//===-- Square root of x86 long double numbers ------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H #define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H #include "FPBits.h" #include "Sqrt.h" #include "utils/CPP/TypeTraits.h" namespace __llvm_libc { namespace fputil { #if (defined(__x86_64__) || defined(__i386__)) namespace internal { template <> inline void normalize(int &exponent, __uint128_t &mantissa) { // Use binary search to shift the leading 1 bit similar to float. // With MantissaWidth = 63, it will take // ceil(log2(63)) = 6 steps checking the mantissa bits. constexpr int nsteps = 6; // = ceil(log2(MantissaWidth)) constexpr __uint128_t bounds[nsteps] = { __uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56, __uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63}; constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1}; for (int i = 0; i < nsteps; ++i) { if (mantissa < bounds[i]) { exponent -= shifts[i]; mantissa <<= shifts[i]; } } } } // namespace internal // Correctly rounded SQRT with round to nearest, ties to even. // Shift-and-add algorithm. template <> inline long double sqrt(long double x) { using UIntType = typename FPBits::UIntType; constexpr UIntType One = UIntType(1) << int(MantissaWidth::value); FPBits bits(x); if (bits.isInfOrNaN()) { if (bits.sign && (bits.mantissa == 0)) { // sqrt(-Inf) = NaN return FPBits::buildNaN(One >> 1); } else { // sqrt(NaN) = NaN // sqrt(+Inf) = +Inf return x; } } else if (bits.isZero()) { // sqrt(+0) = +0 // sqrt(-0) = -0 return x; } else if (bits.sign) { // sqrt( negative numbers ) = NaN return FPBits::buildNaN(One >> 1); } else { int xExp = bits.getExponent(); UIntType xMant = bits.mantissa; // Step 1a: Normalize denormal input if (bits.implicitBit) { xMant |= One; } else if (bits.exponent == 0) { internal::normalize(xExp, xMant); } // Step 1b: Make sure the exponent is even. if (xExp & 1) { --xExp; xMant <<= 1; } // After step 1b, x = 2^(xExp) * xMant, where xExp is even, and // 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2. // Notice that the output of sqrt is always in the normal range. // To perform shift-and-add algorithm to find y, let denote: // y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be: // r(n) = 2^n ( xMant - y(n)^2 ). // That leads to the following recurrence formula: // r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ] // with the initial conditions: y(0) = 1, and r(0) = x - 1. // So the nth digit y_n of the mantissa of sqrt(x) can be found by: // y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1) // 0 otherwise. UIntType y = One; UIntType r = xMant - One; for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) { r <<= 1; UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1) if (r >= tmp) { r -= tmp; y += current_bit; } } // We compute one more iteration in order to round correctly. bool lsb = y & 1; // Least significant bit bool rb = false; // Round bit r <<= 2; UIntType tmp = (y << 2) + 1; if (r >= tmp) { r -= tmp; rb = true; } // Append the exponent field. xExp = ((xExp >> 1) + FPBits::exponentBias); y |= (static_cast(xExp) << (MantissaWidth::value + 1)); // Round to nearest, ties to even if (rb && (lsb || (r != 0))) { ++y; } // Extract output FPBits out(0.0L); out.exponent = xExp; out.implicitBit = 1; out.mantissa = (y & (One - 1)); return out; } } #endif // defined(__x86_64__) || defined(__i386__) } // namespace fputil } // namespace __llvm_libc #endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H