//===--- RedundantExpressionCheck.cpp - clang-tidy-------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "RedundantExpressionCheck.h" #include "../utils/Matchers.h" #include "../utils/OptionsUtils.h" #include "clang/AST/ASTContext.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/FormatVariadic.h" #include #include #include #include #include using namespace clang::ast_matchers; using namespace clang::tidy::matchers; namespace clang { namespace tidy { namespace misc { namespace { using llvm::APSInt; static constexpr llvm::StringLiteral KnownBannedMacroNames[] = { "EAGAIN", "EWOULDBLOCK", "SIGCLD", "SIGCHLD", }; static bool incrementWithoutOverflow(const APSInt &Value, APSInt &Result) { Result = Value; ++Result; return Value < Result; } static bool areEquivalentNameSpecifier(const NestedNameSpecifier *Left, const NestedNameSpecifier *Right) { llvm::FoldingSetNodeID LeftID, RightID; Left->Profile(LeftID); Right->Profile(RightID); return LeftID == RightID; } static bool areEquivalentExpr(const Expr *Left, const Expr *Right) { if (!Left || !Right) return !Left && !Right; Left = Left->IgnoreParens(); Right = Right->IgnoreParens(); // Compare classes. if (Left->getStmtClass() != Right->getStmtClass()) return false; // Compare children. Expr::const_child_iterator LeftIter = Left->child_begin(); Expr::const_child_iterator RightIter = Right->child_begin(); while (LeftIter != Left->child_end() && RightIter != Right->child_end()) { if (!areEquivalentExpr(dyn_cast_or_null(*LeftIter), dyn_cast_or_null(*RightIter))) return false; ++LeftIter; ++RightIter; } if (LeftIter != Left->child_end() || RightIter != Right->child_end()) return false; // Perform extra checks. switch (Left->getStmtClass()) { default: return false; case Stmt::CharacterLiteralClass: return cast(Left)->getValue() == cast(Right)->getValue(); case Stmt::IntegerLiteralClass: { llvm::APInt LeftLit = cast(Left)->getValue(); llvm::APInt RightLit = cast(Right)->getValue(); return LeftLit.getBitWidth() == RightLit.getBitWidth() && LeftLit == RightLit; } case Stmt::FloatingLiteralClass: return cast(Left)->getValue().bitwiseIsEqual( cast(Right)->getValue()); case Stmt::StringLiteralClass: return cast(Left)->getBytes() == cast(Right)->getBytes(); case Stmt::CXXOperatorCallExprClass: return cast(Left)->getOperator() == cast(Right)->getOperator(); case Stmt::DependentScopeDeclRefExprClass: if (cast(Left)->getDeclName() != cast(Right)->getDeclName()) return false; return areEquivalentNameSpecifier( cast(Left)->getQualifier(), cast(Right)->getQualifier()); case Stmt::DeclRefExprClass: return cast(Left)->getDecl() == cast(Right)->getDecl(); case Stmt::MemberExprClass: return cast(Left)->getMemberDecl() == cast(Right)->getMemberDecl(); case Stmt::CXXFoldExprClass: return cast(Left)->getOperator() == cast(Right)->getOperator(); case Stmt::CXXFunctionalCastExprClass: case Stmt::CStyleCastExprClass: return cast(Left)->getTypeAsWritten() == cast(Right)->getTypeAsWritten(); case Stmt::CallExprClass: case Stmt::ImplicitCastExprClass: case Stmt::ArraySubscriptExprClass: return true; case Stmt::UnaryOperatorClass: if (cast(Left)->isIncrementDecrementOp()) return false; return cast(Left)->getOpcode() == cast(Right)->getOpcode(); case Stmt::BinaryOperatorClass: return cast(Left)->getOpcode() == cast(Right)->getOpcode(); case Stmt::UnaryExprOrTypeTraitExprClass: const auto *LeftUnaryExpr = cast(Left); const auto *RightUnaryExpr = cast(Right); if (LeftUnaryExpr->isArgumentType() && RightUnaryExpr->isArgumentType()) return LeftUnaryExpr->getArgumentType() == RightUnaryExpr->getArgumentType(); else if (!LeftUnaryExpr->isArgumentType() && !RightUnaryExpr->isArgumentType()) return areEquivalentExpr(LeftUnaryExpr->getArgumentExpr(), RightUnaryExpr->getArgumentExpr()); return false; } } // For a given expression 'x', returns whether the ranges covered by the // relational operators are equivalent (i.e. x <= 4 is equivalent to x < 5). static bool areEquivalentRanges(BinaryOperatorKind OpcodeLHS, const APSInt &ValueLHS, BinaryOperatorKind OpcodeRHS, const APSInt &ValueRHS) { assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && "Values must be ordered"); // Handle the case where constants are the same: x <= 4 <==> x <= 4. if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) return OpcodeLHS == OpcodeRHS; // Handle the case where constants are off by one: x <= 4 <==> x < 5. APSInt ValueLHS_plus1; return ((OpcodeLHS == BO_LE && OpcodeRHS == BO_LT) || (OpcodeLHS == BO_GT && OpcodeRHS == BO_GE)) && incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0; } // For a given expression 'x', returns whether the ranges covered by the // relational operators are fully disjoint (i.e. x < 4 and x > 7). static bool areExclusiveRanges(BinaryOperatorKind OpcodeLHS, const APSInt &ValueLHS, BinaryOperatorKind OpcodeRHS, const APSInt &ValueRHS) { assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && "Values must be ordered"); // Handle cases where the constants are the same. if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) { switch (OpcodeLHS) { case BO_EQ: return OpcodeRHS == BO_NE || OpcodeRHS == BO_GT || OpcodeRHS == BO_LT; case BO_NE: return OpcodeRHS == BO_EQ; case BO_LE: return OpcodeRHS == BO_GT; case BO_GE: return OpcodeRHS == BO_LT; case BO_LT: return OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE; case BO_GT: return OpcodeRHS == BO_EQ || OpcodeRHS == BO_LT || OpcodeRHS == BO_LE; default: return false; } } // Handle cases where the constants are different. if ((OpcodeLHS == BO_EQ || OpcodeLHS == BO_LT || OpcodeLHS == BO_LE) && (OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE)) return true; // Handle the case where constants are off by one: x > 5 && x < 6. APSInt ValueLHS_plus1; if (OpcodeLHS == BO_GT && OpcodeRHS == BO_LT && incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0) return true; return false; } // Returns whether the ranges covered by the union of both relational // expressions cover the whole domain (i.e. x < 10 and x > 0). static bool rangesFullyCoverDomain(BinaryOperatorKind OpcodeLHS, const APSInt &ValueLHS, BinaryOperatorKind OpcodeRHS, const APSInt &ValueRHS) { assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && "Values must be ordered"); // Handle cases where the constants are the same: x < 5 || x >= 5. if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) { switch (OpcodeLHS) { case BO_EQ: return OpcodeRHS == BO_NE; case BO_NE: return OpcodeRHS == BO_EQ; case BO_LE: return OpcodeRHS == BO_GT || OpcodeRHS == BO_GE; case BO_LT: return OpcodeRHS == BO_GE; case BO_GE: return OpcodeRHS == BO_LT || OpcodeRHS == BO_LE; case BO_GT: return OpcodeRHS == BO_LE; default: return false; } } // Handle the case where constants are off by one: x <= 4 || x >= 5. APSInt ValueLHS_plus1; if (OpcodeLHS == BO_LE && OpcodeRHS == BO_GE && incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0) return true; // Handle cases where the constants are different: x > 4 || x <= 7. if ((OpcodeLHS == BO_GT || OpcodeLHS == BO_GE) && (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE)) return true; // Handle cases where constants are different but both ops are !=, like: // x != 5 || x != 10 if (OpcodeLHS == BO_NE && OpcodeRHS == BO_NE) return true; return false; } static bool rangeSubsumesRange(BinaryOperatorKind OpcodeLHS, const APSInt &ValueLHS, BinaryOperatorKind OpcodeRHS, const APSInt &ValueRHS) { int Comparison = APSInt::compareValues(ValueLHS, ValueRHS); switch (OpcodeLHS) { case BO_EQ: return OpcodeRHS == BO_EQ && Comparison == 0; case BO_NE: return (OpcodeRHS == BO_NE && Comparison == 0) || (OpcodeRHS == BO_EQ && Comparison != 0) || (OpcodeRHS == BO_LT && Comparison >= 0) || (OpcodeRHS == BO_LE && Comparison > 0) || (OpcodeRHS == BO_GT && Comparison <= 0) || (OpcodeRHS == BO_GE && Comparison < 0); case BO_LT: return ((OpcodeRHS == BO_LT && Comparison >= 0) || (OpcodeRHS == BO_LE && Comparison > 0) || (OpcodeRHS == BO_EQ && Comparison > 0)); case BO_GT: return ((OpcodeRHS == BO_GT && Comparison <= 0) || (OpcodeRHS == BO_GE && Comparison < 0) || (OpcodeRHS == BO_EQ && Comparison < 0)); case BO_LE: return (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE || OpcodeRHS == BO_EQ) && Comparison >= 0; case BO_GE: return (OpcodeRHS == BO_GT || OpcodeRHS == BO_GE || OpcodeRHS == BO_EQ) && Comparison <= 0; default: return false; } } static void transformSubToCanonicalAddExpr(BinaryOperatorKind &Opcode, APSInt &Value) { if (Opcode == BO_Sub) { Opcode = BO_Add; Value = -Value; } } // to use in the template below static OverloadedOperatorKind getOp(const BinaryOperator *Op) { return BinaryOperator::getOverloadedOperator(Op->getOpcode()); } static OverloadedOperatorKind getOp(const CXXOperatorCallExpr *Op) { if (Op->getNumArgs() != 2) return OO_None; return Op->getOperator(); } static std::pair getOperands(const BinaryOperator *Op) { return {Op->getLHS()->IgnoreParenImpCasts(), Op->getRHS()->IgnoreParenImpCasts()}; } static std::pair getOperands(const CXXOperatorCallExpr *Op) { return {Op->getArg(0)->IgnoreParenImpCasts(), Op->getArg(1)->IgnoreParenImpCasts()}; } template static const TExpr *checkOpKind(const Expr *TheExpr, OverloadedOperatorKind OpKind) { const auto *AsTExpr = dyn_cast_or_null(TheExpr); if (AsTExpr && getOp(AsTExpr) == OpKind) return AsTExpr; return nullptr; } // returns true if a subexpression has two directly equivalent operands and // is already handled by operands/parametersAreEquivalent template static bool collectOperands(const Expr *Part, SmallVector &AllOperands, OverloadedOperatorKind OpKind) { if (const auto *BinOp = checkOpKind(Part, OpKind)) { const std::pair Operands = getOperands(BinOp); if (areEquivalentExpr(Operands.first, Operands.second)) return true; return collectOperands(Operands.first, AllOperands, OpKind) || collectOperands(Operands.second, AllOperands, OpKind); } AllOperands.push_back(Part); return false; } template static bool hasSameOperatorParent(const Expr *TheExpr, OverloadedOperatorKind OpKind, ASTContext &Context) { // IgnoreParenImpCasts logic in reverse: skip surrounding uninteresting nodes const DynTypedNodeList Parents = Context.getParents(*TheExpr); for (ast_type_traits::DynTypedNode DynParent : Parents) { if (const auto *Parent = DynParent.get()) { bool Skip = isa(Parent) || isa(Parent) || isa(Parent) || isa(Parent); if (Skip && hasSameOperatorParent(Parent, OpKind, Context)) return true; if (checkOpKind(Parent, OpKind)) return true; } } return false; } template static bool markDuplicateOperands(const TExpr *TheExpr, ast_matchers::internal::BoundNodesTreeBuilder *Builder, ASTContext &Context) { const OverloadedOperatorKind OpKind = getOp(TheExpr); if (OpKind == OO_None) return false; // if there are no nested operators of the same kind, it's handled by // operands/parametersAreEquivalent const std::pair Operands = getOperands(TheExpr); if (!(checkOpKind(Operands.first, OpKind) || checkOpKind(Operands.second, OpKind))) return false; // if parent is the same kind of operator, it's handled by a previous call to // markDuplicateOperands if (hasSameOperatorParent(TheExpr, OpKind, Context)) return false; SmallVector AllOperands; if (collectOperands(Operands.first, AllOperands, OpKind)) return false; if (collectOperands(Operands.second, AllOperands, OpKind)) return false; size_t NumOperands = AllOperands.size(); llvm::SmallBitVector Duplicates(NumOperands); for (size_t I = 0; I < NumOperands; I++) { if (Duplicates[I]) continue; bool FoundDuplicates = false; for (size_t J = I + 1; J < NumOperands; J++) { if (AllOperands[J]->HasSideEffects(Context)) break; if (areEquivalentExpr(AllOperands[I], AllOperands[J])) { FoundDuplicates = true; Duplicates.set(J); Builder->setBinding( SmallString<11>(llvm::formatv("duplicate{0}", J)), ast_type_traits::DynTypedNode::create(*AllOperands[J])); } } if (FoundDuplicates) Builder->setBinding( SmallString<11>(llvm::formatv("duplicate{0}", I)), ast_type_traits::DynTypedNode::create(*AllOperands[I])); } return Duplicates.any(); } AST_MATCHER(Expr, isIntegerConstantExpr) { if (Node.isInstantiationDependent()) return false; return Node.isIntegerConstantExpr(Finder->getASTContext()); } AST_MATCHER(BinaryOperator, operandsAreEquivalent) { return areEquivalentExpr(Node.getLHS(), Node.getRHS()); } AST_MATCHER(BinaryOperator, nestedOperandsAreEquivalent) { return markDuplicateOperands(&Node, Builder, Finder->getASTContext()); } AST_MATCHER(ConditionalOperator, expressionsAreEquivalent) { return areEquivalentExpr(Node.getTrueExpr(), Node.getFalseExpr()); } AST_MATCHER(CallExpr, parametersAreEquivalent) { return Node.getNumArgs() == 2 && areEquivalentExpr(Node.getArg(0), Node.getArg(1)); } AST_MATCHER(CXXOperatorCallExpr, nestedParametersAreEquivalent) { return markDuplicateOperands(&Node, Builder, Finder->getASTContext()); } AST_MATCHER(BinaryOperator, binaryOperatorIsInMacro) { return Node.getOperatorLoc().isMacroID(); } AST_MATCHER(ConditionalOperator, conditionalOperatorIsInMacro) { return Node.getQuestionLoc().isMacroID() || Node.getColonLoc().isMacroID(); } AST_MATCHER(Expr, isMacro) { return Node.getExprLoc().isMacroID(); } AST_MATCHER_P(Expr, expandedByMacro, ArrayRef, Names) { const SourceManager &SM = Finder->getASTContext().getSourceManager(); const LangOptions &LO = Finder->getASTContext().getLangOpts(); SourceLocation Loc = Node.getExprLoc(); while (Loc.isMacroID()) { StringRef MacroName = Lexer::getImmediateMacroName(Loc, SM, LO); if (llvm::is_contained(Names, MacroName)) return true; Loc = SM.getImmediateMacroCallerLoc(Loc); } return false; } // Returns a matcher for integer constant expressions. static ast_matchers::internal::Matcher matchIntegerConstantExpr(StringRef Id) { std::string CstId = (Id + "-const").str(); return expr(isIntegerConstantExpr()).bind(CstId); } // Retrieves the integer expression matched by 'matchIntegerConstantExpr' with // name 'Id' and stores it into 'ConstExpr', the value of the expression is // stored into `Value`. static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result, StringRef Id, APSInt &Value, const Expr *&ConstExpr) { std::string CstId = (Id + "-const").str(); ConstExpr = Result.Nodes.getNodeAs(CstId); if (!ConstExpr) return false; Optional R = ConstExpr->getIntegerConstantExpr(*Result.Context); if (!R) return false; Value = *R; return true; } // Overloaded `retrieveIntegerConstantExpr` for compatibility. static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result, StringRef Id, APSInt &Value) { const Expr *ConstExpr = nullptr; return retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr); } // Returns a matcher for symbolic expressions (matches every expression except // ingeter constant expressions). static ast_matchers::internal::Matcher matchSymbolicExpr(StringRef Id) { std::string SymId = (Id + "-sym").str(); return ignoringParenImpCasts( expr(unless(isIntegerConstantExpr())).bind(SymId)); } // Retrieves the expression matched by 'matchSymbolicExpr' with name 'Id' and // stores it into 'SymExpr'. static bool retrieveSymbolicExpr(const MatchFinder::MatchResult &Result, StringRef Id, const Expr *&SymExpr) { std::string SymId = (Id + "-sym").str(); if (const auto *Node = Result.Nodes.getNodeAs(SymId)) { SymExpr = Node; return true; } return false; } // Match a binary operator between a symbolic expression and an integer constant // expression. static ast_matchers::internal::Matcher matchBinOpIntegerConstantExpr(StringRef Id) { const auto BinOpCstExpr = expr(anyOf(binaryOperator(hasAnyOperatorName("+", "|", "&"), hasOperands(matchSymbolicExpr(Id), matchIntegerConstantExpr(Id))), binaryOperator(hasOperatorName("-"), hasLHS(matchSymbolicExpr(Id)), hasRHS(matchIntegerConstantExpr(Id))))) .bind(Id); return ignoringParenImpCasts(BinOpCstExpr); } // Retrieves sub-expressions matched by 'matchBinOpIntegerConstantExpr' with // name 'Id'. static bool retrieveBinOpIntegerConstantExpr(const MatchFinder::MatchResult &Result, StringRef Id, BinaryOperatorKind &Opcode, const Expr *&Symbol, APSInt &Value) { if (const auto *BinExpr = Result.Nodes.getNodeAs(Id)) { Opcode = BinExpr->getOpcode(); return retrieveSymbolicExpr(Result, Id, Symbol) && retrieveIntegerConstantExpr(Result, Id, Value); } return false; } // Matches relational expressions: 'Expr k' (i.e. x < 2, x != 3, 12 <= x). static ast_matchers::internal::Matcher matchRelationalIntegerConstantExpr(StringRef Id) { std::string CastId = (Id + "-cast").str(); std::string SwapId = (Id + "-swap").str(); std::string NegateId = (Id + "-negate").str(); std::string OverloadId = (Id + "-overload").str(); const auto RelationalExpr = ignoringParenImpCasts(binaryOperator( isComparisonOperator(), expr().bind(Id), anyOf(allOf(hasLHS(matchSymbolicExpr(Id)), hasRHS(matchIntegerConstantExpr(Id))), allOf(hasLHS(matchIntegerConstantExpr(Id)), hasRHS(matchSymbolicExpr(Id)), expr().bind(SwapId))))); // A cast can be matched as a comparator to zero. (i.e. if (x) is equivalent // to if (x != 0)). const auto CastExpr = implicitCastExpr(hasCastKind(CK_IntegralToBoolean), hasSourceExpression(matchSymbolicExpr(Id))) .bind(CastId); const auto NegateRelationalExpr = unaryOperator(hasOperatorName("!"), hasUnaryOperand(anyOf(CastExpr, RelationalExpr))) .bind(NegateId); // Do not bind to double negation. const auto NegateNegateRelationalExpr = unaryOperator(hasOperatorName("!"), hasUnaryOperand(unaryOperator( hasOperatorName("!"), hasUnaryOperand(anyOf(CastExpr, RelationalExpr))))); const auto OverloadedOperatorExpr = cxxOperatorCallExpr( hasAnyOverloadedOperatorName("==", "!=", "<", "<=", ">", ">="), // Filter noisy false positives. unless(isMacro()), unless(isInTemplateInstantiation())) .bind(OverloadId); return anyOf(RelationalExpr, CastExpr, NegateRelationalExpr, NegateNegateRelationalExpr, OverloadedOperatorExpr); } // Checks whether a function param is non constant reference type, and may // be modified in the function. static bool isNonConstReferenceType(QualType ParamType) { return ParamType->isReferenceType() && !ParamType.getNonReferenceType().isConstQualified(); } // Checks whether the arguments of an overloaded operator can be modified in the // function. // For operators that take an instance and a constant as arguments, only the // first argument (the instance) needs to be checked, since the constant itself // is a temporary expression. Whether the second parameter is checked is // controlled by the parameter `ParamsToCheckCount`. static bool canOverloadedOperatorArgsBeModified(const CXXOperatorCallExpr *OperatorCall, bool checkSecondParam) { const auto *OperatorDecl = dyn_cast_or_null(OperatorCall->getCalleeDecl()); // if we can't find the declaration, conservatively assume it can modify // arguments if (!OperatorDecl) return true; unsigned ParamCount = OperatorDecl->getNumParams(); // Overloaded operators declared inside a class have only one param. // These functions must be declared const in order to not be able to modify // the instance of the class they are called through. if (ParamCount == 1 && !OperatorDecl->getType()->castAs()->isConst()) return true; if (isNonConstReferenceType(OperatorDecl->getParamDecl(0)->getType())) return true; return checkSecondParam && ParamCount == 2 && isNonConstReferenceType(OperatorDecl->getParamDecl(1)->getType()); } // Retrieves sub-expressions matched by 'matchRelationalIntegerConstantExpr' // with name 'Id'. static bool retrieveRelationalIntegerConstantExpr( const MatchFinder::MatchResult &Result, StringRef Id, const Expr *&OperandExpr, BinaryOperatorKind &Opcode, const Expr *&Symbol, APSInt &Value, const Expr *&ConstExpr) { std::string CastId = (Id + "-cast").str(); std::string SwapId = (Id + "-swap").str(); std::string NegateId = (Id + "-negate").str(); std::string OverloadId = (Id + "-overload").str(); if (const auto *Bin = Result.Nodes.getNodeAs(Id)) { // Operand received with explicit comparator. Opcode = Bin->getOpcode(); OperandExpr = Bin; if (!retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr)) return false; } else if (const auto *Cast = Result.Nodes.getNodeAs(CastId)) { // Operand received with implicit comparator (cast). Opcode = BO_NE; OperandExpr = Cast; Value = APSInt(32, false); } else if (const auto *OverloadedOperatorExpr = Result.Nodes.getNodeAs(OverloadId)) { if (canOverloadedOperatorArgsBeModified(OverloadedOperatorExpr, false)) return false; if (const auto *Arg = OverloadedOperatorExpr->getArg(1)) { if (!Arg->isValueDependent() && !Arg->isIntegerConstantExpr(*Result.Context)) return false; } Symbol = OverloadedOperatorExpr->getArg(0); OperandExpr = OverloadedOperatorExpr; Opcode = BinaryOperator::getOverloadedOpcode(OverloadedOperatorExpr->getOperator()); return BinaryOperator::isComparisonOp(Opcode); } else { return false; } if (!retrieveSymbolicExpr(Result, Id, Symbol)) return false; if (Result.Nodes.getNodeAs(SwapId)) Opcode = BinaryOperator::reverseComparisonOp(Opcode); if (Result.Nodes.getNodeAs(NegateId)) Opcode = BinaryOperator::negateComparisonOp(Opcode); return true; } // Checks for expressions like (X == 4) && (Y != 9) static bool areSidesBinaryConstExpressions(const BinaryOperator *&BinOp, const ASTContext *AstCtx) { const auto *LhsBinOp = dyn_cast(BinOp->getLHS()); const auto *RhsBinOp = dyn_cast(BinOp->getRHS()); if (!LhsBinOp || !RhsBinOp) return false; auto IsIntegerConstantExpr = [AstCtx](const Expr *E) { return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx); }; if ((IsIntegerConstantExpr(LhsBinOp->getLHS()) || IsIntegerConstantExpr(LhsBinOp->getRHS())) && (IsIntegerConstantExpr(RhsBinOp->getLHS()) || IsIntegerConstantExpr(RhsBinOp->getRHS()))) return true; return false; } // Retrieves integer constant subexpressions from binary operator expressions // that have two equivalent sides. // E.g.: from (X == 5) && (X == 5) retrieves 5 and 5. static bool retrieveConstExprFromBothSides(const BinaryOperator *&BinOp, BinaryOperatorKind &MainOpcode, BinaryOperatorKind &SideOpcode, const Expr *&LhsConst, const Expr *&RhsConst, const ASTContext *AstCtx) { assert(areSidesBinaryConstExpressions(BinOp, AstCtx) && "Both sides of binary operator must be constant expressions!"); MainOpcode = BinOp->getOpcode(); const auto *BinOpLhs = cast(BinOp->getLHS()); const auto *BinOpRhs = cast(BinOp->getRHS()); auto IsIntegerConstantExpr = [AstCtx](const Expr *E) { return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx); }; LhsConst = IsIntegerConstantExpr(BinOpLhs->getLHS()) ? BinOpLhs->getLHS() : BinOpLhs->getRHS(); RhsConst = IsIntegerConstantExpr(BinOpRhs->getLHS()) ? BinOpRhs->getLHS() : BinOpRhs->getRHS(); if (!LhsConst || !RhsConst) return false; assert(BinOpLhs->getOpcode() == BinOpRhs->getOpcode() && "Sides of the binary operator must be equivalent expressions!"); SideOpcode = BinOpLhs->getOpcode(); return true; } static bool isSameRawIdentifierToken(const Token &T1, const Token &T2, const SourceManager &SM) { if (T1.getKind() != T2.getKind()) return false; if (T1.isNot(tok::raw_identifier)) return true; if (T1.getLength() != T2.getLength()) return false; return StringRef(SM.getCharacterData(T1.getLocation()), T1.getLength()) == StringRef(SM.getCharacterData(T2.getLocation()), T2.getLength()); } bool isTokAtEndOfExpr(SourceRange ExprSR, Token T, const SourceManager &SM) { return SM.getExpansionLoc(ExprSR.getEnd()) == T.getLocation(); } /// Returns true if both LhsEpxr and RhsExpr are /// macro expressions and they are expanded /// from different macros. static bool areExprsFromDifferentMacros(const Expr *LhsExpr, const Expr *RhsExpr, const ASTContext *AstCtx) { if (!LhsExpr || !RhsExpr) return false; SourceRange Lsr = LhsExpr->getSourceRange(); SourceRange Rsr = RhsExpr->getSourceRange(); if (!Lsr.getBegin().isMacroID() || !Rsr.getBegin().isMacroID()) return false; const SourceManager &SM = AstCtx->getSourceManager(); const LangOptions &LO = AstCtx->getLangOpts(); std::pair LsrLocInfo = SM.getDecomposedLoc(SM.getExpansionLoc(Lsr.getBegin())); std::pair RsrLocInfo = SM.getDecomposedLoc(SM.getExpansionLoc(Rsr.getBegin())); llvm::MemoryBufferRef MB = SM.getBufferOrFake(LsrLocInfo.first); const char *LTokenPos = MB.getBufferStart() + LsrLocInfo.second; const char *RTokenPos = MB.getBufferStart() + RsrLocInfo.second; Lexer LRawLex(SM.getLocForStartOfFile(LsrLocInfo.first), LO, MB.getBufferStart(), LTokenPos, MB.getBufferEnd()); Lexer RRawLex(SM.getLocForStartOfFile(RsrLocInfo.first), LO, MB.getBufferStart(), RTokenPos, MB.getBufferEnd()); Token LTok, RTok; do { // Compare the expressions token-by-token. LRawLex.LexFromRawLexer(LTok); RRawLex.LexFromRawLexer(RTok); } while (!LTok.is(tok::eof) && !RTok.is(tok::eof) && isSameRawIdentifierToken(LTok, RTok, SM) && !isTokAtEndOfExpr(Lsr, LTok, SM) && !isTokAtEndOfExpr(Rsr, RTok, SM)); return (!isTokAtEndOfExpr(Lsr, LTok, SM) || !isTokAtEndOfExpr(Rsr, RTok, SM)) || !isSameRawIdentifierToken(LTok, RTok, SM); } static bool areExprsMacroAndNonMacro(const Expr *&LhsExpr, const Expr *&RhsExpr) { if (!LhsExpr || !RhsExpr) return false; SourceLocation LhsLoc = LhsExpr->getExprLoc(); SourceLocation RhsLoc = RhsExpr->getExprLoc(); return LhsLoc.isMacroID() != RhsLoc.isMacroID(); } } // namespace void RedundantExpressionCheck::registerMatchers(MatchFinder *Finder) { const auto AnyLiteralExpr = ignoringParenImpCasts( anyOf(cxxBoolLiteral(), characterLiteral(), integerLiteral())); const auto BannedIntegerLiteral = integerLiteral(expandedByMacro(KnownBannedMacroNames)); // Binary with equivalent operands, like (X != 2 && X != 2). Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, binaryOperator( anyOf(isComparisonOperator(), hasAnyOperatorName("-", "/", "%", "|", "&", "^", "&&", "||", "=")), operandsAreEquivalent(), // Filter noisy false positives. unless(isInTemplateInstantiation()), unless(binaryOperatorIsInMacro()), unless(hasType(realFloatingPointType())), unless(hasEitherOperand(hasType(realFloatingPointType()))), unless(hasLHS(AnyLiteralExpr)), unless(hasDescendant(BannedIntegerLiteral))) .bind("binary")), this); // Logical or bitwise operator with equivalent nested operands, like (X && Y // && X) or (X && (Y && X)) Finder->addMatcher( binaryOperator(hasAnyOperatorName("|", "&", "||", "&&", "^"), nestedOperandsAreEquivalent(), // Filter noisy false positives. unless(isInTemplateInstantiation()), unless(binaryOperatorIsInMacro()), // TODO: if the banned macros are themselves duplicated unless(hasDescendant(BannedIntegerLiteral))) .bind("nested-duplicates"), this); // Conditional (trenary) operator with equivalent operands, like (Y ? X : X). Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, conditionalOperator(expressionsAreEquivalent(), // Filter noisy false positives. unless(conditionalOperatorIsInMacro()), unless(isInTemplateInstantiation())) .bind("cond")), this); // Overloaded operators with equivalent operands. Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, cxxOperatorCallExpr( hasAnyOverloadedOperatorName("-", "/", "%", "|", "&", "^", "==", "!=", "<", "<=", ">", ">=", "&&", "||", "="), parametersAreEquivalent(), // Filter noisy false positives. unless(isMacro()), unless(isInTemplateInstantiation())) .bind("call")), this); // Overloaded operators with equivalent operands. Finder->addMatcher( cxxOperatorCallExpr( hasAnyOverloadedOperatorName("|", "&", "||", "&&", "^"), nestedParametersAreEquivalent(), argumentCountIs(2), // Filter noisy false positives. unless(isMacro()), unless(isInTemplateInstantiation())) .bind("nested-duplicates"), this); // Match expressions like: !(1 | 2 | 3) Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, implicitCastExpr( hasImplicitDestinationType(isInteger()), has(unaryOperator( hasOperatorName("!"), hasUnaryOperand(ignoringParenImpCasts(binaryOperator( hasAnyOperatorName("|", "&"), hasLHS(anyOf( binaryOperator(hasAnyOperatorName("|", "&")), integerLiteral())), hasRHS(integerLiteral()))))) .bind("logical-bitwise-confusion")))), this); // Match expressions like: (X << 8) & 0xFF Finder->addMatcher( traverse( ast_type_traits::TK_AsIs, binaryOperator( hasOperatorName("&"), hasOperands( ignoringParenImpCasts( binaryOperator(hasOperatorName("<<"), hasRHS(ignoringParenImpCasts( integerLiteral().bind("shift-const"))))), ignoringParenImpCasts(integerLiteral().bind("and-const")))) .bind("left-right-shift-confusion")), this); // Match common expressions and apply more checks to find redundant // sub-expressions. // a) Expr K1 == K2 // b) Expr K1 == Expr // c) Expr K1 == Expr K2 // see: 'checkArithmeticExpr' and 'checkBitwiseExpr' const auto BinOpCstLeft = matchBinOpIntegerConstantExpr("lhs"); const auto BinOpCstRight = matchBinOpIntegerConstantExpr("rhs"); const auto CstRight = matchIntegerConstantExpr("rhs"); const auto SymRight = matchSymbolicExpr("rhs"); // Match expressions like: x 0xFF == 0xF00. Finder->addMatcher(traverse(ast_type_traits::TK_AsIs, binaryOperator(isComparisonOperator(), hasOperands(BinOpCstLeft, CstRight)) .bind("binop-const-compare-to-const")), this); // Match expressions like: x 0xFF == x. Finder->addMatcher( traverse( ast_type_traits::TK_AsIs, binaryOperator(isComparisonOperator(), anyOf(allOf(hasLHS(BinOpCstLeft), hasRHS(SymRight)), allOf(hasLHS(SymRight), hasRHS(BinOpCstLeft)))) .bind("binop-const-compare-to-sym")), this); // Match expressions like: x 10 == x 12. Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, binaryOperator(isComparisonOperator(), hasLHS(BinOpCstLeft), hasRHS(BinOpCstRight), // Already reported as redundant. unless(operandsAreEquivalent())) .bind("binop-const-compare-to-binop-const")), this); // Match relational expressions combined with logical operators and find // redundant sub-expressions. // see: 'checkRelationalExpr' // Match expressions like: x < 2 && x > 2. const auto ComparisonLeft = matchRelationalIntegerConstantExpr("lhs"); const auto ComparisonRight = matchRelationalIntegerConstantExpr("rhs"); Finder->addMatcher( traverse(ast_type_traits::TK_AsIs, binaryOperator(hasAnyOperatorName("||", "&&"), hasLHS(ComparisonLeft), hasRHS(ComparisonRight), // Already reported as redundant. unless(operandsAreEquivalent())) .bind("comparisons-of-symbol-and-const")), this); } void RedundantExpressionCheck::checkArithmeticExpr( const MatchFinder::MatchResult &Result) { APSInt LhsValue, RhsValue; const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr; BinaryOperatorKind LhsOpcode, RhsOpcode; if (const auto *ComparisonOperator = Result.Nodes.getNodeAs( "binop-const-compare-to-sym")) { BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, LhsValue) || !retrieveSymbolicExpr(Result, "rhs", RhsSymbol) || !areEquivalentExpr(LhsSymbol, RhsSymbol)) return; // Check expressions: x + k == x or x - k == x. if (LhsOpcode == BO_Add || LhsOpcode == BO_Sub) { if ((LhsValue != 0 && Opcode == BO_EQ) || (LhsValue == 0 && Opcode == BO_NE)) diag(ComparisonOperator->getOperatorLoc(), "logical expression is always false"); else if ((LhsValue == 0 && Opcode == BO_EQ) || (LhsValue != 0 && Opcode == BO_NE)) diag(ComparisonOperator->getOperatorLoc(), "logical expression is always true"); } } else if (const auto *ComparisonOperator = Result.Nodes.getNodeAs( "binop-const-compare-to-binop-const")) { BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, LhsValue) || !retrieveBinOpIntegerConstantExpr(Result, "rhs", RhsOpcode, RhsSymbol, RhsValue) || !areEquivalentExpr(LhsSymbol, RhsSymbol)) return; transformSubToCanonicalAddExpr(LhsOpcode, LhsValue); transformSubToCanonicalAddExpr(RhsOpcode, RhsValue); // Check expressions: x + 1 == x + 2 or x + 1 != x + 2. if (LhsOpcode == BO_Add && RhsOpcode == BO_Add) { if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) == 0) || (Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) != 0)) { diag(ComparisonOperator->getOperatorLoc(), "logical expression is always true"); } else if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) != 0) || (Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) == 0)) { diag(ComparisonOperator->getOperatorLoc(), "logical expression is always false"); } } } } static bool exprEvaluatesToZero(BinaryOperatorKind Opcode, APSInt Value) { return (Opcode == BO_And || Opcode == BO_AndAssign) && Value == 0; } static bool exprEvaluatesToBitwiseNegatedZero(BinaryOperatorKind Opcode, APSInt Value) { return (Opcode == BO_Or || Opcode == BO_OrAssign) && ~Value == 0; } static bool exprEvaluatesToSymbolic(BinaryOperatorKind Opcode, APSInt Value) { return ((Opcode == BO_Or || Opcode == BO_OrAssign) && Value == 0) || ((Opcode == BO_And || Opcode == BO_AndAssign) && ~Value == 0); } void RedundantExpressionCheck::checkBitwiseExpr( const MatchFinder::MatchResult &Result) { if (const auto *ComparisonOperator = Result.Nodes.getNodeAs( "binop-const-compare-to-const")) { BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); APSInt LhsValue, RhsValue; const Expr *LhsSymbol = nullptr; BinaryOperatorKind LhsOpcode; if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, LhsValue) || !retrieveIntegerConstantExpr(Result, "rhs", RhsValue)) return; uint64_t LhsConstant = LhsValue.getZExtValue(); uint64_t RhsConstant = RhsValue.getZExtValue(); SourceLocation Loc = ComparisonOperator->getOperatorLoc(); // Check expression: x & k1 == k2 (i.e. x & 0xFF == 0xF00) if (LhsOpcode == BO_And && (LhsConstant & RhsConstant) != RhsConstant) { if (Opcode == BO_EQ) diag(Loc, "logical expression is always false"); else if (Opcode == BO_NE) diag(Loc, "logical expression is always true"); } // Check expression: x | k1 == k2 (i.e. x | 0xFF == 0xF00) if (LhsOpcode == BO_Or && (LhsConstant | RhsConstant) != RhsConstant) { if (Opcode == BO_EQ) diag(Loc, "logical expression is always false"); else if (Opcode == BO_NE) diag(Loc, "logical expression is always true"); } } else if (const auto *IneffectiveOperator = Result.Nodes.getNodeAs( "ineffective-bitwise")) { APSInt Value; const Expr *Sym = nullptr, *ConstExpr = nullptr; if (!retrieveSymbolicExpr(Result, "ineffective-bitwise", Sym) || !retrieveIntegerConstantExpr(Result, "ineffective-bitwise", Value, ConstExpr)) return; if((Value != 0 && ~Value != 0) || Sym->getExprLoc().isMacroID()) return; SourceLocation Loc = IneffectiveOperator->getOperatorLoc(); BinaryOperatorKind Opcode = IneffectiveOperator->getOpcode(); if (exprEvaluatesToZero(Opcode, Value)) { diag(Loc, "expression always evaluates to 0"); } else if (exprEvaluatesToBitwiseNegatedZero(Opcode, Value)) { SourceRange ConstExprRange(ConstExpr->getBeginLoc(), ConstExpr->getEndLoc()); StringRef ConstExprText = Lexer::getSourceText( CharSourceRange::getTokenRange(ConstExprRange), *Result.SourceManager, Result.Context->getLangOpts()); diag(Loc, "expression always evaluates to '%0'") << ConstExprText; } else if (exprEvaluatesToSymbolic(Opcode, Value)) { SourceRange SymExprRange(Sym->getBeginLoc(), Sym->getEndLoc()); StringRef ExprText = Lexer::getSourceText( CharSourceRange::getTokenRange(SymExprRange), *Result.SourceManager, Result.Context->getLangOpts()); diag(Loc, "expression always evaluates to '%0'") << ExprText; } } } void RedundantExpressionCheck::checkRelationalExpr( const MatchFinder::MatchResult &Result) { if (const auto *ComparisonOperator = Result.Nodes.getNodeAs( "comparisons-of-symbol-and-const")) { // Matched expressions are: (x k1) (x k2). // E.g.: (X < 2) && (X > 4) BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); const Expr *LhsExpr = nullptr, *RhsExpr = nullptr; const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr; const Expr *LhsConst = nullptr, *RhsConst = nullptr; BinaryOperatorKind LhsOpcode, RhsOpcode; APSInt LhsValue, RhsValue; if (!retrieveRelationalIntegerConstantExpr( Result, "lhs", LhsExpr, LhsOpcode, LhsSymbol, LhsValue, LhsConst) || !retrieveRelationalIntegerConstantExpr( Result, "rhs", RhsExpr, RhsOpcode, RhsSymbol, RhsValue, RhsConst) || !areEquivalentExpr(LhsSymbol, RhsSymbol)) return; // Bring expr to a canonical form: smallest constant must be on the left. if (APSInt::compareValues(LhsValue, RhsValue) > 0) { std::swap(LhsExpr, RhsExpr); std::swap(LhsValue, RhsValue); std::swap(LhsSymbol, RhsSymbol); std::swap(LhsOpcode, RhsOpcode); } // Constants come from two different macros, or one of them is a macro. if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) || areExprsMacroAndNonMacro(LhsConst, RhsConst)) return; if ((Opcode == BO_LAnd || Opcode == BO_LOr) && areEquivalentRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { diag(ComparisonOperator->getOperatorLoc(), "equivalent expression on both sides of logical operator"); return; } if (Opcode == BO_LAnd) { if (areExclusiveRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { diag(ComparisonOperator->getOperatorLoc(), "logical expression is always false"); } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { diag(LhsExpr->getExprLoc(), "expression is redundant"); } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) { diag(RhsExpr->getExprLoc(), "expression is redundant"); } } if (Opcode == BO_LOr) { if (rangesFullyCoverDomain(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { diag(ComparisonOperator->getOperatorLoc(), "logical expression is always true"); } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { diag(RhsExpr->getExprLoc(), "expression is redundant"); } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) { diag(LhsExpr->getExprLoc(), "expression is redundant"); } } } } void RedundantExpressionCheck::check(const MatchFinder::MatchResult &Result) { if (const auto *BinOp = Result.Nodes.getNodeAs("binary")) { // If the expression's constants are macros, check whether they are // intentional. if (areSidesBinaryConstExpressions(BinOp, Result.Context)) { const Expr *LhsConst = nullptr, *RhsConst = nullptr; BinaryOperatorKind MainOpcode, SideOpcode; if (!retrieveConstExprFromBothSides(BinOp, MainOpcode, SideOpcode, LhsConst, RhsConst, Result.Context)) return; if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) || areExprsMacroAndNonMacro(LhsConst, RhsConst)) return; } diag(BinOp->getOperatorLoc(), "both sides of operator are equivalent"); } if (const auto *CondOp = Result.Nodes.getNodeAs("cond")) { const Expr *TrueExpr = CondOp->getTrueExpr(); const Expr *FalseExpr = CondOp->getFalseExpr(); if (areExprsFromDifferentMacros(TrueExpr, FalseExpr, Result.Context) || areExprsMacroAndNonMacro(TrueExpr, FalseExpr)) return; diag(CondOp->getColonLoc(), "'true' and 'false' expressions are equivalent"); } if (const auto *Call = Result.Nodes.getNodeAs("call")) { if (canOverloadedOperatorArgsBeModified(Call, true)) return; diag(Call->getOperatorLoc(), "both sides of overloaded operator are equivalent"); } if (const auto *Op = Result.Nodes.getNodeAs("nested-duplicates")) { const auto *Call = dyn_cast(Op); if (Call && canOverloadedOperatorArgsBeModified(Call, true)) return; StringRef Message = Call ? "overloaded operator has equivalent nested operands" : "operator has equivalent nested operands"; const auto Diag = diag(Op->getExprLoc(), Message); for (const auto &KeyValue : Result.Nodes.getMap()) { if (StringRef(KeyValue.first).startswith("duplicate")) Diag << KeyValue.second.getSourceRange(); } } if (const auto *NegateOperator = Result.Nodes.getNodeAs("logical-bitwise-confusion")) { SourceLocation OperatorLoc = NegateOperator->getOperatorLoc(); auto Diag = diag(OperatorLoc, "ineffective logical negation operator used; did you mean '~'?"); SourceLocation LogicalNotLocation = OperatorLoc.getLocWithOffset(1); if (!LogicalNotLocation.isMacroID()) Diag << FixItHint::CreateReplacement( CharSourceRange::getCharRange(OperatorLoc, LogicalNotLocation), "~"); } if (const auto *BinaryAndExpr = Result.Nodes.getNodeAs( "left-right-shift-confusion")) { const auto *ShiftingConst = Result.Nodes.getNodeAs("shift-const"); assert(ShiftingConst && "Expr* 'ShiftingConst' is nullptr!"); Optional ShiftingValue = ShiftingConst->getIntegerConstantExpr(*Result.Context); if (!ShiftingValue) return; const auto *AndConst = Result.Nodes.getNodeAs("and-const"); assert(AndConst && "Expr* 'AndCont' is nullptr!"); Optional AndValue = AndConst->getIntegerConstantExpr(*Result.Context); if (!AndValue) return; // If ShiftingConst is shifted left with more bits than the position of the // leftmost 1 in the bit representation of AndValue, AndConstant is // ineffective. if (AndValue->getActiveBits() > *ShiftingValue) return; auto Diag = diag(BinaryAndExpr->getOperatorLoc(), "ineffective bitwise and operation"); } // Check for the following bound expressions: // - "binop-const-compare-to-sym", // - "binop-const-compare-to-binop-const", // Produced message: // -> "logical expression is always false/true" checkArithmeticExpr(Result); // Check for the following bound expression: // - "binop-const-compare-to-const", // - "ineffective-bitwise" // Produced message: // -> "logical expression is always false/true" // -> "expression always evaluates to ..." checkBitwiseExpr(Result); // Check for te following bound expression: // - "comparisons-of-symbol-and-const", // Produced messages: // -> "equivalent expression on both sides of logical operator", // -> "logical expression is always false/true" // -> "expression is redundant" checkRelationalExpr(Result); } } // namespace misc } // namespace tidy } // namespace clang