//===--- FindSymbols.cpp ------------------------------------*- C++-*------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "FindSymbols.h" #include "AST.h" #include "FuzzyMatch.h" #include "ParsedAST.h" #include "Quality.h" #include "SourceCode.h" #include "index/Index.h" #include "support/Logger.h" #include "clang/AST/DeclTemplate.h" #include "clang/Index/IndexDataConsumer.h" #include "clang/Index/IndexSymbol.h" #include "clang/Index/IndexingAction.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Path.h" #include "llvm/Support/ScopedPrinter.h" #include #define DEBUG_TYPE "FindSymbols" namespace clang { namespace clangd { namespace { using ScoredSymbolInfo = std::pair; struct ScoredSymbolGreater { bool operator()(const ScoredSymbolInfo &L, const ScoredSymbolInfo &R) { if (L.first != R.first) return L.first > R.first; return L.second.name < R.second.name; // Earlier name is better. } }; // Returns true if \p Query can be found as a sub-sequence inside \p Scope. bool approximateScopeMatch(llvm::StringRef Scope, llvm::StringRef Query) { assert(Scope.empty() || Scope.endswith("::")); assert(Query.empty() || Query.endswith("::")); while (!Scope.empty() && !Query.empty()) { auto Colons = Scope.find("::"); assert(Colons != llvm::StringRef::npos); llvm::StringRef LeadingSpecifier = Scope.slice(0, Colons + 2); Scope = Scope.slice(Colons + 2, llvm::StringRef::npos); Query.consume_front(LeadingSpecifier); } return Query.empty(); } } // namespace llvm::Expected indexToLSPLocation(const SymbolLocation &Loc, llvm::StringRef TUPath) { auto Path = URI::resolve(Loc.FileURI, TUPath); if (!Path) return error("Could not resolve path for file '{0}': {1}", Loc.FileURI, Path.takeError()); Location L; L.uri = URIForFile::canonicalize(*Path, TUPath); Position Start, End; Start.line = Loc.Start.line(); Start.character = Loc.Start.column(); End.line = Loc.End.line(); End.character = Loc.End.column(); L.range = {Start, End}; return L; } llvm::Expected symbolToLocation(const Symbol &Sym, llvm::StringRef TUPath) { // Prefer the definition over e.g. a function declaration in a header return indexToLSPLocation( Sym.Definition ? Sym.Definition : Sym.CanonicalDeclaration, TUPath); } llvm::Expected> getWorkspaceSymbols(llvm::StringRef Query, int Limit, const SymbolIndex *const Index, llvm::StringRef HintPath) { std::vector Result; if (Query.empty() || !Index) return Result; // Lookup for qualified names are performed as: // - Exact namespaces are boosted by the index. // - Approximate matches are (sub-scope match) included via AnyScope logic. // - Non-matching namespaces (no sub-scope match) are post-filtered. auto Names = splitQualifiedName(Query); FuzzyFindRequest Req; Req.Query = std::string(Names.second); // FuzzyFind doesn't want leading :: qualifier. auto HasLeadingColons = Names.first.consume_front("::"); // Limit the query to specific namespace if it is fully-qualified. Req.AnyScope = !HasLeadingColons; // Boost symbols from desired namespace. if (HasLeadingColons || !Names.first.empty()) Req.Scopes = {std::string(Names.first)}; if (Limit) { Req.Limit = Limit; // If we are boosting a specific scope allow more results to be retrieved, // since some symbols from preferred namespaces might not make the cut. if (Req.AnyScope && !Req.Scopes.empty()) *Req.Limit *= 5; } TopN Top( Req.Limit ? *Req.Limit : std::numeric_limits::max()); FuzzyMatcher Filter(Req.Query); Index->fuzzyFind(Req, [HintPath, &Top, &Filter, AnyScope = Req.AnyScope, ReqScope = Names.first](const Symbol &Sym) { llvm::StringRef Scope = Sym.Scope; // Fuzzyfind might return symbols from irrelevant namespaces if query was // not fully-qualified, drop those. if (AnyScope && !approximateScopeMatch(Scope, ReqScope)) return; auto Loc = symbolToLocation(Sym, HintPath); if (!Loc) { log("Workspace symbols: {0}", Loc.takeError()); return; } SymbolQualitySignals Quality; Quality.merge(Sym); SymbolRelevanceSignals Relevance; Relevance.Name = Sym.Name; Relevance.Query = SymbolRelevanceSignals::Generic; // If symbol and request scopes do not match exactly, apply a penalty. Relevance.InBaseClass = AnyScope && Scope != ReqScope; if (auto NameMatch = Filter.match(Sym.Name)) Relevance.NameMatch = *NameMatch; else { log("Workspace symbol: {0} didn't match query {1}", Sym.Name, Filter.pattern()); return; } Relevance.merge(Sym); auto Score = evaluateSymbolAndRelevance(Quality.evaluateHeuristics(), Relevance.evaluateHeuristics()); dlog("FindSymbols: {0}{1} = {2}\n{3}{4}\n", Sym.Scope, Sym.Name, Score, Quality, Relevance); SymbolInformation Info; Info.name = (Sym.Name + Sym.TemplateSpecializationArgs).str(); Info.kind = indexSymbolKindToSymbolKind(Sym.SymInfo.Kind); Info.location = *Loc; Scope.consume_back("::"); Info.containerName = Scope.str(); // Exposed score excludes fuzzy-match component, for client-side re-ranking. Info.score = Score / Relevance.NameMatch; Top.push({Score, std::move(Info)}); }); for (auto &R : std::move(Top).items()) Result.push_back(std::move(R.second)); return Result; } namespace { llvm::Optional declToSym(ASTContext &Ctx, const NamedDecl &ND) { auto &SM = Ctx.getSourceManager(); SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc())); SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc())); const auto SymbolRange = toHalfOpenFileRange(SM, Ctx.getLangOpts(), {BeginLoc, EndLoc}); if (!SymbolRange) return llvm::None; index::SymbolInfo SymInfo = index::getSymbolInfo(&ND); // FIXME: This is not classifying constructors, destructors and operators // correctly. SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind); DocumentSymbol SI; SI.name = printName(Ctx, ND); SI.kind = SK; SI.deprecated = ND.isDeprecated(); SI.range = Range{sourceLocToPosition(SM, SymbolRange->getBegin()), sourceLocToPosition(SM, SymbolRange->getEnd())}; SourceLocation NameLoc = ND.getLocation(); SourceLocation FallbackNameLoc; if (NameLoc.isMacroID()) { if (isSpelledInSource(NameLoc, SM)) { // Prefer the spelling loc, but save the expansion loc as a fallback. FallbackNameLoc = SM.getExpansionLoc(NameLoc); NameLoc = SM.getSpellingLoc(NameLoc); } else { NameLoc = SM.getExpansionLoc(NameLoc); } } auto ComputeSelectionRange = [&](SourceLocation L) -> Range { Position NameBegin = sourceLocToPosition(SM, L); Position NameEnd = sourceLocToPosition( SM, Lexer::getLocForEndOfToken(L, 0, SM, Ctx.getLangOpts())); return Range{NameBegin, NameEnd}; }; SI.selectionRange = ComputeSelectionRange(NameLoc); if (!SI.range.contains(SI.selectionRange) && FallbackNameLoc.isValid()) { // 'selectionRange' must be contained in 'range'. In cases where clang // reports unrelated ranges, we first try falling back to the expansion // loc for the selection range. SI.selectionRange = ComputeSelectionRange(FallbackNameLoc); } if (!SI.range.contains(SI.selectionRange)) { // If the containment relationship still doesn't hold, throw away // 'range' and use 'selectionRange' for both. SI.range = SI.selectionRange; } return SI; } /// A helper class to build an outline for the parse AST. It traverses the AST /// directly instead of using RecursiveASTVisitor (RAV) for three main reasons: /// - there is no way to keep RAV from traversing subtrees we are not /// interested in. E.g. not traversing function locals or implicit template /// instantiations. /// - it's easier to combine results of recursive passes, /// - visiting decls is actually simple, so we don't hit the complicated /// cases that RAV mostly helps with (types, expressions, etc.) class DocumentOutline { public: DocumentOutline(ParsedAST &AST) : AST(AST) {} /// Builds the document outline for the generated AST. std::vector build() { std::vector Results; for (auto &TopLevel : AST.getLocalTopLevelDecls()) traverseDecl(TopLevel, Results); return Results; } private: enum class VisitKind { No, OnlyDecl, OnlyChildren, DeclAndChildren }; void traverseDecl(Decl *D, std::vector &Results) { if (auto *Templ = llvm::dyn_cast(D)) { // TemplatedDecl might be null, e.g. concepts. if (auto *TD = Templ->getTemplatedDecl()) D = TD; } VisitKind Visit = shouldVisit(D); if (Visit == VisitKind::No) return; if (Visit == VisitKind::OnlyChildren) return traverseChildren(D, Results); auto *ND = llvm::cast(D); auto Sym = declToSym(AST.getASTContext(), *ND); if (!Sym) return; Results.push_back(std::move(*Sym)); if (Visit == VisitKind::OnlyDecl) return; assert(Visit == VisitKind::DeclAndChildren && "Unexpected VisitKind"); traverseChildren(ND, Results.back().children); } void traverseChildren(Decl *D, std::vector &Results) { auto *Scope = llvm::dyn_cast(D); if (!Scope) return; for (auto *C : Scope->decls()) traverseDecl(C, Results); } VisitKind shouldVisit(Decl *D) { if (D->isImplicit()) return VisitKind::No; if (llvm::isa(D) || llvm::isa(D)) return VisitKind::OnlyChildren; if (!llvm::isa(D)) return VisitKind::No; if (auto Func = llvm::dyn_cast(D)) { // Some functions are implicit template instantiations, those should be // ignored. if (auto *Info = Func->getTemplateSpecializationInfo()) { if (!Info->isExplicitInstantiationOrSpecialization()) return VisitKind::No; } // Only visit the function itself, do not visit the children (i.e. // function parameters, etc.) return VisitKind::OnlyDecl; } // Handle template instantiations. We have three cases to consider: // - explicit instantiations, e.g. 'template class std::vector;' // Visit the decl itself (it's present in the code), but not the // children. // - implicit instantiations, i.e. not written by the user. // Do not visit at all, they are not present in the code. // - explicit specialization, e.g. 'template <> class vector {};' // Visit both the decl and its children, both are written in the code. if (auto *TemplSpec = llvm::dyn_cast(D)) { if (TemplSpec->isExplicitInstantiationOrSpecialization()) return TemplSpec->isExplicitSpecialization() ? VisitKind::DeclAndChildren : VisitKind::OnlyDecl; return VisitKind::No; } if (auto *TemplSpec = llvm::dyn_cast(D)) { if (TemplSpec->isExplicitInstantiationOrSpecialization()) return TemplSpec->isExplicitSpecialization() ? VisitKind::DeclAndChildren : VisitKind::OnlyDecl; return VisitKind::No; } // For all other cases, visit both the children and the decl. return VisitKind::DeclAndChildren; } ParsedAST &AST; }; std::vector collectDocSymbols(ParsedAST &AST) { return DocumentOutline(AST).build(); } } // namespace llvm::Expected> getDocumentSymbols(ParsedAST &AST) { return collectDocSymbols(AST); } } // namespace clangd } // namespace clang