/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "annotator/cached-features.h" #include "utils/base/logging.h" #include "utils/tensor-view.h" namespace libtextclassifier3 { namespace { int CalculateOutputFeaturesSize(const FeatureProcessorOptions* options, int feature_vector_size) { const bool bounds_sensitive_enabled = options->bounds_sensitive_features() && options->bounds_sensitive_features()->enabled(); int num_extracted_tokens = 0; if (bounds_sensitive_enabled) { const FeatureProcessorOptions_::BoundsSensitiveFeatures* config = options->bounds_sensitive_features(); num_extracted_tokens += config->num_tokens_before(); num_extracted_tokens += config->num_tokens_inside_left(); num_extracted_tokens += config->num_tokens_inside_right(); num_extracted_tokens += config->num_tokens_after(); if (config->include_inside_bag()) { ++num_extracted_tokens; } } else { num_extracted_tokens = 2 * options->context_size() + 1; } int output_features_size = num_extracted_tokens * feature_vector_size; if (bounds_sensitive_enabled && options->bounds_sensitive_features()->include_inside_length()) { ++output_features_size; } return output_features_size; } } // namespace std::unique_ptr CachedFeatures::Create( const TokenSpan& extraction_span, std::unique_ptr> features, std::unique_ptr> padding_features, const FeatureProcessorOptions* options, int feature_vector_size) { const int min_feature_version = options->bounds_sensitive_features() && options->bounds_sensitive_features()->enabled() ? 2 : 1; if (options->feature_version() < min_feature_version) { TC3_LOG(ERROR) << "Unsupported feature version."; return nullptr; } std::unique_ptr cached_features(new CachedFeatures()); cached_features->extraction_span_ = extraction_span; cached_features->features_ = std::move(features); cached_features->padding_features_ = std::move(padding_features); cached_features->options_ = options; cached_features->output_features_size_ = CalculateOutputFeaturesSize(options, feature_vector_size); return cached_features; } void CachedFeatures::AppendClickContextFeaturesForClick( int click_pos, std::vector* output_features) const { click_pos -= extraction_span_.first; AppendFeaturesInternal( /*intended_span=*/TokenSpan(click_pos).Expand(options_->context_size(), options_->context_size()), /*read_mask_span=*/{0, extraction_span_.Size()}, output_features); } void CachedFeatures::AppendBoundsSensitiveFeaturesForSpan( TokenSpan selected_span, std::vector* output_features) const { const FeatureProcessorOptions_::BoundsSensitiveFeatures* config = options_->bounds_sensitive_features(); selected_span.first -= extraction_span_.first; selected_span.second -= extraction_span_.first; // Append the features for tokens around the left bound. Masks out tokens // after the right bound, so that if num_tokens_inside_left goes past it, // padding tokens will be used. AppendFeaturesInternal( /*intended_span=*/{selected_span.first - config->num_tokens_before(), selected_span.first + config->num_tokens_inside_left()}, /*read_mask_span=*/{0, selected_span.second}, output_features); // Append the features for tokens around the right bound. Masks out tokens // before the left bound, so that if num_tokens_inside_right goes past it, // padding tokens will be used. AppendFeaturesInternal( /*intended_span=*/{selected_span.second - config->num_tokens_inside_right(), selected_span.second + config->num_tokens_after()}, /*read_mask_span=*/ {selected_span.first, extraction_span_.Size()}, output_features); if (config->include_inside_bag()) { AppendBagFeatures(selected_span, output_features); } if (config->include_inside_length()) { output_features->push_back(static_cast(selected_span.Size())); } } void CachedFeatures::AppendFeaturesInternal( const TokenSpan& intended_span, const TokenSpan& read_mask_span, std::vector* output_features) const { const TokenSpan copy_span = IntersectTokenSpans(intended_span, read_mask_span); for (int i = intended_span.first; i < copy_span.first; ++i) { AppendPaddingFeatures(output_features); } output_features->insert( output_features->end(), features_->begin() + copy_span.first * NumFeaturesPerToken(), features_->begin() + copy_span.second * NumFeaturesPerToken()); for (int i = copy_span.second; i < intended_span.second; ++i) { AppendPaddingFeatures(output_features); } } void CachedFeatures::AppendPaddingFeatures( std::vector* output_features) const { output_features->insert(output_features->end(), padding_features_->begin(), padding_features_->end()); } void CachedFeatures::AppendBagFeatures( const TokenSpan& bag_span, std::vector* output_features) const { const int offset = output_features->size(); output_features->resize(output_features->size() + NumFeaturesPerToken()); for (int i = bag_span.first; i < bag_span.second; ++i) { for (int j = 0; j < NumFeaturesPerToken(); ++j) { (*output_features)[offset + j] += (*features_)[i * NumFeaturesPerToken() + j] / bag_span.Size(); } } } int CachedFeatures::NumFeaturesPerToken() const { return padding_features_->size(); } } // namespace libtextclassifier3