! RUN: %S/test_folding.sh %s %t %f18 ! Test intrinsic function folding edge case (both expected value and messages) ! These tests make assumptions regarding real(4) extrema. #define TEST_ISNAN(v) logical, parameter :: test_##v =.NOT.(v.EQ.v) module real_tests ! Test real(4) intrinsic folding on edge cases (inf and NaN) real(4), parameter :: r4_pmax = 3.4028235E38 real(4), parameter :: r4_nmax = -3.4028235E38 !WARN: invalid argument on division real(4), parameter :: r4_nan = 0._4/0._4 !WARN: division by zero real(4), parameter :: r4_pinf = 1._4/0._4 !WARN: division by zero real(4), parameter :: r4_ninf = -1._4/0._4 !WARN: invalid argument on intrinsic function real(4), parameter :: nan_r4_acos1 = acos(1.1) TEST_ISNAN(nan_r4_acos1) !WARN: invalid argument on intrinsic function real(4), parameter :: nan_r4_acos2 = acos(r4_pmax) TEST_ISNAN(nan_r4_acos2) !WARN: invalid argument on intrinsic function real(4), parameter :: nan_r4_acos3 = acos(r4_nmax) TEST_ISNAN(nan_r4_acos3) !WARN: invalid argument on intrinsic function real(4), parameter :: nan_r4_acos4 = acos(r4_ninf) TEST_ISNAN(nan_r4_acos4) !WARN: invalid argument on intrinsic function real(4), parameter :: nan_r4_acos5 = acos(r4_pinf) TEST_ISNAN(nan_r4_acos5) !WARN: overflow on intrinsic function logical, parameter :: test_exp_overflow = exp(256._4).EQ.r4_pinf end module module parentheses ! Test parentheses in folding (they are kept around constants to keep the ! distinction between variable and expressions and require special care). real(4), parameter :: x_nop = 0.1_4 real(4), parameter :: x_p = (x_nop) logical, parameter :: test_parentheses1 = acos(x_p).EQ.acos(x_nop) end module module specific_extremums ! f18 accepts all type kinds for the arguments of specific extremum intrinsics ! instead of of only default kind (or double precision for DMAX1 and DMIN1). ! This extensions is implemented by using the related generic intrinsic and ! converting the result. ! The tests below are cases where an implementation that converts the arguments to the ! standard required types instead would give different results than the implementation ! specified for f18 (converting the result). integer(8), parameter :: max_i32_8 = 2_8**31-1 integer, parameter :: expected_min0 = int(min(max_i32_8, 2_8*max_i32_8), 4) !WARN: argument types do not match specific intrinsic 'min0' requirements; using 'min' generic instead and converting the result to INTEGER(4) if needed integer, parameter :: result_min0 = min0(max_i32_8, 2_8*max_i32_8) ! result_min0 would be -2 if arguments were converted to default integer. logical, parameter :: test_min0 = expected_min0 .EQ. result_min0 real, parameter :: expected_amax0 = real(max(max_i32_8, 2_8*max_i32_8), 4) !WARN: argument types do not match specific intrinsic 'amax0' requirements; using 'max' generic instead and converting the result to REAL(4) if needed real, parameter :: result_amax0 = amax0(max_i32_8, 2_8*max_i32_8) ! result_amax0 would be 2.1474836E+09 if arguments were converted to default integer first. logical, parameter :: test_amax0 = expected_amax0 .EQ. result_amax0 end module