi->sf.part_sf.simple_motion_search_prune_rect && !frame_is_intra_only(cm) && (*partition_horz_allowed || *partition_vert_allowed) && bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) { *prune_horz = probs[PARTITION_HORZ] <= prune_thresh; *prune_vert = probs[PARTITION_VERT] <= prune_thresh; } } // Early terminates PARTITION_NONE using simple_motion_search features and the // rate, distortion, and rdcost of PARTITION_NONE. This is only called when: // - The frame is a show frame // - The frame is not intra only // - The current bsize is > BLOCK_8X8 // - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols void av1_simple_motion_search_early_term_none(AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row, int mi_col, BLOCK_SIZE bsize, const RD_STATS *none_rdc, int *early_terminate) { // TODO(chiyotsai@google.com): There are other features we can extract from // PARTITION_NONE. Play with this later. float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f }; simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col, bsize, features, FEATURE_SMS_PRUNE_PART_FLAG); int f_idx = FEATURE_SIZE_SMS_PRUNE_PART; features[f_idx++] = logf(1.0f + (float)none_rdc->rate); features[f_idx++] = logf(1.0f + (float)none_rdc->dist); features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost); assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE); const float *ml_mean = NULL; const float *ml_std = NULL; const float *ml_model = NULL; if (bsize == BLOCK_128X128) { ml_mean = av1_simple_motion_search_term_none_mean_128; ml_std = av1_simple_motion_search_term_none_std_128; ml_model = av1_simple_motion_search_term_none_model_128; } else if (bsize == BLOCK_64X64) { ml_mean = av1_simple_motion_search_term_none_mean_64; ml_std = av1_simple_motion_search_term_none_std_64; ml_model = av1_simple_motion_search_term_none_model_64; } else if (bsize == BLOCK_32X32) { ml_mean = av1_simple_motion_search_term_none_mean_32; ml_std = av1_simple_motion_search_term_none_std_32; ml_model = av1_simple_motion_search_term_none_model_32; } else if (bsize == BLOCK_16X16) { ml_mean = av1_simple_motion_search_term_none_mean_16; ml_std = av1_simple_motion_search_term_none_std_16; ml_model = av1_simple_motion_search_term_none_model_16; } else { assert(0 && "Unexpected block size in simple_motion_term_none"); } if (ml_model) { float score = 0.0f; for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) { score += ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; } score += ml_model[FEATURE_SIZE_SMS_TERM_NONE]; if (score >= 0.0f) { *early_terminate = 1; } } } void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x, int mi_row, int mi_col, float *features) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; const BLOCK_SIZE sb_size = cm->seq_params.sb_size; assert(sb_size == BLOCK_128X128); int f_idx = 0; const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); aom_clear_system_state(); const float log_q_sq = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb float sum_mv_row_sq = 0; float sum_mv_row = 0; float min_abs_mv_row = FLT_MAX; float max_abs_mv_row = 0; float sum_mv_col_sq = 0; float sum_mv_col = 0; float min_abs_mv_col = FLT_MAX; float max_abs_mv_col = 0; float sum_log_sse_sq = 0; float sum_log_sse = 0; float min_log_sse = FLT_MAX; float max_log_sse = 0; const BLOCK_SIZE mb_size = BLOCK_16X16; const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size]; const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size]; const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size]; const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size]; for (int mb_row = 0; mb_row < mb_rows; mb_row++) for (int mb_col = 0; mb_col < mb_cols; mb_col++) { const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2); const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2); unsigned int sse = 0; unsigned int var = 0; const FULLPEL_MV start_mv = kZeroFullMv; int_mv best_mv = av1_simple_motion_sse_var( cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var); aom_clear_system_state(); const float mv_row = (float)(best_mv.as_mv.row / 8); const float mv_col = (float)(best_mv.as_mv.col / 8); const float log_sse = logf(1.0f + (float)sse); const float abs_mv_row = fabsf(mv_row); const float abs_mv_col = fabsf(mv_col); sum_mv_row_sq += mv_row * mv_row; sum_mv_row += mv_row; sum_mv_col_sq += mv_col * mv_col; sum_mv_col += mv_col; if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row; if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row; if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col; if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col; sum_log_sse_sq += log_sse * log_sse; sum_log_sse += log_sse; if (log_sse < min_log_sse) min_log_sse = log_sse; if (log_sse > max_log_sse) max_log_sse = log_sse; } aom_clear_system_state(); const float avg_mv_row = sum_mv_row / 64.0f; const float var_mv_row = sum_mv_row_sq / 64.0f - avg_mv_row * avg_mv_row; const float avg_mv_col = sum_mv_col / 64.0f; const float var_mv_col = sum_mv_col_sq / 64.0f - avg_mv_col * avg_mv_col; const float avg_log_sse = sum_log_sse / 64.0f; const float var_log_sse = sum_log_sse_sq / 64.0f - avg_log_sse * avg_log_sse; features[f_idx++] = avg_log_sse; features[f_idx++] = avg_mv_col; features[f_idx++] = avg_mv_row; features[f_idx++] = log_q_sq; features[f_idx++] = max_abs_mv_col; features[f_idx++] = max_abs_mv_row; features[f_idx++] = max_log_sse; features[f_idx++] = min_abs_mv_col; features[f_idx++] = min_abs_mv_row; features[f_idx++] = min_log_sse; features[f_idx++] = var_log_sse; features[f_idx++] = var_mv_col; features[f_idx++] = var_mv_row; assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED); } BLOCK_SIZE av1_predict_max_partition(AV1_COMP *const cpi, MACROBLOCK *const x, const float *features) { float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }, probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }; const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config; assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion != NOT_IN_USE); aom_clear_system_state(); av1_nn_predict(features, nn_config, 1, scores); av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED); int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == DIRECT_PRED) { result = 0; float max_prob = probs[0]; for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) { if (probs[i] > max_prob) { max_prob = probs[i]; result = i; } } } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == RELAXED_PRED) { for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; --result) { if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { probs[result] += probs[result + 1]; } if (probs[result] > 0.2) break; } } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == ADAPT_PRED) { const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size; MACROBLOCKD *const xd = &x->e_mbd; // TODO(debargha): x->source_variance is unavailable at this point, // so compute. The redundant recomputation later can be removed. const unsigned int source_variance = is_cur_buf_hbd(xd) ? av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size, xd->bd) : av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size); if (source_variance > 16) { const double thresh = source_variance < 128 ? 0.05 : 0.1; for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; --result) { if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { probs[result] += probs[result + 1]; } if (probs[result] > thresh) break; } } } return (BLOCK_SIZE)((result + 2) * 3); } // Get the minimum partition block width and height(in log scale) under a // PC_TREE. static AOM_INLINE void get_min_bsize(const PC_TREE *pc_tree, int *min_bw, int *min_bh) { if (!pc_tree) return; const BLOCK_SIZE bsize = pc_tree->block_size; if (bsize == BLOCK_4X4) { *min_bw = 0; *min_bh = 0; return; } PARTITION_TYPE part_type = pc_tree->partitioning; if (part_type == PARTITION_INVALID) return; if (part_type == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { get_min_bsize(pc_tree->split[i], min_bw, min_bh); } } else { if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B || part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B) part_type = PARTITION_SPLIT; const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type); if (subsize != BLOCK_INVALID) { *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]); *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]); } } } static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features, int *feature_idx) { const int rd_valid = rd > 0 && rd < INT64_MAX; const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f; features[(*feature_idx)++] = (float)rd_valid; features[(*feature_idx)++] = rd_ratio; } #define FEATURES 31 void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x, PC_TREE *const pc_tree, BLOCK_SIZE bsize, int64_t best_rd, int64_t part_none_rd, int64_t part_split_rd, int64_t *split_block_rd, int mi_row, int mi_col, int *const terminate_partition_search) { if (best_rd <= 0 || best_rd == INT64_MAX || *terminate_partition_search) return; const AV1_COMMON *const cm = &cpi->common; const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; const NN_CONFIG *nn_config = NULL; float thresh = -1e6; switch (bsize) { case BLOCK_128X128: break; case BLOCK_64X64: nn_config = &av1_early_term_after_split_nnconfig_64; thresh = is_480p_or_larger ? -2.0f : -1.2f; break; case BLOCK_32X32: nn_config = &av1_early_term_after_split_nnconfig_32; thresh = is_480p_or_larger ? -2.6f : -2.3f; break; case BLOCK_16X16: nn_config = &av1_early_term_after_split_nnconfig_16; thresh = is_480p_or_larger ? -2.0f : -2.4f; break; case BLOCK_8X8: nn_config = &av1_early_term_after_split_nnconfig_8; thresh = is_480p_or_larger ? -1.0f : -1.4f; break; case BLOCK_4X4: break; default: assert(0 && "Invalid block size in av1_ml_early_term_after_split()."); break; } if (!nn_config) return; // Use more conservative threshold for level 1. if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f; const MACROBLOCKD *const xd = &x->e_mbd; const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); const int bs = block_size_wide[bsize]; int f_idx = 0; float features[FEATURES] = { 0.0f }; aom_clear_system_state(); features[f_idx++] = logf(1.0f + (float)dc_q / 4.0f); features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f); add_rd_feature(part_none_rd, best_rd, features, &f_idx); add_rd_feature(part_split_rd, best_rd, features, &f_idx); for (int i = 0; i < 4; ++i) { add_rd_feature(split_block_rd[i], best_rd, features, &f_idx); int min_bw = MAX_SB_SIZE_LOG2; int min_bh = MAX_SB_SIZE_LOG2; get_min_bsize(pc_tree->split[i], &min_bw, &min_bh); features[f_idx++] = (float)min_bw; features[f_idx++] = (float)min_bh; } simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col, bsize, NULL, FEATURE_SMS_PRUNE_PART_FLAG); features[f_idx++] = logf(1.0f + (float)pc_tree->sms_none_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->split[0]->sms_none_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->split[1]->sms_none_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->split[2]->sms_none_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->split[3]->sms_none_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[1]); features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[3]); features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[5]); features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[7]); assert(f_idx == FEATURES); float score = 0.0f; av1_nn_predict(features, nn_config, 1, &score); // Score is indicator of confidence that we should NOT terminate. if (score < thresh) *terminate_partition_search = 1; } #undef FEATURES void av1_ml_prune_rect_partition(const AV1_COMP *const cpi, const MACROBLOCK *const x, BLOCK_SIZE bsize, int64_t best_rd, int64_t none_rd, int64_t *split_rd, int *const dst_prune_horz, int *const dst_prune_vert) { if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; best_rd = AOMMAX(best_rd, 1); const NN_CONFIG *nn_config = NULL; const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; float cur_thresh = 0.0f; switch (bsize) { case BLOCK_8X8: nn_config = &av1_rect_partition_nnconfig_8; cur_thresh = prob_thresholds[0]; break; case BLOCK_16X16: nn_config = &av1_rect_partition_nnconfig_16; cur_thresh = prob_thresholds[1]; break; case BLOCK_32X32: nn_config = &av1_rect_partition_nnconfig_32; cur_thresh = prob_thresholds[2]; break; case BLOCK_64X64: nn_config = &av1_rect_partition_nnconfig_64; cur_thresh = prob_thresholds[3]; break; case BLOCK_128X128: nn_config = &av1_rect_partition_nnconfig_128; cur_thresh = prob_thresholds[4]; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // 1. Compute input features float features[9]; // RD cost ratios for (int i = 0; i < 5; i++) features[i] = 1.0f; if (none_rd > 0 && none_rd < 1000000000) features[0] = (float)none_rd / (float)best_rd; for (int i = 0; i < 4; i++) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) features[1 + i] = (float)split_rd[i] / (float)best_rd; } // Variance ratios const MACROBLOCKD *const xd = &x->e_mbd; int whole_block_variance; if (is_cur_buf_hbd(xd)) { whole_block_variance = av1_high_get_sby_perpixel_variance( cpi, &x->plane[0].src, bsize, xd->bd); } else { whole_block_variance = av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); } whole_block_variance = AOMMAX(whole_block_variance, 1); int split_variance[4]; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); struct buf_2d buf; buf.stride = x->plane[0].src.stride; const int bw = block_size_wide[bsize]; for (int i = 0; i < 4; ++i) { const int x_idx = (i & 1) * bw / 2; const int y_idx = (i >> 1) * bw / 2; buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; if (is_cur_buf_hbd(xd)) { split_variance[i] = av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd); } else { split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize); } } for (int i = 0; i < 4; i++) features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; // 2. Do the prediction and prune 0-2 partitions based on their probabilities float raw_scores[3] = { 0.0f }; av1_nn_predict(features, nn_config, 1, raw_scores); aom_clear_system_state(); float probs[3] = { 0.0f }; av1_nn_softmax(raw_scores, probs, 3); // probs[0] is the probability of the fact that both rectangular partitions // are worse than current best_rd if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1; if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1; } // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be // considered. void av1_ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx, int64_t best_rd, int64_t horz_rd[2], int64_t vert_rd[2], int64_t split_rd[4], int *const horza_partition_allowed, int *const horzb_partition_allowed, int *const verta_partition_allowed, int *const vertb_partition_allowed) { if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; const NN_CONFIG *nn_config = NULL; switch (bsize) { case BLOCK_8X8: nn_config = NULL; break; case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // Generate features. float features[10]; int feature_index = 0; features[feature_index++] = (float)part_ctx; features[feature_index++] = (float)var_ctx; const int rdcost = (int)AOMMIN(INT_MAX, best_rd); int sub_block_rdcost[8] = { 0 }; int rd_index = 0; for (int i = 0; i < 2; ++i) { if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)horz_rd[i]; ++rd_index; } for (int i = 0; i < 2; ++i) { if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)vert_rd[i]; ++rd_index; } for (int i = 0; i < 4; ++i) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)split_rd[i]; ++rd_index; } for (int i = 0; i < 8; ++i) { // Ratio between the sub-block RD and the whole-block RD. float rd_ratio = 1.0f; if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; features[feature_index++] = rd_ratio; } assert(feature_index == 10); // Calculate scores using the NN model. float score[16] = { 0.0f }; av1_nn_predict(features, nn_config, 1, score); aom_clear_system_state(); int int_score[16]; int max_score = -1000; for (int i = 0; i < 16; ++i) { int_score[i] = (int)(100 * score[i]); max_score = AOMMAX(int_score[i], max_score); } // Make decisions based on the model scores. int thresh = max_score; switch (bsize) { case BLOCK_16X16: thresh -= 150; break; case BLOCK_32X32: thresh -= 100; break; default: break; } *horza_partition_allowed = 0; *horzb_partition_allowed = 0; *verta_partition_allowed = 0; *vertb_partition_allowed = 0; for (int i = 0; i < 16; ++i) { if (int_score[i] >= thresh) { if ((i >> 0) & 1) *horza_partition_allowed = 1; if ((i >> 1) & 1) *horzb_partition_allowed = 1; if ((i >> 2) & 1) *verta_partition_allowed = 1; if ((i >> 3) & 1) *vertb_partition_allowed = 1; } } } #define FEATURES 18 #define LABELS 4 // Use a ML model to predict if horz4 and vert4 should be considered. void av1_ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx, int64_t best_rd, int64_t horz_rd[2], int64_t vert_rd[2], int64_t split_rd[4], int *const partition_horz4_allowed, int *const partition_vert4_allowed, unsigned int pb_source_variance, int mi_row, int mi_col) { if (best_rd >= 1000000000) return; const NN_CONFIG *nn_config = NULL; switch (bsize) { case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config) return; aom_clear_system_state(); // Generate features. float features[FEATURES]; int feature_index = 0; features[feature_index++] = (float)part_ctx; features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); const int rdcost = (int)AOMMIN(INT_MAX, best_rd); int sub_block_rdcost[8] = { 0 }; int rd_index = 0; for (int i = 0; i < 2; ++i) { if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)horz_rd[i]; ++rd_index; } for (int i = 0; i < 2; ++i) { if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)vert_rd[i]; ++rd_index; } for (int i = 0; i < 4; ++i) { if (split_rd[i] > 0 && split_rd[i] < 1000000000) sub_block_rdcost[rd_index] = (int)split_rd[i]; ++rd_index; } for (int i = 0; i < 8; ++i) { // Ratio between the sub-block RD and the whole-block RD. float rd_ratio = 1.0f; if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; features[feature_index++] = rd_ratio; } // Get variance of the 1:4 and 4:1 sub-blocks. unsigned int horz_4_source_var[4] = { 0 }; unsigned int vert_4_source_var[4] = { 0 }; { BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(&cpi->common), bsize); const int src_stride = x->plane[0].src.stride; uint8_t *src = x->plane[0].src.buf; const MACROBLOCKD *const xd = &x->e_mbd; struct buf_2d horz_4_src, vert_4_src; horz_4_src.stride = src_stride; vert_4_src.stride = src_stride; for (int i = 0; i < 4; ++i) { horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride; vert_4_src.buf = src + i * block_size_wide[vert_4_bs]; if (is_cur_buf_hbd(xd)) { horz_4_source_var[i] = av1_high_get_sby_perpixel_variance( cpi, &horz_4_src, horz_4_bs, xd->bd); vert_4_source_var[i] = av1_high_get_sby_perpixel_variance( cpi, &vert_4_src, vert_4_bs, xd->bd); } else { horz_4_source_var[i] = av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs); vert_4_source_var[i] = av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs); } } } const float denom = (float)(pb_source_variance + 1); const float low_b = 0.1f; const float high_b = 10.0f; for (int i = 0; i < 4; ++i) { // Ratio between the 4:1 sub-block variance and the whole-block variance. float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; if (var_ratio < low_b) var_ratio = low_b; if (var_ratio > high_b) var_ratio = high_b; features[feature_index++] = var_ratio; } for (int i = 0; i < 4; ++i) { // Ratio between the 1:4 sub-block RD and the whole-block RD. float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; if (var_ratio < low_b) var_ratio = low_b; if (var_ratio > high_b) var_ratio = high_b; features[feature_index++] = var_ratio; } assert(feature_index == FEATURES); // Calculate scores using the NN model. float score[LABELS] = { 0.0f }; av1_nn_predict(features, nn_config, 1, score); aom_clear_system_state(); int int_score[LABELS]; int max_score = -1000; for (int i = 0; i < LABELS; ++i) { int_score[i] = (int)(100 * score[i]); max_score = AOMMAX(int_score[i], max_score); } // Make decisions based on the model scores. int thresh = max_score; switch (bsize) { case BLOCK_16X16: thresh -= 500; break; case BLOCK_32X32: thresh -= 500; break; case BLOCK_64X64: thresh -= 200; break; default: break; } *partition_horz4_allowed = 0; *partition_vert4_allowed = 0; for (int i = 0; i < LABELS; ++i) { if (int_score[i] >= thresh) { if ((i >> 0) & 1) *partition_horz4_allowed = 1; if ((i >> 1) & 1) *partition_vert4_allowed = 1; } } } #undef FEATURES #undef LABELS #define FEATURES 4 int av1_ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize, const MACROBLOCK *const x, const RD_STATS *const rd_stats, unsigned int pb_source_variance) { const NN_CONFIG *nn_config = NULL; int thresh = 0; switch (bsize) { case BLOCK_8X8: nn_config = &av1_partition_breakout_nnconfig_8; thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0]; break; case BLOCK_16X16: nn_config = &av1_partition_breakout_nnconfig_16; thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1]; break; case BLOCK_32X32: nn_config = &av1_partition_breakout_nnconfig_32; thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2]; break; case BLOCK_64X64: nn_config = &av1_partition_breakout_nnconfig_64; thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3]; break; case BLOCK_128X128: nn_config = &av1_partition_breakout_nnconfig_128; thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4]; break; default: assert(0 && "Unexpected bsize."); } if (!nn_config || thresh < 0) return 0; // Generate feature values. float features[FEATURES]; int feature_index = 0; aom_clear_system_state(); const int num_pels_log2 = num_pels_log2_lookup[bsize]; float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * rate_f; features[feature_index++] = rate_f; const float dist_f = (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); features[feature_index++] = dist_f; features[feature_index++] = (float)pb_source_variance; const int dc_q = (int)x->plane[0].dequant_QTX[0]; features[feature_index++] = (float)(dc_q * dc_q) / 256.0f; assert(feature_index == FEATURES); // Calculate score using the NN model. float score = 0.0f; av1_nn_predict(features, nn_config, 1, &score); aom_clear_system_state(); // Make decision. return (int)(score * 100) >= thresh; } #undef FEATURES #endif // !CONFIG_REALTIME_ONLY