//===--- ARM.cpp - ARM (not AArch64) Helpers for Tools ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ARM.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/Host.h" using namespace clang::driver; using namespace clang::driver::tools; using namespace clang; using namespace llvm::opt; // Get SubArch (vN). int arm::getARMSubArchVersionNumber(const llvm::Triple &Triple) { llvm::StringRef Arch = Triple.getArchName(); return llvm::ARM::parseArchVersion(Arch); } // True if M-profile. bool arm::isARMMProfile(const llvm::Triple &Triple) { llvm::StringRef Arch = Triple.getArchName(); return llvm::ARM::parseArchProfile(Arch) == llvm::ARM::ProfileKind::M; } // Get Arch/CPU from args. void arm::getARMArchCPUFromArgs(const ArgList &Args, llvm::StringRef &Arch, llvm::StringRef &CPU, bool FromAs) { if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mcpu_EQ)) CPU = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) Arch = A->getValue(); if (!FromAs) return; for (const Arg *A : Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler)) { StringRef Value = A->getValue(); if (Value.startswith("-mcpu=")) CPU = Value.substr(6); if (Value.startswith("-march=")) Arch = Value.substr(7); } } // Handle -mhwdiv=. // FIXME: Use ARMTargetParser. static void getARMHWDivFeatures(const Driver &D, const Arg *A, const ArgList &Args, StringRef HWDiv, std::vector &Features) { uint64_t HWDivID = llvm::ARM::parseHWDiv(HWDiv); if (!llvm::ARM::getHWDivFeatures(HWDivID, Features)) D.Diag(clang::diag::err_drv_clang_unsupported) << A->getAsString(Args); } // Handle -mfpu=. static unsigned getARMFPUFeatures(const Driver &D, const Arg *A, const ArgList &Args, StringRef FPU, std::vector &Features) { unsigned FPUID = llvm::ARM::parseFPU(FPU); if (!llvm::ARM::getFPUFeatures(FPUID, Features)) D.Diag(clang::diag::err_drv_clang_unsupported) << A->getAsString(Args); return FPUID; } // Decode ARM features from string like +[no]featureA+[no]featureB+... static bool DecodeARMFeatures(const Driver &D, StringRef text, StringRef CPU, llvm::ARM::ArchKind ArchKind, std::vector &Features, unsigned &ArgFPUID) { SmallVector Split; text.split(Split, StringRef("+"), -1, false); for (StringRef Feature : Split) { if (!appendArchExtFeatures(CPU, ArchKind, Feature, Features, ArgFPUID)) return false; } return true; } static void DecodeARMFeaturesFromCPU(const Driver &D, StringRef CPU, std::vector &Features) { CPU = CPU.split("+").first; if (CPU != "generic") { llvm::ARM::ArchKind ArchKind = llvm::ARM::parseCPUArch(CPU); uint64_t Extension = llvm::ARM::getDefaultExtensions(CPU, ArchKind); llvm::ARM::getExtensionFeatures(Extension, Features); } } // Check if -march is valid by checking if it can be canonicalised and parsed. // getARMArch is used here instead of just checking the -march value in order // to handle -march=native correctly. static void checkARMArchName(const Driver &D, const Arg *A, const ArgList &Args, llvm::StringRef ArchName, llvm::StringRef CPUName, std::vector &Features, const llvm::Triple &Triple, unsigned &ArgFPUID) { std::pair Split = ArchName.split("+"); std::string MArch = arm::getARMArch(ArchName, Triple); llvm::ARM::ArchKind ArchKind = llvm::ARM::parseArch(MArch); if (ArchKind == llvm::ARM::ArchKind::INVALID || (Split.second.size() && !DecodeARMFeatures(D, Split.second, CPUName, ArchKind, Features, ArgFPUID))) D.Diag(clang::diag::err_drv_clang_unsupported) << A->getAsString(Args); } // Check -mcpu=. Needs ArchName to handle -mcpu=generic. static void checkARMCPUName(const Driver &D, const Arg *A, const ArgList &Args, llvm::StringRef CPUName, llvm::StringRef ArchName, std::vector &Features, const llvm::Triple &Triple, unsigned &ArgFPUID) { std::pair Split = CPUName.split("+"); std::string CPU = arm::getARMTargetCPU(CPUName, ArchName, Triple); llvm::ARM::ArchKind ArchKind = arm::getLLVMArchKindForARM(CPU, ArchName, Triple); if (ArchKind == llvm::ARM::ArchKind::INVALID || (Split.second.size() && !DecodeARMFeatures(D, Split.second, CPU, ArchKind, Features, ArgFPUID))) D.Diag(clang::diag::err_drv_clang_unsupported) << A->getAsString(Args); } bool arm::useAAPCSForMachO(const llvm::Triple &T) { // The backend is hardwired to assume AAPCS for M-class processors, ensure // the frontend matches that. return T.getEnvironment() == llvm::Triple::EABI || T.getEnvironment() == llvm::Triple::EABIHF || T.getOS() == llvm::Triple::UnknownOS || isARMMProfile(T); } // Select mode for reading thread pointer (-mtp=soft/cp15). arm::ReadTPMode arm::getReadTPMode(const Driver &D, const ArgList &Args) { if (Arg *A = Args.getLastArg(options::OPT_mtp_mode_EQ)) { arm::ReadTPMode ThreadPointer = llvm::StringSwitch(A->getValue()) .Case("cp15", ReadTPMode::Cp15) .Case("soft", ReadTPMode::Soft) .Default(ReadTPMode::Invalid); if (ThreadPointer != ReadTPMode::Invalid) return ThreadPointer; if (StringRef(A->getValue()).empty()) D.Diag(diag::err_drv_missing_arg_mtp) << A->getAsString(Args); else D.Diag(diag::err_drv_invalid_mtp) << A->getAsString(Args); return ReadTPMode::Invalid; } return ReadTPMode::Soft; } arm::FloatABI arm::getARMFloatABI(const ToolChain &TC, const ArgList &Args) { return arm::getARMFloatABI(TC.getDriver(), TC.getEffectiveTriple(), Args); } arm::FloatABI arm::getDefaultFloatABI(const llvm::Triple &Triple) { auto SubArch = getARMSubArchVersionNumber(Triple); switch (Triple.getOS()) { case llvm::Triple::Darwin: case llvm::Triple::MacOSX: case llvm::Triple::IOS: case llvm::Triple::TvOS: // Darwin defaults to "softfp" for v6 and v7. if (Triple.isWatchABI()) return FloatABI::Hard; else return (SubArch == 6 || SubArch == 7) ? FloatABI::SoftFP : FloatABI::Soft; case llvm::Triple::WatchOS: return FloatABI::Hard; // FIXME: this is invalid for WindowsCE case llvm::Triple::Win32: return FloatABI::Hard; case llvm::Triple::NetBSD: switch (Triple.getEnvironment()) { case llvm::Triple::EABIHF: case llvm::Triple::GNUEABIHF: return FloatABI::Hard; default: return FloatABI::Soft; } break; case llvm::Triple::FreeBSD: switch (Triple.getEnvironment()) { case llvm::Triple::GNUEABIHF: return FloatABI::Hard; default: // FreeBSD defaults to soft float return FloatABI::Soft; } break; case llvm::Triple::OpenBSD: return FloatABI::SoftFP; default: switch (Triple.getEnvironment()) { case llvm::Triple::GNUEABIHF: case llvm::Triple::MuslEABIHF: case llvm::Triple::EABIHF: return FloatABI::Hard; case llvm::Triple::GNUEABI: case llvm::Triple::MuslEABI: case llvm::Triple::EABI: // EABI is always AAPCS, and if it was not marked 'hard', it's softfp return FloatABI::SoftFP; case llvm::Triple::Android: return (SubArch >= 7) ? FloatABI::SoftFP : FloatABI::Soft; default: return FloatABI::Invalid; } } return FloatABI::Invalid; } // Select the float ABI as determined by -msoft-float, -mhard-float, and // -mfloat-abi=. arm::FloatABI arm::getARMFloatABI(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) { arm::FloatABI ABI = FloatABI::Invalid; if (Arg *A = Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float, options::OPT_mfloat_abi_EQ)) { if (A->getOption().matches(options::OPT_msoft_float)) { ABI = FloatABI::Soft; } else if (A->getOption().matches(options::OPT_mhard_float)) { ABI = FloatABI::Hard; } else { ABI = llvm::StringSwitch(A->getValue()) .Case("soft", FloatABI::Soft) .Case("softfp", FloatABI::SoftFP) .Case("hard", FloatABI::Hard) .Default(FloatABI::Invalid); if (ABI == FloatABI::Invalid && !StringRef(A->getValue()).empty()) { D.Diag(diag::err_drv_invalid_mfloat_abi) << A->getAsString(Args); ABI = FloatABI::Soft; } } } // If unspecified, choose the default based on the platform. if (ABI == FloatABI::Invalid) ABI = arm::getDefaultFloatABI(Triple); if (ABI == FloatABI::Invalid) { // Assume "soft", but warn the user we are guessing. if (Triple.isOSBinFormatMachO() && Triple.getSubArch() == llvm::Triple::ARMSubArch_v7em) ABI = FloatABI::Hard; else ABI = FloatABI::Soft; if (Triple.getOS() != llvm::Triple::UnknownOS || !Triple.isOSBinFormatMachO()) D.Diag(diag::warn_drv_assuming_mfloat_abi_is) << "soft"; } assert(ABI != FloatABI::Invalid && "must select an ABI"); return ABI; } static bool hasIntegerMVE(const std::vector &F) { auto MVE = llvm::find(llvm::reverse(F), "+mve"); auto NoMVE = llvm::find(llvm::reverse(F), "-mve"); return MVE != F.rend() && (NoMVE == F.rend() || std::distance(MVE, NoMVE) > 0); } void arm::getARMTargetFeatures(const Driver &D, const llvm::Triple &Triple, const ArgList &Args, ArgStringList &CmdArgs, std::vector &Features, bool ForAS) { bool KernelOrKext = Args.hasArg(options::OPT_mkernel, options::OPT_fapple_kext); arm::FloatABI ABI = arm::getARMFloatABI(D, Triple, Args); arm::ReadTPMode ThreadPointer = arm::getReadTPMode(D, Args); const Arg *WaCPU = nullptr, *WaFPU = nullptr; const Arg *WaHDiv = nullptr, *WaArch = nullptr; // This vector will accumulate features from the architecture // extension suffixes on -mcpu and -march (e.g. the 'bar' in // -mcpu=foo+bar). We want to apply those after the features derived // from the FPU, in case -mfpu generates a negative feature which // the +bar is supposed to override. std::vector ExtensionFeatures; if (!ForAS) { // FIXME: Note, this is a hack, the LLVM backend doesn't actually use these // yet (it uses the -mfloat-abi and -msoft-float options), and it is // stripped out by the ARM target. We should probably pass this a new // -target-option, which is handled by the -cc1/-cc1as invocation. // // FIXME2: For consistency, it would be ideal if we set up the target // machine state the same when using the frontend or the assembler. We don't // currently do that for the assembler, we pass the options directly to the // backend and never even instantiate the frontend TargetInfo. If we did, // and used its handleTargetFeatures hook, then we could ensure the // assembler and the frontend behave the same. // Use software floating point operations? if (ABI == arm::FloatABI::Soft) Features.push_back("+soft-float"); // Use software floating point argument passing? if (ABI != arm::FloatABI::Hard) Features.push_back("+soft-float-abi"); } else { // Here, we make sure that -Wa,-mfpu/cpu/arch/hwdiv will be passed down // to the assembler correctly. for (const Arg *A : Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler)) { StringRef Value = A->getValue(); if (Value.startswith("-mfpu=")) { WaFPU = A; } else if (Value.startswith("-mcpu=")) { WaCPU = A; } else if (Value.startswith("-mhwdiv=")) { WaHDiv = A; } else if (Value.startswith("-march=")) { WaArch = A; } } } if (ThreadPointer == arm::ReadTPMode::Cp15) Features.push_back("+read-tp-hard"); const Arg *ArchArg = Args.getLastArg(options::OPT_march_EQ); const Arg *CPUArg = Args.getLastArg(options::OPT_mcpu_EQ); StringRef ArchName; StringRef CPUName; unsigned ArchArgFPUID = llvm::ARM::FK_INVALID; unsigned CPUArgFPUID = llvm::ARM::FK_INVALID; // Check -mcpu. ClangAs gives preference to -Wa,-mcpu=. if (WaCPU) { if (CPUArg) D.Diag(clang::diag::warn_drv_unused_argument) << CPUArg->getAsString(Args); CPUName = StringRef(WaCPU->getValue()).substr(6); CPUArg = WaCPU; } else if (CPUArg) CPUName = CPUArg->getValue(); // Check -march. ClangAs gives preference to -Wa,-march=. if (WaArch) { if (ArchArg) D.Diag(clang::diag::warn_drv_unused_argument) << ArchArg->getAsString(Args); ArchName = StringRef(WaArch->getValue()).substr(7); checkARMArchName(D, WaArch, Args, ArchName, CPUName, ExtensionFeatures, Triple, ArchArgFPUID); // FIXME: Set Arch. D.Diag(clang::diag::warn_drv_unused_argument) << WaArch->getAsString(Args); } else if (ArchArg) { ArchName = ArchArg->getValue(); checkARMArchName(D, ArchArg, Args, ArchName, CPUName, ExtensionFeatures, Triple, ArchArgFPUID); } // Add CPU features for generic CPUs if (CPUName == "native") { llvm::StringMap HostFeatures; if (llvm::sys::getHostCPUFeatures(HostFeatures)) for (auto &F : HostFeatures) Features.push_back( Args.MakeArgString((F.second ? "+" : "-") + F.first())); } else if (!CPUName.empty()) { // This sets the default features for the specified CPU. We certainly don't // want to override the features that have been explicitly specified on the // command line. Therefore, process them directly instead of appending them // at the end later. DecodeARMFeaturesFromCPU(D, CPUName, Features); } if (CPUArg) checkARMCPUName(D, CPUArg, Args, CPUName, ArchName, ExtensionFeatures, Triple, CPUArgFPUID); // Honor -mfpu=. ClangAs gives preference to -Wa,-mfpu=. unsigned FPUID = llvm::ARM::FK_INVALID; const Arg *FPUArg = Args.getLastArg(options::OPT_mfpu_EQ); if (WaFPU) { if (FPUArg) D.Diag(clang::diag::warn_drv_unused_argument) << FPUArg->getAsString(Args); (void)getARMFPUFeatures(D, WaFPU, Args, StringRef(WaFPU->getValue()).substr(6), Features); } else if (FPUArg) { FPUID = getARMFPUFeatures(D, FPUArg, Args, FPUArg->getValue(), Features); } else if (Triple.isAndroid() && getARMSubArchVersionNumber(Triple) >= 7) { const char *AndroidFPU = "neon"; FPUID = llvm::ARM::parseFPU(AndroidFPU); if (!llvm::ARM::getFPUFeatures(FPUID, Features)) D.Diag(clang::diag::err_drv_clang_unsupported) << std::string("-mfpu=") + AndroidFPU; } // Now we've finished accumulating features from arch, cpu and fpu, // we can append the ones for architecture extensions that we // collected separately. Features.insert(std::end(Features), std::begin(ExtensionFeatures), std::end(ExtensionFeatures)); // Honor -mhwdiv=. ClangAs gives preference to -Wa,-mhwdiv=. const Arg *HDivArg = Args.getLastArg(options::OPT_mhwdiv_EQ); if (WaHDiv) { if (HDivArg) D.Diag(clang::diag::warn_drv_unused_argument) << HDivArg->getAsString(Args); getARMHWDivFeatures(D, WaHDiv, Args, StringRef(WaHDiv->getValue()).substr(8), Features); } else if (HDivArg) getARMHWDivFeatures(D, HDivArg, Args, HDivArg->getValue(), Features); // Handle (arch-dependent) fp16fml/fullfp16 relationship. // Must happen before any features are disabled due to soft-float. // FIXME: this fp16fml option handling will be reimplemented after the // TargetParser rewrite. const auto ItRNoFullFP16 = std::find(Features.rbegin(), Features.rend(), "-fullfp16"); const auto ItRFP16FML = std::find(Features.rbegin(), Features.rend(), "+fp16fml"); if (Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v8_4a) { const auto ItRFullFP16 = std::find(Features.rbegin(), Features.rend(), "+fullfp16"); if (ItRFullFP16 < ItRNoFullFP16 && ItRFullFP16 < ItRFP16FML) { // Only entangled feature that can be to the right of this +fullfp16 is -fp16fml. // Only append the +fp16fml if there is no -fp16fml after the +fullfp16. if (std::find(Features.rbegin(), ItRFullFP16, "-fp16fml") == ItRFullFP16) Features.push_back("+fp16fml"); } else goto fp16_fml_fallthrough; } else { fp16_fml_fallthrough: // In both of these cases, putting the 'other' feature on the end of the vector will // result in the same effect as placing it immediately after the current feature. if (ItRNoFullFP16 < ItRFP16FML) Features.push_back("-fp16fml"); else if (ItRNoFullFP16 > ItRFP16FML) Features.push_back("+fullfp16"); } // Setting -msoft-float/-mfloat-abi=soft, -mfpu=none, or adding +nofp to // -march/-mcpu effectively disables the FPU (GCC ignores the -mfpu options in // this case). Note that the ABI can also be set implicitly by the target // selected. if (ABI == arm::FloatABI::Soft) { llvm::ARM::getFPUFeatures(llvm::ARM::FK_NONE, Features); // Disable all features relating to hardware FP, not already disabled by the // above call. Features.insert(Features.end(), {"-dotprod", "-fp16fml", "-bf16", "-mve", "-mve.fp", "-fpregs"}); } else if (FPUID == llvm::ARM::FK_NONE || ArchArgFPUID == llvm::ARM::FK_NONE || CPUArgFPUID == llvm::ARM::FK_NONE) { // -mfpu=none, -march=armvX+nofp or -mcpu=X+nofp is *very* similar to // -mfloat-abi=soft, only that it should not disable MVE-I. They disable the // FPU, but not the FPU registers, thus MVE-I, which depends only on the // latter, is still supported. Features.insert(Features.end(), {"-dotprod", "-fp16fml", "-bf16", "-mve.fp"}); if (!hasIntegerMVE(Features)) Features.emplace_back("-fpregs"); } // En/disable crc code generation. if (Arg *A = Args.getLastArg(options::OPT_mcrc, options::OPT_mnocrc)) { if (A->getOption().matches(options::OPT_mcrc)) Features.push_back("+crc"); else Features.push_back("-crc"); } // For Arch >= ARMv8.0 && A profile: crypto = sha2 + aes // FIXME: this needs reimplementation after the TargetParser rewrite auto CryptoIt = llvm::find_if(llvm::reverse(Features), [](const StringRef F) { return F.contains("crypto"); }); if (CryptoIt != Features.rend()) { if (CryptoIt->take_front() == "+") { StringRef ArchSuffix = arm::getLLVMArchSuffixForARM( arm::getARMTargetCPU(CPUName, ArchName, Triple), ArchName, Triple); if (llvm::ARM::parseArchVersion(ArchSuffix) >= 8 && llvm::ARM::parseArchProfile(ArchSuffix) == llvm::ARM::ProfileKind::A) { if (ArchName.find_lower("+nosha2") == StringRef::npos && CPUName.find_lower("+nosha2") == StringRef::npos) Features.push_back("+sha2"); if (ArchName.find_lower("+noaes") == StringRef::npos && CPUName.find_lower("+noaes") == StringRef::npos) Features.push_back("+aes"); } else { D.Diag(clang::diag::warn_target_unsupported_extension) << "crypto" << llvm::ARM::getArchName(llvm::ARM::parseArch(ArchSuffix)); // With -fno-integrated-as -mfpu=crypto-neon-fp-armv8 some assemblers such as the GNU assembler // will permit the use of crypto instructions as the fpu will override the architecture. // We keep the crypto feature in this case to preserve compatibility. // In all other cases we remove the crypto feature. if (!Args.hasArg(options::OPT_fno_integrated_as)) Features.push_back("-crypto"); } } } // CMSE: Check for target 8M (for -mcmse to be applicable) is performed later. if (Args.getLastArg(options::OPT_mcmse)) Features.push_back("+8msecext"); // Look for the last occurrence of -mlong-calls or -mno-long-calls. If // neither options are specified, see if we are compiling for kernel/kext and // decide whether to pass "+long-calls" based on the OS and its version. if (Arg *A = Args.getLastArg(options::OPT_mlong_calls, options::OPT_mno_long_calls)) { if (A->getOption().matches(options::OPT_mlong_calls)) Features.push_back("+long-calls"); } else if (KernelOrKext && (!Triple.isiOS() || Triple.isOSVersionLT(6)) && !Triple.isWatchOS()) { Features.push_back("+long-calls"); } // Generate execute-only output (no data access to code sections). // This only makes sense for the compiler, not for the assembler. if (!ForAS) { // Supported only on ARMv6T2 and ARMv7 and above. // Cannot be combined with -mno-movt or -mlong-calls if (Arg *A = Args.getLastArg(options::OPT_mexecute_only, options::OPT_mno_execute_only)) { if (A->getOption().matches(options::OPT_mexecute_only)) { if (getARMSubArchVersionNumber(Triple) < 7 && llvm::ARM::parseArch(Triple.getArchName()) != llvm::ARM::ArchKind::ARMV6T2) D.Diag(diag::err_target_unsupported_execute_only) << Triple.getArchName(); else if (Arg *B = Args.getLastArg(options::OPT_mno_movt)) D.Diag(diag::err_opt_not_valid_with_opt) << A->getAsString(Args) << B->getAsString(Args); // Long calls create constant pool entries and have not yet been fixed up // to play nicely with execute-only. Hence, they cannot be used in // execute-only code for now else if (Arg *B = Args.getLastArg(options::OPT_mlong_calls, options::OPT_mno_long_calls)) { if (B->getOption().matches(options::OPT_mlong_calls)) D.Diag(diag::err_opt_not_valid_with_opt) << A->getAsString(Args) << B->getAsString(Args); } Features.push_back("+execute-only"); } } } // Kernel code has more strict alignment requirements. if (KernelOrKext) Features.push_back("+strict-align"); else if (Arg *A = Args.getLastArg(options::OPT_mno_unaligned_access, options::OPT_munaligned_access)) { if (A->getOption().matches(options::OPT_munaligned_access)) { // No v6M core supports unaligned memory access (v6M ARM ARM A3.2). if (Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v6m) D.Diag(diag::err_target_unsupported_unaligned) << "v6m"; // v8M Baseline follows on from v6M, so doesn't support unaligned memory // access either. else if (Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v8m_baseline) D.Diag(diag::err_target_unsupported_unaligned) << "v8m.base"; } else Features.push_back("+strict-align"); } else { // Assume pre-ARMv6 doesn't support unaligned accesses. // // ARMv6 may or may not support unaligned accesses depending on the // SCTLR.U bit, which is architecture-specific. We assume ARMv6 // Darwin and NetBSD targets support unaligned accesses, and others don't. // // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit // which raises an alignment fault on unaligned accesses. Linux // defaults this bit to 0 and handles it as a system-wide (not // per-process) setting. It is therefore safe to assume that ARMv7+ // Linux targets support unaligned accesses. The same goes for NaCl. // // The above behavior is consistent with GCC. int VersionNum = getARMSubArchVersionNumber(Triple); if (Triple.isOSDarwin() || Triple.isOSNetBSD()) { if (VersionNum < 6 || Triple.getSubArch() == llvm::Triple::SubArchType::ARMSubArch_v6m) Features.push_back("+strict-align"); } else if (Triple.isOSLinux() || Triple.isOSNaCl()) { if (VersionNum < 7) Features.push_back("+strict-align"); } else Features.push_back("+strict-align"); } // llvm does not support reserving registers in general. There is support // for reserving r9 on ARM though (defined as a platform-specific register // in ARM EABI). if (Args.hasArg(options::OPT_ffixed_r9)) Features.push_back("+reserve-r9"); // The kext linker doesn't know how to deal with movw/movt. if (KernelOrKext || Args.hasArg(options::OPT_mno_movt)) Features.push_back("+no-movt"); if (Args.hasArg(options::OPT_mno_neg_immediates)) Features.push_back("+no-neg-immediates"); } const std::string arm::getARMArch(StringRef Arch, const llvm::Triple &Triple) { std::string MArch; if (!Arch.empty()) MArch = std::string(Arch); else MArch = std::string(Triple.getArchName()); MArch = StringRef(MArch).split("+").first.lower(); // Handle -march=native. if (MArch == "native") { std::string CPU = std::string(llvm::sys::getHostCPUName()); if (CPU != "generic") { // Translate the native cpu into the architecture suffix for that CPU. StringRef Suffix = arm::getLLVMArchSuffixForARM(CPU, MArch, Triple); // If there is no valid architecture suffix for this CPU we don't know how // to handle it, so return no architecture. if (Suffix.empty()) MArch = ""; else MArch = std::string("arm") + Suffix.str(); } } return MArch; } /// Get the (LLVM) name of the minimum ARM CPU for the arch we are targeting. StringRef arm::getARMCPUForMArch(StringRef Arch, const llvm::Triple &Triple) { std::string MArch = getARMArch(Arch, Triple); // getARMCPUForArch defaults to the triple if MArch is empty, but empty MArch // here means an -march=native that we can't handle, so instead return no CPU. if (MArch.empty()) return StringRef(); // We need to return an empty string here on invalid MArch values as the // various places that call this function can't cope with a null result. return Triple.getARMCPUForArch(MArch); } /// getARMTargetCPU - Get the (LLVM) name of the ARM cpu we are targeting. std::string arm::getARMTargetCPU(StringRef CPU, StringRef Arch, const llvm::Triple &Triple) { // FIXME: Warn on inconsistent use of -mcpu and -march. // If we have -mcpu=, use that. if (!CPU.empty()) { std::string MCPU = StringRef(CPU).split("+").first.lower(); // Handle -mcpu=native. if (MCPU == "native") return std::string(llvm::sys::getHostCPUName()); else return MCPU; } return std::string(getARMCPUForMArch(Arch, Triple)); } /// getLLVMArchSuffixForARM - Get the LLVM ArchKind value to use for a /// particular CPU (or Arch, if CPU is generic). This is needed to /// pass to functions like llvm::ARM::getDefaultFPU which need an /// ArchKind as well as a CPU name. llvm::ARM::ArchKind arm::getLLVMArchKindForARM(StringRef CPU, StringRef Arch, const llvm::Triple &Triple) { llvm::ARM::ArchKind ArchKind; if (CPU == "generic" || CPU.empty()) { std::string ARMArch = tools::arm::getARMArch(Arch, Triple); ArchKind = llvm::ARM::parseArch(ARMArch); if (ArchKind == llvm::ARM::ArchKind::INVALID) // In case of generic Arch, i.e. "arm", // extract arch from default cpu of the Triple ArchKind = llvm::ARM::parseCPUArch(Triple.getARMCPUForArch(ARMArch)); } else { // FIXME: horrible hack to get around the fact that Cortex-A7 is only an // armv7k triple if it's actually been specified via "-arch armv7k". ArchKind = (Arch == "armv7k" || Arch == "thumbv7k") ? llvm::ARM::ArchKind::ARMV7K : llvm::ARM::parseCPUArch(CPU); } return ArchKind; } /// getLLVMArchSuffixForARM - Get the LLVM arch name to use for a particular /// CPU (or Arch, if CPU is generic). // FIXME: This is redundant with -mcpu, why does LLVM use this. StringRef arm::getLLVMArchSuffixForARM(StringRef CPU, StringRef Arch, const llvm::Triple &Triple) { llvm::ARM::ArchKind ArchKind = getLLVMArchKindForARM(CPU, Arch, Triple); if (ArchKind == llvm::ARM::ArchKind::INVALID) return ""; return llvm::ARM::getSubArch(ArchKind); } void arm::appendBE8LinkFlag(const ArgList &Args, ArgStringList &CmdArgs, const llvm::Triple &Triple) { if (Args.hasArg(options::OPT_r)) return; // ARMv7 (and later) and ARMv6-M do not support BE-32, so instruct the linker // to generate BE-8 executables. if (arm::getARMSubArchVersionNumber(Triple) >= 7 || arm::isARMMProfile(Triple)) CmdArgs.push_back("--be8"); }