//===--- BranchCloneCheck.cpp - clang-tidy --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "BranchCloneCheck.h" #include "clang/AST/ASTContext.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Analysis/CloneDetection.h" #include "clang/Lex/Lexer.h" #include "llvm/Support/Casting.h" using namespace clang; using namespace clang::ast_matchers; /// Returns true when the statements are Type I clones of each other. static bool areStatementsIdentical(const Stmt *LHS, const Stmt *RHS, const ASTContext &Context) { llvm::FoldingSetNodeID DataLHS, DataRHS; LHS->Profile(DataLHS, Context, false); RHS->Profile(DataRHS, Context, false); return (DataLHS == DataRHS); } namespace { /// A branch in a switch may consist of several statements; while a branch in /// an if/else if/else chain is one statement (which may be a CompoundStmt). using SwitchBranch = llvm::SmallVector; } // anonymous namespace /// Determines if the bodies of two branches in a switch statements are Type I /// clones of each other. This function only examines the body of the branch /// and ignores the `case X:` or `default:` at the start of the branch. static bool areSwitchBranchesIdentical(const SwitchBranch LHS, const SwitchBranch RHS, const ASTContext &Context) { if (LHS.size() != RHS.size()) return false; for (size_t i = 0, Size = LHS.size(); i < Size; i++) { // NOTE: We strip goto labels and annotations in addition to stripping // the `case X:` or `default:` labels, but it is very unlikely that this // would casue false positives in real-world code. if (!areStatementsIdentical(LHS[i]->stripLabelLikeStatements(), RHS[i]->stripLabelLikeStatements(), Context)) { return false; } } return true; } namespace clang { namespace tidy { namespace bugprone { void BranchCloneCheck::registerMatchers(MatchFinder *Finder) { Finder->addMatcher( ifStmt(unless(allOf(isConstexpr(), isInTemplateInstantiation())), stmt().bind("if"), hasParent(stmt(unless(ifStmt(hasElse(equalsBoundNode("if")))))), hasElse(stmt().bind("else"))), this); Finder->addMatcher(switchStmt().bind("switch"), this); Finder->addMatcher(conditionalOperator().bind("condOp"), this); } void BranchCloneCheck::check(const MatchFinder::MatchResult &Result) { const ASTContext &Context = *Result.Context; if (const auto *IS = Result.Nodes.getNodeAs("if")) { const Stmt *Then = IS->getThen(); assert(Then && "An IfStmt must have a `then` branch!"); const Stmt *Else = Result.Nodes.getNodeAs("else"); assert(Else && "We only look for `if` statements with an `else` branch!"); if (!isa(Else)) { // Just a simple if with no `else if` branch. if (areStatementsIdentical(Then->IgnoreContainers(), Else->IgnoreContainers(), Context)) { diag(IS->getBeginLoc(), "if with identical then and else branches"); diag(IS->getElseLoc(), "else branch starts here", DiagnosticIDs::Note); } return; } // This is the complicated case when we start an if/else if/else chain. // To find all the duplicates, we collect all the branches into a vector. llvm::SmallVector Branches; const IfStmt *Cur = IS; while (true) { // Store the `then` branch. Branches.push_back(Cur->getThen()); Else = Cur->getElse(); // The chain ends if there is no `else` branch. if (!Else) break; // Check if there is another `else if`... Cur = dyn_cast(Else); if (!Cur) { // ...this is just a plain `else` branch at the end of the chain. Branches.push_back(Else); break; } } size_t N = Branches.size(); llvm::BitVector KnownAsClone(N); for (size_t i = 0; i + 1 < N; i++) { // We have already seen Branches[i] as a clone of an earlier branch. if (KnownAsClone[i]) continue; int NumCopies = 1; for (size_t j = i + 1; j < N; j++) { if (KnownAsClone[j] || !areStatementsIdentical(Branches[i]->IgnoreContainers(), Branches[j]->IgnoreContainers(), Context)) continue; NumCopies++; KnownAsClone[j] = true; if (NumCopies == 2) { // We report the first occurrence only when we find the second one. diag(Branches[i]->getBeginLoc(), "repeated branch in conditional chain"); SourceLocation End = Lexer::getLocForEndOfToken(Branches[i]->getEndLoc(), 0, *Result.SourceManager, getLangOpts()); if (End.isValid()) { diag(End, "end of the original", DiagnosticIDs::Note); } } diag(Branches[j]->getBeginLoc(), "clone %0 starts here", DiagnosticIDs::Note) << (NumCopies - 1); } } return; } if (const auto *CO = Result.Nodes.getNodeAs("condOp")) { // We do not try to detect chains of ?: operators. if (areStatementsIdentical(CO->getTrueExpr(), CO->getFalseExpr(), Context)) diag(CO->getQuestionLoc(), "conditional operator with identical true and false expressions"); return; } if (const auto *SS = Result.Nodes.getNodeAs("switch")) { const CompoundStmt *Body = dyn_cast_or_null(SS->getBody()); // Code like // switch (x) case 0: case 1: foobar(); // is legal and calls foobar() if and only if x is either 0 or 1; // but we do not try to distinguish branches in such code. if (!Body) return; // We will first collect the branches of the switch statements. For the // sake of simplicity we say that branches are delimited by the SwitchCase // (`case:` or `default:`) children of Body; that is, we ignore `case:` or // `default:` labels embedded inside other statements and we do not follow // the effects of `break` and other manipulation of the control-flow. llvm::SmallVector Branches; for (const Stmt *S : Body->body()) { // If this is a `case` or `default`, we start a new, empty branch. if (isa(S)) Branches.emplace_back(); // There may be code before the first branch (which can be dead code // and can be code reached either through goto or through case labels // that are embedded inside e.g. inner compound statements); we do not // store those statements in branches. if (!Branches.empty()) Branches.back().push_back(S); } auto End = Branches.end(); auto BeginCurrent = Branches.begin(); while (BeginCurrent < End) { auto EndCurrent = BeginCurrent + 1; while (EndCurrent < End && areSwitchBranchesIdentical(*BeginCurrent, *EndCurrent, Context)) { ++EndCurrent; } // At this point the iterator range {BeginCurrent, EndCurrent} contains a // complete family of consecutive identical branches. if (EndCurrent > BeginCurrent + 1) { diag(BeginCurrent->front()->getBeginLoc(), "switch has %0 consecutive identical branches") << static_cast(std::distance(BeginCurrent, EndCurrent)); SourceLocation EndLoc = (EndCurrent - 1)->back()->getEndLoc(); // If the case statement is generated from a macro, it's SourceLocation // may be invalid, resulting in an assertion failure down the line. // While not optimal, try the begin location in this case, it's still // better then nothing. if (EndLoc.isInvalid()) EndLoc = (EndCurrent - 1)->back()->getBeginLoc(); if (EndLoc.isMacroID()) EndLoc = Context.getSourceManager().getExpansionLoc(EndLoc); EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, *Result.SourceManager, getLangOpts()); if (EndLoc.isValid()) { diag(EndLoc, "last of these clones ends here", DiagnosticIDs::Note); } } BeginCurrent = EndCurrent; } return; } llvm_unreachable("No if statement and no switch statement."); } } // namespace bugprone } // namespace tidy } // namespace clang