//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// Scudo Hardened Allocator implementation. /// It uses the sanitizer_common allocator as a base and aims at mitigating /// heap corruption vulnerabilities. It provides a checksum-guarded chunk /// header, a delayed free list, and additional sanity checks. /// //===----------------------------------------------------------------------===// #include "scudo_allocator.h" #include "scudo_crc32.h" #include "scudo_errors.h" #include "scudo_flags.h" #include "scudo_interface_internal.h" #include "scudo_tsd.h" #include "scudo_utils.h" #include "sanitizer_common/sanitizer_allocator_checks.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_quarantine.h" #ifdef GWP_ASAN_HOOKS # include "gwp_asan/guarded_pool_allocator.h" # include "gwp_asan/optional/backtrace.h" # include "gwp_asan/optional/options_parser.h" #include "gwp_asan/optional/segv_handler.h" #endif // GWP_ASAN_HOOKS #include #include namespace __scudo { // Global static cookie, initialized at start-up. static u32 Cookie; // We default to software CRC32 if the alternatives are not supported, either // at compilation or at runtime. static atomic_uint8_t HashAlgorithm = { CRC32Software }; inline u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) { // If the hardware CRC32 feature is defined here, it was enabled everywhere, // as opposed to only for scudo_crc32.cpp. This means that other hardware // specific instructions were likely emitted at other places, and as a // result there is no reason to not use it here. #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32) Crc = CRC32_INTRINSIC(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = CRC32_INTRINSIC(Crc, Array[i]); return Crc; #else if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) { Crc = computeHardwareCRC32(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = computeHardwareCRC32(Crc, Array[i]); return Crc; } Crc = computeSoftwareCRC32(Crc, Value); for (uptr i = 0; i < ArraySize; i++) Crc = computeSoftwareCRC32(Crc, Array[i]); return Crc; #endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32) } static BackendT &getBackend(); namespace Chunk { static inline AtomicPackedHeader *getAtomicHeader(void *Ptr) { return reinterpret_cast(reinterpret_cast(Ptr) - getHeaderSize()); } static inline const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) { return reinterpret_cast( reinterpret_cast(Ptr) - getHeaderSize()); } static inline bool isAligned(const void *Ptr) { return IsAligned(reinterpret_cast(Ptr), MinAlignment); } // We can't use the offset member of the chunk itself, as we would double // fetch it without any warranty that it wouldn't have been tampered. To // prevent this, we work with a local copy of the header. static inline void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) { return reinterpret_cast(reinterpret_cast(Ptr) - getHeaderSize() - (Header->Offset << MinAlignmentLog)); } // Returns the usable size for a chunk, meaning the amount of bytes from the // beginning of the user data to the end of the backend allocated chunk. static inline uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) { const uptr ClassId = Header->ClassId; if (ClassId) return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() - (Header->Offset << MinAlignmentLog); return SecondaryT::GetActuallyAllocatedSize( getBackendPtr(Ptr, Header)) - getHeaderSize(); } // Returns the size the user requested when allocating the chunk. static inline uptr getSize(const void *Ptr, UnpackedHeader *Header) { const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; if (Header->ClassId) return SizeOrUnusedBytes; return SecondaryT::GetActuallyAllocatedSize( getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes; } // Compute the checksum of the chunk pointer and its header. static inline u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) { UnpackedHeader ZeroChecksumHeader = *Header; ZeroChecksumHeader.Checksum = 0; uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)]; memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder)); const u32 Crc = computeCRC32(Cookie, reinterpret_cast(Ptr), HeaderHolder, ARRAY_SIZE(HeaderHolder)); return static_cast(Crc); } // Checks the validity of a chunk by verifying its checksum. It doesn't // incur termination in the event of an invalid chunk. static inline bool isValid(const void *Ptr) { PackedHeader NewPackedHeader = atomic_load_relaxed(getConstAtomicHeader(Ptr)); UnpackedHeader NewUnpackedHeader = bit_cast(NewPackedHeader); return (NewUnpackedHeader.Checksum == computeChecksum(Ptr, &NewUnpackedHeader)); } // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid // for a fully nulled out header, its state will be available anyway. COMPILER_CHECK(ChunkAvailable == 0); // Loads and unpacks the header, verifying the checksum in the process. static inline void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) { PackedHeader NewPackedHeader = atomic_load_relaxed(getConstAtomicHeader(Ptr)); *NewUnpackedHeader = bit_cast(NewPackedHeader); if (UNLIKELY(NewUnpackedHeader->Checksum != computeChecksum(Ptr, NewUnpackedHeader))) dieWithMessage("corrupted chunk header at address %p\n", Ptr); } // Packs and stores the header, computing the checksum in the process. static inline void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) { NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader); PackedHeader NewPackedHeader = bit_cast(*NewUnpackedHeader); atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader); } // Packs and stores the header, computing the checksum in the process. We // compare the current header with the expected provided one to ensure that // we are not being raced by a corruption occurring in another thread. static inline void compareExchangeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader, UnpackedHeader *OldUnpackedHeader) { NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader); PackedHeader NewPackedHeader = bit_cast(*NewUnpackedHeader); PackedHeader OldPackedHeader = bit_cast(*OldUnpackedHeader); if (UNLIKELY(!atomic_compare_exchange_strong( getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader, memory_order_relaxed))) dieWithMessage("race on chunk header at address %p\n", Ptr); } } // namespace Chunk struct QuarantineCallback { explicit QuarantineCallback(AllocatorCacheT *Cache) : Cache_(Cache) {} // Chunk recycling function, returns a quarantined chunk to the backend, // first making sure it hasn't been tampered with. void Recycle(void *Ptr) { UnpackedHeader Header; Chunk::loadHeader(Ptr, &Header); if (UNLIKELY(Header.State != ChunkQuarantine)) dieWithMessage("invalid chunk state when recycling address %p\n", Ptr); UnpackedHeader NewHeader = Header; NewHeader.State = ChunkAvailable; Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header); void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header); if (Header.ClassId) getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId); else getBackend().deallocateSecondary(BackendPtr); } // Internal quarantine allocation and deallocation functions. We first check // that the batches are indeed serviced by the Primary. // TODO(kostyak): figure out the best way to protect the batches. void *Allocate(uptr Size) { const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch)); return getBackend().allocatePrimary(Cache_, BatchClassId); } void Deallocate(void *Ptr) { const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch)); getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId); } AllocatorCacheT *Cache_; COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize); }; typedef Quarantine QuarantineT; typedef QuarantineT::Cache QuarantineCacheT; COMPILER_CHECK(sizeof(QuarantineCacheT) <= sizeof(ScudoTSD::QuarantineCachePlaceHolder)); QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) { return reinterpret_cast(TSD->QuarantineCachePlaceHolder); } #ifdef GWP_ASAN_HOOKS static gwp_asan::GuardedPoolAllocator GuardedAlloc; #endif // GWP_ASAN_HOOKS struct Allocator { static const uptr MaxAllowedMallocSize = FIRST_32_SECOND_64(2UL << 30, 1ULL << 40); BackendT Backend; QuarantineT Quarantine; u32 QuarantineChunksUpToSize; bool DeallocationTypeMismatch; bool ZeroContents; bool DeleteSizeMismatch; bool CheckRssLimit; uptr HardRssLimitMb; uptr SoftRssLimitMb; atomic_uint8_t RssLimitExceeded; atomic_uint64_t RssLastCheckedAtNS; explicit Allocator(LinkerInitialized) : Quarantine(LINKER_INITIALIZED) {} NOINLINE void performSanityChecks(); void init() { SanitizerToolName = "Scudo"; PrimaryAllocatorName = "ScudoPrimary"; SecondaryAllocatorName = "ScudoSecondary"; initFlags(); performSanityChecks(); // Check if hardware CRC32 is supported in the binary and by the platform, // if so, opt for the CRC32 hardware version of the checksum. if (&computeHardwareCRC32 && hasHardwareCRC32()) atomic_store_relaxed(&HashAlgorithm, CRC32Hardware); SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); Backend.init(common_flags()->allocator_release_to_os_interval_ms); HardRssLimitMb = common_flags()->hard_rss_limit_mb; SoftRssLimitMb = common_flags()->soft_rss_limit_mb; Quarantine.Init( static_cast(getFlags()->QuarantineSizeKb) << 10, static_cast(getFlags()->ThreadLocalQuarantineSizeKb) << 10); QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 : getFlags()->QuarantineChunksUpToSize; DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch; DeleteSizeMismatch = getFlags()->DeleteSizeMismatch; ZeroContents = getFlags()->ZeroContents; if (UNLIKELY(!GetRandom(reinterpret_cast(&Cookie), sizeof(Cookie), /*blocking=*/false))) { Cookie = static_cast((NanoTime() >> 12) ^ (reinterpret_cast(this) >> 4)); } CheckRssLimit = HardRssLimitMb || SoftRssLimitMb; if (CheckRssLimit) atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime()); } // Helper function that checks for a valid Scudo chunk. nullptr isn't. bool isValidPointer(const void *Ptr) { initThreadMaybe(); if (UNLIKELY(!Ptr)) return false; if (!Chunk::isAligned(Ptr)) return false; return Chunk::isValid(Ptr); } NOINLINE bool isRssLimitExceeded(); // Allocates a chunk. void *allocate(uptr Size, uptr Alignment, AllocType Type, bool ForceZeroContents = false) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.shouldSample())) { if (void *Ptr = GuardedAlloc.allocate(Size)) return Ptr; } #endif // GWP_ASAN_HOOKS if (UNLIKELY(Alignment > MaxAlignment)) { if (AllocatorMayReturnNull()) return nullptr; reportAllocationAlignmentTooBig(Alignment, MaxAlignment); } if (UNLIKELY(Alignment < MinAlignment)) Alignment = MinAlignment; const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) + Chunk::getHeaderSize(); const uptr AlignedSize = (Alignment > MinAlignment) ? NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize; if (UNLIKELY(Size >= MaxAllowedMallocSize) || UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) { if (AllocatorMayReturnNull()) return nullptr; reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize); } if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) { if (AllocatorMayReturnNull()) return nullptr; reportRssLimitExceeded(); } // Primary and Secondary backed allocations have a different treatment. We // deal with alignment requirements of Primary serviced allocations here, // but the Secondary will take care of its own alignment needs. void *BackendPtr; uptr BackendSize; u8 ClassId; if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) { BackendSize = AlignedSize; ClassId = SizeClassMap::ClassID(BackendSize); bool UnlockRequired; ScudoTSD *TSD = getTSDAndLock(&UnlockRequired); BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId); if (UnlockRequired) TSD->unlock(); } else { BackendSize = NeededSize; ClassId = 0; BackendPtr = Backend.allocateSecondary(BackendSize, Alignment); } if (UNLIKELY(!BackendPtr)) { SetAllocatorOutOfMemory(); if (AllocatorMayReturnNull()) return nullptr; reportOutOfMemory(Size); } // If requested, we will zero out the entire contents of the returned chunk. if ((ForceZeroContents || ZeroContents) && ClassId) memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId)); UnpackedHeader Header = {}; uptr UserPtr = reinterpret_cast(BackendPtr) + Chunk::getHeaderSize(); if (UNLIKELY(!IsAligned(UserPtr, Alignment))) { // Since the Secondary takes care of alignment, a non-aligned pointer // means it is from the Primary. It is also the only case where the offset // field of the header would be non-zero. DCHECK(ClassId); const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment); Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog; UserPtr = AlignedUserPtr; } DCHECK_LE(UserPtr + Size, reinterpret_cast(BackendPtr) + BackendSize); Header.State = ChunkAllocated; Header.AllocType = Type; if (ClassId) { Header.ClassId = ClassId; Header.SizeOrUnusedBytes = Size; } else { // The secondary fits the allocations to a page, so the amount of unused // bytes is the difference between the end of the user allocation and the // next page boundary. const uptr PageSize = GetPageSizeCached(); const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1); if (TrailingBytes) Header.SizeOrUnusedBytes = PageSize - TrailingBytes; } void *Ptr = reinterpret_cast(UserPtr); Chunk::storeHeader(Ptr, &Header); if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook) __sanitizer_malloc_hook(Ptr, Size); return Ptr; } // Place a chunk in the quarantine or directly deallocate it in the event of // a zero-sized quarantine, or if the size of the chunk is greater than the // quarantine chunk size threshold. void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header, uptr Size) { const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize); if (BypassQuarantine) { UnpackedHeader NewHeader = *Header; NewHeader.State = ChunkAvailable; Chunk::compareExchangeHeader(Ptr, &NewHeader, Header); void *BackendPtr = Chunk::getBackendPtr(Ptr, Header); if (Header->ClassId) { bool UnlockRequired; ScudoTSD *TSD = getTSDAndLock(&UnlockRequired); getBackend().deallocatePrimary(&TSD->Cache, BackendPtr, Header->ClassId); if (UnlockRequired) TSD->unlock(); } else { getBackend().deallocateSecondary(BackendPtr); } } else { // If a small memory amount was allocated with a larger alignment, we want // to take that into account. Otherwise the Quarantine would be filled // with tiny chunks, taking a lot of VA memory. This is an approximation // of the usable size, that allows us to not call // GetActuallyAllocatedSize. const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog); UnpackedHeader NewHeader = *Header; NewHeader.State = ChunkQuarantine; Chunk::compareExchangeHeader(Ptr, &NewHeader, Header); bool UnlockRequired; ScudoTSD *TSD = getTSDAndLock(&UnlockRequired); Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache), Ptr, EstimatedSize); if (UnlockRequired) TSD->unlock(); } } // Deallocates a Chunk, which means either adding it to the quarantine or // directly returning it to the backend if criteria are met. void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment, AllocType Type) { // For a deallocation, we only ensure minimal initialization, meaning thread // local data will be left uninitialized for now (when using ELF TLS). The // fallback cache will be used instead. This is a workaround for a situation // where the only heap operation performed in a thread would be a free past // the TLS destructors, ending up in initialized thread specific data never // being destroyed properly. Any other heap operation will do a full init. initThreadMaybe(/*MinimalInit=*/true); if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook) __sanitizer_free_hook(Ptr); if (UNLIKELY(!Ptr)) return; #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { GuardedAlloc.deallocate(Ptr); return; } #endif // GWP_ASAN_HOOKS if (UNLIKELY(!Chunk::isAligned(Ptr))) dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr); UnpackedHeader Header; Chunk::loadHeader(Ptr, &Header); if (UNLIKELY(Header.State != ChunkAllocated)) dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr); if (DeallocationTypeMismatch) { // The deallocation type has to match the allocation one. if (Header.AllocType != Type) { // With the exception of memalign'd Chunks, that can be still be free'd. if (Header.AllocType != FromMemalign || Type != FromMalloc) dieWithMessage("allocation type mismatch when deallocating address " "%p\n", Ptr); } } const uptr Size = Chunk::getSize(Ptr, &Header); if (DeleteSizeMismatch) { if (DeleteSize && DeleteSize != Size) dieWithMessage("invalid sized delete when deallocating address %p\n", Ptr); } (void)DeleteAlignment; // TODO(kostyak): verify that the alignment matches. quarantineOrDeallocateChunk(Ptr, &Header, Size); } // Reallocates a chunk. We can save on a new allocation if the new requested // size still fits in the chunk. void *reallocate(void *OldPtr, uptr NewSize) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { size_t OldSize = GuardedAlloc.getSize(OldPtr); void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc); if (NewPtr) memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); GuardedAlloc.deallocate(OldPtr); return NewPtr; } #endif // GWP_ASAN_HOOKS if (UNLIKELY(!Chunk::isAligned(OldPtr))) dieWithMessage("misaligned address when reallocating address %p\n", OldPtr); UnpackedHeader OldHeader; Chunk::loadHeader(OldPtr, &OldHeader); if (UNLIKELY(OldHeader.State != ChunkAllocated)) dieWithMessage("invalid chunk state when reallocating address %p\n", OldPtr); if (DeallocationTypeMismatch) { if (UNLIKELY(OldHeader.AllocType != FromMalloc)) dieWithMessage("allocation type mismatch when reallocating address " "%p\n", OldPtr); } const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader); // The new size still fits in the current chunk, and the size difference // is reasonable. if (NewSize <= UsableSize && (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) { UnpackedHeader NewHeader = OldHeader; NewHeader.SizeOrUnusedBytes = OldHeader.ClassId ? NewSize : UsableSize - NewSize; Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader); return OldPtr; } // Otherwise, we have to allocate a new chunk and copy the contents of the // old one. void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc); if (NewPtr) { const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes : UsableSize - OldHeader.SizeOrUnusedBytes; memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize)); quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize); } return NewPtr; } // Helper function that returns the actual usable size of a chunk. uptr getUsableSize(const void *Ptr) { initThreadMaybe(); if (UNLIKELY(!Ptr)) return 0; #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) return GuardedAlloc.getSize(Ptr); #endif // GWP_ASAN_HOOKS UnpackedHeader Header; Chunk::loadHeader(Ptr, &Header); // Getting the usable size of a chunk only makes sense if it's allocated. if (UNLIKELY(Header.State != ChunkAllocated)) dieWithMessage("invalid chunk state when sizing address %p\n", Ptr); return Chunk::getUsableSize(Ptr, &Header); } void *calloc(uptr NMemB, uptr Size) { initThreadMaybe(); if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) { if (AllocatorMayReturnNull()) return nullptr; reportCallocOverflow(NMemB, Size); } return allocate(NMemB * Size, MinAlignment, FromMalloc, true); } void commitBack(ScudoTSD *TSD) { Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache)); Backend.destroyCache(&TSD->Cache); } uptr getStats(AllocatorStat StatType) { initThreadMaybe(); uptr stats[AllocatorStatCount]; Backend.getStats(stats); return stats[StatType]; } bool canReturnNull() { initThreadMaybe(); return AllocatorMayReturnNull(); } void setRssLimit(uptr LimitMb, bool HardLimit) { if (HardLimit) HardRssLimitMb = LimitMb; else SoftRssLimitMb = LimitMb; CheckRssLimit = HardRssLimitMb || SoftRssLimitMb; } void printStats() { initThreadMaybe(); Backend.printStats(); } }; NOINLINE void Allocator::performSanityChecks() { // Verify that the header offset field can hold the maximum offset. In the // case of the Secondary allocator, it takes care of alignment and the // offset will always be 0. In the case of the Primary, the worst case // scenario happens in the last size class, when the backend allocation // would already be aligned on the requested alignment, which would happen // to be the maximum alignment that would fit in that size class. As a // result, the maximum offset will be at most the maximum alignment for the // last size class minus the header size, in multiples of MinAlignment. UnpackedHeader Header = {}; const uptr MaxPrimaryAlignment = 1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment); const uptr MaxOffset = (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; Header.Offset = MaxOffset; if (Header.Offset != MaxOffset) dieWithMessage("maximum possible offset doesn't fit in header\n"); // Verify that we can fit the maximum size or amount of unused bytes in the // header. Given that the Secondary fits the allocation to a page, the worst // case scenario happens in the Primary. It will depend on the second to // last and last class sizes, as well as the dynamic base for the Primary. // The following is an over-approximation that works for our needs. const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1; Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) dieWithMessage("maximum possible unused bytes doesn't fit in header\n"); const uptr LargestClassId = SizeClassMap::kLargestClassID; Header.ClassId = LargestClassId; if (Header.ClassId != LargestClassId) dieWithMessage("largest class ID doesn't fit in header\n"); } // Opportunistic RSS limit check. This will update the RSS limit status, if // it can, every 250ms, otherwise it will just return the current one. NOINLINE bool Allocator::isRssLimitExceeded() { u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS); const u64 CurrentCheck = MonotonicNanoTime(); if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL))) return atomic_load_relaxed(&RssLimitExceeded); if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck, CurrentCheck, memory_order_relaxed)) return atomic_load_relaxed(&RssLimitExceeded); // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the // RSS from /proc/self/statm by default. We might want to // call getrusage directly, even if it's less accurate. const uptr CurrentRssMb = GetRSS() >> 20; if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb)) dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n", HardRssLimitMb, CurrentRssMb); if (SoftRssLimitMb) { if (atomic_load_relaxed(&RssLimitExceeded)) { if (CurrentRssMb <= SoftRssLimitMb) atomic_store_relaxed(&RssLimitExceeded, false); } else { if (CurrentRssMb > SoftRssLimitMb) { atomic_store_relaxed(&RssLimitExceeded, true); Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n", SoftRssLimitMb, CurrentRssMb); } } } return atomic_load_relaxed(&RssLimitExceeded); } static Allocator Instance(LINKER_INITIALIZED); static BackendT &getBackend() { return Instance.Backend; } void initScudo() { Instance.init(); #ifdef GWP_ASAN_HOOKS gwp_asan::options::initOptions(); gwp_asan::options::Options &Opts = gwp_asan::options::getOptions(); Opts.Backtrace = gwp_asan::options::getBacktraceFunction(); GuardedAlloc.init(Opts); if (Opts.InstallSignalHandlers) gwp_asan::crash_handler::installSignalHandlers( &GuardedAlloc, __sanitizer::Printf, gwp_asan::options::getPrintBacktraceFunction(), gwp_asan::crash_handler::getSegvBacktraceFunction()); #endif // GWP_ASAN_HOOKS } void ScudoTSD::init() { getBackend().initCache(&Cache); memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder)); } void ScudoTSD::commitBack() { Instance.commitBack(this); } void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) { if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) { errno = EINVAL; if (Instance.canReturnNull()) return nullptr; reportAllocationAlignmentNotPowerOfTwo(Alignment); } return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type)); } void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) { Instance.deallocate(Ptr, Size, Alignment, Type); } void *scudoRealloc(void *Ptr, uptr Size) { if (!Ptr) return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc)); if (Size == 0) { Instance.deallocate(Ptr, 0, 0, FromMalloc); return nullptr; } return SetErrnoOnNull(Instance.reallocate(Ptr, Size)); } void *scudoCalloc(uptr NMemB, uptr Size) { return SetErrnoOnNull(Instance.calloc(NMemB, Size)); } void *scudoValloc(uptr Size) { return SetErrnoOnNull( Instance.allocate(Size, GetPageSizeCached(), FromMemalign)); } void *scudoPvalloc(uptr Size) { const uptr PageSize = GetPageSizeCached(); if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) { errno = ENOMEM; if (Instance.canReturnNull()) return nullptr; reportPvallocOverflow(Size); } // pvalloc(0) should allocate one page. Size = Size ? RoundUpTo(Size, PageSize) : PageSize; return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign)); } int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) { if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) { if (!Instance.canReturnNull()) reportInvalidPosixMemalignAlignment(Alignment); return EINVAL; } void *Ptr = Instance.allocate(Size, Alignment, FromMemalign); if (UNLIKELY(!Ptr)) return ENOMEM; *MemPtr = Ptr; return 0; } void *scudoAlignedAlloc(uptr Alignment, uptr Size) { if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) { errno = EINVAL; if (Instance.canReturnNull()) return nullptr; reportInvalidAlignedAllocAlignment(Size, Alignment); } return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc)); } uptr scudoMallocUsableSize(void *Ptr) { return Instance.getUsableSize(Ptr); } } // namespace __scudo using namespace __scudo; // MallocExtension helper functions uptr __sanitizer_get_current_allocated_bytes() { return Instance.getStats(AllocatorStatAllocated); } uptr __sanitizer_get_heap_size() { return Instance.getStats(AllocatorStatMapped); } uptr __sanitizer_get_free_bytes() { return 1; } uptr __sanitizer_get_unmapped_bytes() { return 1; } uptr __sanitizer_get_estimated_allocated_size(uptr Size) { return Size; } int __sanitizer_get_ownership(const void *Ptr) { return Instance.isValidPointer(Ptr); } uptr __sanitizer_get_allocated_size(const void *Ptr) { return Instance.getUsableSize(Ptr); } #if !SANITIZER_SUPPORTS_WEAK_HOOKS SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, void *Ptr, uptr Size) { (void)Ptr; (void)Size; } SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) { (void)Ptr; } #endif // Interface functions void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) { if (!SCUDO_CAN_USE_PUBLIC_INTERFACE) return; Instance.setRssLimit(LimitMb, !!HardLimit); } void __scudo_print_stats() { Instance.printStats(); }