//===-- Utils which wrap MPFR ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MPFRUtils.h" #include "utils/FPUtil/FPBits.h" #include "utils/FPUtil/TestHelpers.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include #include #include #ifdef CUSTOM_MPFR_INCLUDER // Some downstream repos are monoliths carrying MPFR sources in their third // party directory. In such repos, including the MPFR header as // `#include ` is either disallowed or not possible. If that is the // case, a file named `CustomMPFRIncluder.h` should be added through which the // MPFR header can be included in manner allowed in that repo. #include "CustomMPFRIncluder.h" #else #include #endif template using FPBits = __llvm_libc::fputil::FPBits; namespace __llvm_libc { namespace testing { namespace mpfr { class MPFRNumber { // A precision value which allows sufficiently large additional // precision even compared to quad-precision floating point values. static constexpr unsigned int mpfrPrecision = 128; mpfr_t value; public: MPFRNumber() { mpfr_init2(value, mpfrPrecision); } // We use explicit EnableIf specializations to disallow implicit // conversions. Implicit conversions can potentially lead to loss of // precision. template ::Value, int> = 0> explicit MPFRNumber(XType x) { mpfr_init2(value, mpfrPrecision); mpfr_set_flt(value, x, MPFR_RNDN); } template ::Value, int> = 0> explicit MPFRNumber(XType x) { mpfr_init2(value, mpfrPrecision); mpfr_set_d(value, x, MPFR_RNDN); } template ::Value, int> = 0> explicit MPFRNumber(XType x) { mpfr_init2(value, mpfrPrecision); mpfr_set_ld(value, x, MPFR_RNDN); } template ::Value, int> = 0> explicit MPFRNumber(XType x) { mpfr_init2(value, mpfrPrecision); mpfr_set_sj(value, x, MPFR_RNDN); } MPFRNumber(const MPFRNumber &other) { mpfr_set(value, other.value, MPFR_RNDN); } ~MPFRNumber() { mpfr_clear(value); } MPFRNumber &operator=(const MPFRNumber &rhs) { mpfr_set(value, rhs.value, MPFR_RNDN); return *this; } MPFRNumber abs() const { MPFRNumber result; mpfr_abs(result.value, value, MPFR_RNDN); return result; } MPFRNumber ceil() const { MPFRNumber result; mpfr_ceil(result.value, value); return result; } MPFRNumber cos() const { MPFRNumber result; mpfr_cos(result.value, value, MPFR_RNDN); return result; } MPFRNumber exp() const { MPFRNumber result; mpfr_exp(result.value, value, MPFR_RNDN); return result; } MPFRNumber exp2() const { MPFRNumber result; mpfr_exp2(result.value, value, MPFR_RNDN); return result; } MPFRNumber floor() const { MPFRNumber result; mpfr_floor(result.value, value); return result; } MPFRNumber frexp(int &exp) { MPFRNumber result; mpfr_exp_t resultExp; mpfr_frexp(&resultExp, result.value, value, MPFR_RNDN); exp = resultExp; return result; } MPFRNumber hypot(const MPFRNumber &b) { MPFRNumber result; mpfr_hypot(result.value, value, b.value, MPFR_RNDN); return result; } MPFRNumber remquo(const MPFRNumber &divisor, int "ient) { MPFRNumber remainder; long q; mpfr_remquo(remainder.value, &q, value, divisor.value, MPFR_RNDN); quotient = q; return remainder; } MPFRNumber round() const { MPFRNumber result; mpfr_round(result.value, value); return result; } MPFRNumber sin() const { MPFRNumber result; mpfr_sin(result.value, value, MPFR_RNDN); return result; } MPFRNumber sqrt() const { MPFRNumber result; mpfr_sqrt(result.value, value, MPFR_RNDN); return result; } MPFRNumber trunc() const { MPFRNumber result; mpfr_trunc(result.value, value); return result; } std::string str() const { // 200 bytes should be more than sufficient to hold a 100-digit number // plus additional bytes for the decimal point, '-' sign etc. constexpr size_t printBufSize = 200; char buffer[printBufSize]; mpfr_snprintf(buffer, printBufSize, "%100.50Rf", value); llvm::StringRef ref(buffer); ref = ref.trim(); return ref.str(); } // These functions are useful for debugging. template T as() const; template <> float as() const { return mpfr_get_flt(value, MPFR_RNDN); } template <> double as() const { return mpfr_get_d(value, MPFR_RNDN); } template <> long double as() const { return mpfr_get_ld(value, MPFR_RNDN); } void dump(const char *msg) const { mpfr_printf("%s%.128Rf\n", msg, value); } // Return the ULP (units-in-the-last-place) difference between the // stored MPFR and a floating point number. // // We define: // ULP(mpfr_value, value) = abs(mpfr_value - value) / eps(value) // // Remarks: // 1. ULP < 0.5 will imply that the value is correctly rounded. // 2. We expect that this value and the value to be compared (the [input] // argument) are reasonable close, and we will provide an upper bound // of ULP value for testing. Morever, most of the fractional parts of // ULP value do not matter much, so using double as the return type // should be good enough. template cpp::EnableIfType::Value, double> ulp(T input) { fputil::FPBits bits(input); MPFRNumber mpfrInput(input); // abs(value - input) mpfr_sub(mpfrInput.value, value, mpfrInput.value, MPFR_RNDN); mpfr_abs(mpfrInput.value, mpfrInput.value, MPFR_RNDN); // get eps(input) int epsExponent = bits.exponent - fputil::FPBits::exponentBias - fputil::MantissaWidth::value; if (bits.exponent == 0) { // correcting denormal exponent ++epsExponent; } else if ((bits.mantissa == 0) && (bits.exponent > 1) && mpfr_less_p(value, mpfrInput.value)) { // when the input is exactly 2^n, distance (epsilon) between the input // and the next floating point number is different from the distance to // the previous floating point number. So in that case, if the correct // value from MPFR is smaller than the input, we use the smaller epsilon --epsExponent; } // Since eps(value) is of the form 2^e, instead of dividing such number, // we multiply by its inverse 2^{-e}. mpfr_mul_2si(mpfrInput.value, mpfrInput.value, -epsExponent, MPFR_RNDN); return mpfrInput.as(); } }; namespace internal { template cpp::EnableIfType::Value, MPFRNumber> unaryOperation(Operation op, InputType input) { MPFRNumber mpfrInput(input); switch (op) { case Operation::Abs: return mpfrInput.abs(); case Operation::Ceil: return mpfrInput.ceil(); case Operation::Cos: return mpfrInput.cos(); case Operation::Exp: return mpfrInput.exp(); case Operation::Exp2: return mpfrInput.exp2(); case Operation::Floor: return mpfrInput.floor(); case Operation::Round: return mpfrInput.round(); case Operation::Sin: return mpfrInput.sin(); case Operation::Sqrt: return mpfrInput.sqrt(); case Operation::Trunc: return mpfrInput.trunc(); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> unaryOperationTwoOutputs(Operation op, InputType input, int &output) { MPFRNumber mpfrInput(input); switch (op) { case Operation::Frexp: return mpfrInput.frexp(output); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> binaryOperationOneOutput(Operation op, InputType x, InputType y) { MPFRNumber inputX(x), inputY(y); switch (op) { case Operation::Hypot: return inputX.hypot(inputY); default: __builtin_unreachable(); } } template cpp::EnableIfType::Value, MPFRNumber> binaryOperationTwoOutputs(Operation op, InputType x, InputType y, int &output) { MPFRNumber inputX(x), inputY(y); switch (op) { case Operation::RemQuo: return inputX.remquo(inputY, output); default: __builtin_unreachable(); } } template void explainUnaryOperationSingleOutputError(Operation op, T input, T matchValue, testutils::StreamWrapper &OS) { MPFRNumber mpfrInput(input); MPFRNumber mpfrResult = unaryOperation(op, input); MPFRNumber mpfrMatchValue(matchValue); FPBits inputBits(input); FPBits matchBits(matchValue); FPBits mpfrResultBits(mpfrResult.as()); OS << "Match value not within tolerance value of MPFR result:\n" << " Input decimal: " << mpfrInput.str() << '\n'; __llvm_libc::fputil::testing::describeValue(" Input bits: ", input, OS); OS << '\n' << " Match decimal: " << mpfrMatchValue.str() << '\n'; __llvm_libc::fputil::testing::describeValue(" Match bits: ", matchValue, OS); OS << '\n' << " MPFR result: " << mpfrResult.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " MPFR rounded: ", mpfrResult.as(), OS); OS << '\n'; OS << " ULP error: " << std::to_string(mpfrResult.ulp(matchValue)) << '\n'; } template void explainUnaryOperationSingleOutputError(Operation op, float, float, testutils::StreamWrapper &); template void explainUnaryOperationSingleOutputError(Operation op, double, double, testutils::StreamWrapper &); template void explainUnaryOperationSingleOutputError( Operation op, long double, long double, testutils::StreamWrapper &); template void explainUnaryOperationTwoOutputsError(Operation op, T input, const BinaryOutput &libcResult, testutils::StreamWrapper &OS) { MPFRNumber mpfrInput(input); FPBits inputBits(input); int mpfrIntResult; MPFRNumber mpfrResult = unaryOperationTwoOutputs(op, input, mpfrIntResult); if (mpfrIntResult != libcResult.i) { OS << "MPFR integral result: " << mpfrIntResult << '\n' << "Libc integral result: " << libcResult.i << '\n'; } else { OS << "Integral result from libc matches integral result from MPFR.\n"; } MPFRNumber mpfrMatchValue(libcResult.f); OS << "Libc floating point result is not within tolerance value of the MPFR " << "result.\n\n"; OS << " Input decimal: " << mpfrInput.str() << "\n\n"; OS << "Libc floating point value: " << mpfrMatchValue.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " Libc floating point bits: ", libcResult.f, OS); OS << "\n\n"; OS << " MPFR result: " << mpfrResult.str() << '\n'; __llvm_libc::fputil::testing::describeValue( " MPFR rounded: ", mpfrResult.as(), OS); OS << '\n' << " ULP error: " << std::to_string(mpfrResult.ulp(libcResult.f)) << '\n'; } template void explainUnaryOperationTwoOutputsError( Operation, float, const BinaryOutput &, testutils::StreamWrapper &); template void explainUnaryOperationTwoOutputsError(Operation, double, const BinaryOutput &, testutils::StreamWrapper &); template void explainUnaryOperationTwoOutputsError( Operation, long double, const BinaryOutput &, testutils::StreamWrapper &); template void explainBinaryOperationTwoOutputsError(Operation op, const BinaryInput &input, const BinaryOutput &libcResult, testutils::StreamWrapper &OS) { MPFRNumber mpfrX(input.x); MPFRNumber mpfrY(input.y); FPBits xbits(input.x); FPBits ybits(input.y); int mpfrIntResult; MPFRNumber mpfrResult = binaryOperationTwoOutputs(op, input.x, input.y, mpfrIntResult); MPFRNumber mpfrMatchValue(libcResult.f); OS << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n' << "MPFR integral result: " << mpfrIntResult << '\n' << "Libc integral result: " << libcResult.i << '\n' << "Libc floating point result: " << mpfrMatchValue.str() << '\n' << " MPFR result: " << mpfrResult.str() << '\n'; __llvm_libc::fputil::testing::describeValue( "Libc floating point result bits: ", libcResult.f, OS); __llvm_libc::fputil::testing::describeValue( " MPFR rounded bits: ", mpfrResult.as(), OS); OS << "ULP error: " << std::to_string(mpfrResult.ulp(libcResult.f)) << '\n'; } template void explainBinaryOperationTwoOutputsError( Operation, const BinaryInput &, const BinaryOutput &, testutils::StreamWrapper &); template void explainBinaryOperationTwoOutputsError( Operation, const BinaryInput &, const BinaryOutput &, testutils::StreamWrapper &); template void explainBinaryOperationTwoOutputsError( Operation, const BinaryInput &, const BinaryOutput &, testutils::StreamWrapper &); template void explainBinaryOperationOneOutputError(Operation op, const BinaryInput &input, T libcResult, testutils::StreamWrapper &OS) { MPFRNumber mpfrX(input.x); MPFRNumber mpfrY(input.y); FPBits xbits(input.x); FPBits ybits(input.y); MPFRNumber mpfrResult = binaryOperationOneOutput(op, input.x, input.y); MPFRNumber mpfrMatchValue(libcResult); OS << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n'; __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, OS); __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, OS); OS << "Libc result: " << mpfrMatchValue.str() << '\n' << "MPFR result: " << mpfrResult.str() << '\n'; __llvm_libc::fputil::testing::describeValue( "Libc floating point result bits: ", libcResult, OS); __llvm_libc::fputil::testing::describeValue( " MPFR rounded bits: ", mpfrResult.as(), OS); OS << "ULP error: " << std::to_string(mpfrResult.ulp(libcResult)) << '\n'; } template void explainBinaryOperationOneOutputError( Operation, const BinaryInput &, float, testutils::StreamWrapper &); template void explainBinaryOperationOneOutputError( Operation, const BinaryInput &, double, testutils::StreamWrapper &); template void explainBinaryOperationOneOutputError( Operation, const BinaryInput &, long double, testutils::StreamWrapper &); template bool compareUnaryOperationSingleOutput(Operation op, T input, T libcResult, double ulpError) { // If the ulp error is exactly 0.5 (i.e a tie), we would check that the result // is rounded to the nearest even. MPFRNumber mpfrResult = unaryOperation(op, input); double ulp = mpfrResult.ulp(libcResult); bool bitsAreEven = ((FPBits(libcResult).bitsAsUInt() & 1) == 0); return (ulp < ulpError) || ((ulp == ulpError) && ((ulp != 0.5) || bitsAreEven)); } template bool compareUnaryOperationSingleOutput(Operation, float, float, double); template bool compareUnaryOperationSingleOutput(Operation, double, double, double); template bool compareUnaryOperationSingleOutput(Operation, long double, long double, double); template bool compareUnaryOperationTwoOutputs(Operation op, T input, const BinaryOutput &libcResult, double ulpError) { int mpfrIntResult; MPFRNumber mpfrResult = unaryOperationTwoOutputs(op, input, mpfrIntResult); double ulp = mpfrResult.ulp(libcResult.f); if (mpfrIntResult != libcResult.i) return false; bool bitsAreEven = ((FPBits(libcResult.f).bitsAsUInt() & 1) == 0); return (ulp < ulpError) || ((ulp == ulpError) && ((ulp != 0.5) || bitsAreEven)); } template bool compareUnaryOperationTwoOutputs(Operation, float, const BinaryOutput &, double); template bool compareUnaryOperationTwoOutputs(Operation, double, const BinaryOutput &, double); template bool compareUnaryOperationTwoOutputs( Operation, long double, const BinaryOutput &, double); template bool compareBinaryOperationTwoOutputs(Operation op, const BinaryInput &input, const BinaryOutput &libcResult, double ulpError) { int mpfrIntResult; MPFRNumber mpfrResult = binaryOperationTwoOutputs(op, input.x, input.y, mpfrIntResult); double ulp = mpfrResult.ulp(libcResult.f); if (mpfrIntResult != libcResult.i) { if (op == Operation::RemQuo) { if ((0x7 & mpfrIntResult) != (0x7 & libcResult.i)) return false; } else { return false; } } bool bitsAreEven = ((FPBits(libcResult.f).bitsAsUInt() & 1) == 0); return (ulp < ulpError) || ((ulp == ulpError) && ((ulp != 0.5) || bitsAreEven)); } template bool compareBinaryOperationTwoOutputs(Operation, const BinaryInput &, const BinaryOutput &, double); template bool compareBinaryOperationTwoOutputs(Operation, const BinaryInput &, const BinaryOutput &, double); template bool compareBinaryOperationTwoOutputs( Operation, const BinaryInput &, const BinaryOutput &, double); template bool compareBinaryOperationOneOutput(Operation op, const BinaryInput &input, T libcResult, double ulpError) { MPFRNumber mpfrResult = binaryOperationOneOutput(op, input.x, input.y); double ulp = mpfrResult.ulp(libcResult); bool bitsAreEven = ((FPBits(libcResult).bitsAsUInt() & 1) == 0); return (ulp < ulpError) || ((ulp == ulpError) && ((ulp != 0.5) || bitsAreEven)); } template bool compareBinaryOperationOneOutput(Operation, const BinaryInput &, float, double); template bool compareBinaryOperationOneOutput(Operation, const BinaryInput &, double, double); template bool compareBinaryOperationOneOutput( Operation, const BinaryInput &, long double, double); } // namespace internal } // namespace mpfr } // namespace testing } // namespace __llvm_libc