//===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H #include "utils/FPUtil/FPBits.h" #include "utils/FPUtil/NormalFloat.h" #include "utils/FPUtil/TestHelpers.h" #include "utils/UnitTest/Test.h" #include #include #include template class LdExpTestTemplate : public __llvm_libc::testing::Test { using FPBits = __llvm_libc::fputil::FPBits; using NormalFloat = __llvm_libc::fputil::NormalFloat; using UIntType = typename FPBits::UIntType; static constexpr UIntType mantissaWidth = __llvm_libc::fputil::MantissaWidth::value; // A normalized mantissa to be used with tests. static constexpr UIntType mantissa = NormalFloat::one + 0x1234; const T zero = __llvm_libc::fputil::FPBits::zero(); const T negZero = __llvm_libc::fputil::FPBits::negZero(); const T inf = __llvm_libc::fputil::FPBits::inf(); const T negInf = __llvm_libc::fputil::FPBits::negInf(); const T nan = __llvm_libc::fputil::FPBits::buildNaN(1); public: typedef T (*LdExpFunc)(T, int); void testSpecialNumbers(LdExpFunc func) { int expArray[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; for (int exp : expArray) { ASSERT_FP_EQ(zero, func(zero, exp)); ASSERT_FP_EQ(negZero, func(negZero, exp)); ASSERT_FP_EQ(inf, func(inf, exp)); ASSERT_FP_EQ(negInf, func(negInf, exp)); ASSERT_NE(isnan(func(nan, exp)), 0); } } void testPowersOfTwo(LdExpFunc func) { int32_t expArray[5] = {1, 2, 3, 4, 5}; int32_t valArray[6] = {1, 2, 4, 8, 16, 32}; for (int32_t exp : expArray) { for (int32_t val : valArray) { ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); } } } void testOverflow(LdExpFunc func) { NormalFloat x(FPBits::maxExponent - 10, NormalFloat::one + 0xF00BA, 0); for (int32_t exp = 10; exp < 100; ++exp) { ASSERT_FP_EQ(inf, func(T(x), exp)); ASSERT_FP_EQ(negInf, func(-T(x), exp)); } } void testUnderflowToZeroOnNormal(LdExpFunc func) { // In this test, we pass a normal nubmer to func and expect zero // to be returned due to underflow. int32_t baseExponent = FPBits::exponentBias + mantissaWidth; int32_t expArray[] = {baseExponent + 5, baseExponent + 4, baseExponent + 3, baseExponent + 2, baseExponent + 1}; T x = NormalFloat(0, mantissa, 0); for (int32_t exp : expArray) { ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : negZero); } } void testUnderflowToZeroOnSubnormal(LdExpFunc func) { // In this test, we pass a normal nubmer to func and expect zero // to be returned due to underflow. int32_t baseExponent = FPBits::exponentBias + mantissaWidth; int32_t expArray[] = {baseExponent + 5, baseExponent + 4, baseExponent + 3, baseExponent + 2, baseExponent + 1}; T x = NormalFloat(-FPBits::exponentBias, mantissa, 0); for (int32_t exp : expArray) { ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : negZero); } } void testNormalOperation(LdExpFunc func) { T valArray[] = { // Normal numbers NormalFloat(100, mantissa, 0), NormalFloat(-100, mantissa, 0), NormalFloat(100, mantissa, 1), NormalFloat(-100, mantissa, 1), // Subnormal numbers NormalFloat(-FPBits::exponentBias, mantissa, 0), NormalFloat(-FPBits::exponentBias, mantissa, 1)}; for (int32_t exp = 0; exp <= static_cast(mantissaWidth); ++exp) { for (T x : valArray) { // We compare the result of ldexp with the result // of the native multiplication/division instruction. ASSERT_FP_EQ(func(x, exp), x * (UIntType(1) << exp)); ASSERT_FP_EQ(func(x, -exp), x / (UIntType(1) << exp)); } } // Normal which trigger mantissa overflow. T x = NormalFloat(-FPBits::exponentBias + 1, 2 * NormalFloat::one - 1, 0); ASSERT_FP_EQ(func(x, -1), x / 2); ASSERT_FP_EQ(func(-x, -1), -x / 2); // Start with a normal number high exponent but pass a very low number for // exp. The result should be a subnormal number. x = NormalFloat(FPBits::exponentBias, NormalFloat::one, 0); int exp = -FPBits::maxExponent - 5; T result = func(x, exp); FPBits resultBits(result); ASSERT_FALSE(resultBits.isZero()); // Verify that the result is indeed subnormal. ASSERT_EQ(resultBits.exponent, uint16_t(0)); // But if the exp is so less that normalization leads to zero, then // the result should be zero. result = func(x, -FPBits::maxExponent - int(mantissaWidth) - 5); ASSERT_TRUE(FPBits(result).isZero()); // Start with a subnormal number but pass a very high number for exponent. // The result should not be infinity. x = NormalFloat(-FPBits::exponentBias + 1, NormalFloat::one >> 10, 0); exp = FPBits::maxExponent + 5; ASSERT_EQ(isinf(func(x, exp)), 0); // But if the exp is large enough to oversome than the normalization shift, // then it should result in infinity. exp = FPBits::maxExponent + 15; ASSERT_NE(isinf(func(x, exp)), 0); } }; #define LIST_LDEXP_TESTS(T, func) \ using LdExpTest = LdExpTestTemplate; \ TEST_F(LdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ TEST_F(LdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ TEST_F(LdExpTest, OverFlow) { testOverflow(&func); } \ TEST_F(LdExpTest, UnderflowToZeroOnNormal) { \ testUnderflowToZeroOnNormal(&func); \ } \ TEST_F(LdExpTest, UnderflowToZeroOnSubnormal) { \ testUnderflowToZeroOnSubnormal(&func); \ } \ TEST_F(LdExpTest, NormalOperation) { testNormalOperation(&func); } #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H