//===- DebugTypes.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "DebugTypes.h" #include "Chunks.h" #include "Driver.h" #include "InputFiles.h" #include "PDB.h" #include "TypeMerger.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Timer.h" #include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h" #include "llvm/DebugInfo/CodeView/TypeRecord.h" #include "llvm/DebugInfo/CodeView/TypeRecordHelpers.h" #include "llvm/DebugInfo/CodeView/TypeStreamMerger.h" #include "llvm/DebugInfo/PDB/GenericError.h" #include "llvm/DebugInfo/PDB/Native/InfoStream.h" #include "llvm/DebugInfo/PDB/Native/NativeSession.h" #include "llvm/DebugInfo/PDB/Native/PDBFile.h" #include "llvm/DebugInfo/PDB/Native/TpiHashing.h" #include "llvm/DebugInfo/PDB/Native/TpiStream.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" using namespace llvm; using namespace llvm::codeview; using namespace lld; using namespace lld::coff; namespace { class TypeServerIpiSource; // The TypeServerSource class represents a PDB type server, a file referenced by // OBJ files compiled with MSVC /Zi. A single PDB can be shared by several OBJ // files, therefore there must be only once instance per OBJ lot. The file path // is discovered from the dependent OBJ's debug type stream. The // TypeServerSource object is then queued and loaded by the COFF Driver. The // debug type stream for such PDB files will be merged first in the final PDB, // before any dependent OBJ. class TypeServerSource : public TpiSource { public: explicit TypeServerSource(PDBInputFile *f) : TpiSource(PDB, nullptr), pdbInputFile(f) { if (f->loadErr && *f->loadErr) return; pdb::PDBFile &file = f->session->getPDBFile(); auto expectedInfo = file.getPDBInfoStream(); if (!expectedInfo) return; auto it = mappings.emplace(expectedInfo->getGuid(), this); assert(it.second); (void)it; } Error mergeDebugT(TypeMerger *m) override; void loadGHashes() override; void remapTpiWithGHashes(GHashState *g) override; bool isDependency() const override { return true; } PDBInputFile *pdbInputFile = nullptr; // TpiSource for IPI stream. TypeServerIpiSource *ipiSrc = nullptr; static std::map mappings; }; // Companion to TypeServerSource. Stores the index map for the IPI stream in the // PDB. Modeling PDBs with two sources for TPI and IPI helps establish the // invariant of one type index space per source. class TypeServerIpiSource : public TpiSource { public: explicit TypeServerIpiSource() : TpiSource(PDBIpi, nullptr) {} friend class TypeServerSource; // All of the TpiSource methods are no-ops. The parent TypeServerSource // handles both TPI and IPI. Error mergeDebugT(TypeMerger *m) override { return Error::success(); } void loadGHashes() override {} void remapTpiWithGHashes(GHashState *g) override {} bool isDependency() const override { return true; } }; // This class represents the debug type stream of an OBJ file that depends on a // PDB type server (see TypeServerSource). class UseTypeServerSource : public TpiSource { Expected getTypeServerSource(); public: UseTypeServerSource(ObjFile *f, TypeServer2Record ts) : TpiSource(UsingPDB, f), typeServerDependency(ts) {} Error mergeDebugT(TypeMerger *m) override; // No need to load ghashes from /Zi objects. void loadGHashes() override {} void remapTpiWithGHashes(GHashState *g) override; // Information about the PDB type server dependency, that needs to be loaded // in before merging this OBJ. TypeServer2Record typeServerDependency; }; // This class represents the debug type stream of a Microsoft precompiled // headers OBJ (PCH OBJ). This OBJ kind needs to be merged first in the output // PDB, before any other OBJs that depend on this. Note that only MSVC generate // such files, clang does not. class PrecompSource : public TpiSource { public: PrecompSource(ObjFile *f) : TpiSource(PCH, f) { if (!f->pchSignature || !*f->pchSignature) fatal(toString(f) + " claims to be a PCH object, but does not have a valid signature"); auto it = mappings.emplace(*f->pchSignature, this); if (!it.second) fatal("a PCH object with the same signature has already been provided (" + toString(it.first->second->file) + " and " + toString(file) + ")"); } void loadGHashes() override; bool isDependency() const override { return true; } static std::map mappings; }; // This class represents the debug type stream of an OBJ file that depends on a // Microsoft precompiled headers OBJ (see PrecompSource). class UsePrecompSource : public TpiSource { public: UsePrecompSource(ObjFile *f, PrecompRecord precomp) : TpiSource(UsingPCH, f), precompDependency(precomp) {} Error mergeDebugT(TypeMerger *m) override; void loadGHashes() override; void remapTpiWithGHashes(GHashState *g) override; private: Error mergeInPrecompHeaderObj(); public: // Information about the Precomp OBJ dependency, that needs to be loaded in // before merging this OBJ. PrecompRecord precompDependency; }; } // namespace std::vector TpiSource::instances; ArrayRef TpiSource::dependencySources; ArrayRef TpiSource::objectSources; TpiSource::TpiSource(TpiKind k, ObjFile *f) : kind(k), tpiSrcIdx(instances.size()), file(f) { instances.push_back(this); } // Vtable key method. TpiSource::~TpiSource() { // Silence any assertions about unchecked errors. consumeError(std::move(typeMergingError)); } void TpiSource::sortDependencies() { // Order dependencies first, but preserve the existing order. std::vector deps; std::vector objs; for (TpiSource *s : instances) (s->isDependency() ? deps : objs).push_back(s); uint32_t numDeps = deps.size(); uint32_t numObjs = objs.size(); instances = std::move(deps); instances.insert(instances.end(), objs.begin(), objs.end()); for (uint32_t i = 0, e = instances.size(); i < e; ++i) instances[i]->tpiSrcIdx = i; dependencySources = makeArrayRef(instances.data(), numDeps); objectSources = makeArrayRef(instances.data() + numDeps, numObjs); } TpiSource *lld::coff::makeTpiSource(ObjFile *file) { return make(TpiSource::Regular, file); } TpiSource *lld::coff::makeTypeServerSource(PDBInputFile *pdbInputFile) { // Type server sources come in pairs: the TPI stream, and the IPI stream. auto *tpiSource = make(pdbInputFile); if (pdbInputFile->session->getPDBFile().hasPDBIpiStream()) tpiSource->ipiSrc = make(); return tpiSource; } TpiSource *lld::coff::makeUseTypeServerSource(ObjFile *file, TypeServer2Record ts) { return make(file, ts); } TpiSource *lld::coff::makePrecompSource(ObjFile *file) { return make(file); } TpiSource *lld::coff::makeUsePrecompSource(ObjFile *file, PrecompRecord precomp) { return make(file, precomp); } std::map TypeServerSource::mappings; std::map PrecompSource::mappings; bool TpiSource::remapTypeIndex(TypeIndex &ti, TiRefKind refKind) const { if (ti.isSimple()) return true; // This can be an item index or a type index. Choose the appropriate map. ArrayRef tpiOrIpiMap = (refKind == TiRefKind::IndexRef) ? ipiMap : tpiMap; if (ti.toArrayIndex() >= tpiOrIpiMap.size()) return false; ti = tpiOrIpiMap[ti.toArrayIndex()]; return true; } void TpiSource::remapRecord(MutableArrayRef rec, ArrayRef typeRefs) { MutableArrayRef contents = rec.drop_front(sizeof(RecordPrefix)); for (const TiReference &ref : typeRefs) { unsigned byteSize = ref.Count * sizeof(TypeIndex); if (contents.size() < ref.Offset + byteSize) fatal("symbol record too short"); MutableArrayRef indices( reinterpret_cast(contents.data() + ref.Offset), ref.Count); for (TypeIndex &ti : indices) { if (!remapTypeIndex(ti, ref.Kind)) { if (config->verbose) { uint16_t kind = reinterpret_cast(rec.data())->RecordKind; StringRef fname = file ? file->getName() : ""; log("failed to remap type index in record of kind 0x" + utohexstr(kind) + " in " + fname + " with bad " + (ref.Kind == TiRefKind::IndexRef ? "item" : "type") + " index 0x" + utohexstr(ti.getIndex())); } ti = TypeIndex(SimpleTypeKind::NotTranslated); continue; } } } } void TpiSource::remapTypesInTypeRecord(MutableArrayRef rec) { // TODO: Handle errors similar to symbols. SmallVector typeRefs; discoverTypeIndices(CVType(rec), typeRefs); remapRecord(rec, typeRefs); } bool TpiSource::remapTypesInSymbolRecord(MutableArrayRef rec) { // Discover type index references in the record. Skip it if we don't // know where they are. SmallVector typeRefs; if (!discoverTypeIndicesInSymbol(rec, typeRefs)) return false; remapRecord(rec, typeRefs); return true; } // A COFF .debug$H section is currently a clang extension. This function checks // if a .debug$H section is in a format that we expect / understand, so that we // can ignore any sections which are coincidentally also named .debug$H but do // not contain a format we recognize. static bool canUseDebugH(ArrayRef debugH) { if (debugH.size() < sizeof(object::debug_h_header)) return false; auto *header = reinterpret_cast(debugH.data()); debugH = debugH.drop_front(sizeof(object::debug_h_header)); return header->Magic == COFF::DEBUG_HASHES_SECTION_MAGIC && header->Version == 0 && header->HashAlgorithm == uint16_t(GlobalTypeHashAlg::SHA1_8) && (debugH.size() % 8 == 0); } static Optional> getDebugH(ObjFile *file) { SectionChunk *sec = SectionChunk::findByName(file->getDebugChunks(), ".debug$H"); if (!sec) return llvm::None; ArrayRef contents = sec->getContents(); if (!canUseDebugH(contents)) return None; return contents; } static ArrayRef getHashesFromDebugH(ArrayRef debugH) { assert(canUseDebugH(debugH)); debugH = debugH.drop_front(sizeof(object::debug_h_header)); uint32_t count = debugH.size() / sizeof(GloballyHashedType); return {reinterpret_cast(debugH.data()), count}; } // Merge .debug$T for a generic object file. Error TpiSource::mergeDebugT(TypeMerger *m) { assert(!config->debugGHashes && "use remapTpiWithGHashes when ghash is enabled"); CVTypeArray types; BinaryStreamReader reader(file->debugTypes, support::little); cantFail(reader.readArray(types, reader.getLength())); // When dealing with PCH.OBJ, some indices were already merged. unsigned nbHeadIndices = indexMapStorage.size(); if (auto err = mergeTypeAndIdRecords( m->idTable, m->typeTable, indexMapStorage, types, file->pchSignature)) fatal("codeview::mergeTypeAndIdRecords failed: " + toString(std::move(err))); // In an object, there is only one mapping for both types and items. tpiMap = indexMapStorage; ipiMap = indexMapStorage; if (config->showSummary) { nbTypeRecords = indexMapStorage.size() - nbHeadIndices; nbTypeRecordsBytes = reader.getLength(); // Count how many times we saw each type record in our input. This // calculation requires a second pass over the type records to classify each // record as a type or index. This is slow, but this code executes when // collecting statistics. m->tpiCounts.resize(m->getTypeTable().size()); m->ipiCounts.resize(m->getIDTable().size()); uint32_t srcIdx = nbHeadIndices; for (CVType &ty : types) { TypeIndex dstIdx = tpiMap[srcIdx++]; // Type merging may fail, so a complex source type may become the simple // NotTranslated type, which cannot be used as an array index. if (dstIdx.isSimple()) continue; SmallVectorImpl &counts = isIdRecord(ty.kind()) ? m->ipiCounts : m->tpiCounts; ++counts[dstIdx.toArrayIndex()]; } } return Error::success(); } // Merge types from a type server PDB. Error TypeServerSource::mergeDebugT(TypeMerger *m) { assert(!config->debugGHashes && "use remapTpiWithGHashes when ghash is enabled"); pdb::PDBFile &pdbFile = pdbInputFile->session->getPDBFile(); Expected expectedTpi = pdbFile.getPDBTpiStream(); if (auto e = expectedTpi.takeError()) fatal("Type server does not have TPI stream: " + toString(std::move(e))); pdb::TpiStream *maybeIpi = nullptr; if (pdbFile.hasPDBIpiStream()) { Expected expectedIpi = pdbFile.getPDBIpiStream(); if (auto e = expectedIpi.takeError()) fatal("Error getting type server IPI stream: " + toString(std::move(e))); maybeIpi = &*expectedIpi; } // Merge TPI first, because the IPI stream will reference type indices. if (auto err = mergeTypeRecords(m->typeTable, indexMapStorage, expectedTpi->typeArray())) fatal("codeview::mergeTypeRecords failed: " + toString(std::move(err))); tpiMap = indexMapStorage; // Merge IPI. if (maybeIpi) { if (auto err = mergeIdRecords(m->idTable, tpiMap, ipiSrc->indexMapStorage, maybeIpi->typeArray())) fatal("codeview::mergeIdRecords failed: " + toString(std::move(err))); ipiMap = ipiSrc->indexMapStorage; } if (config->showSummary) { nbTypeRecords = tpiMap.size() + ipiMap.size(); nbTypeRecordsBytes = expectedTpi->typeArray().getUnderlyingStream().getLength() + (maybeIpi ? maybeIpi->typeArray().getUnderlyingStream().getLength() : 0); // Count how many times we saw each type record in our input. If a // destination type index is present in the source to destination type index // map, that means we saw it once in the input. Add it to our histogram. m->tpiCounts.resize(m->getTypeTable().size()); m->ipiCounts.resize(m->getIDTable().size()); for (TypeIndex ti : tpiMap) if (!ti.isSimple()) ++m->tpiCounts[ti.toArrayIndex()]; for (TypeIndex ti : ipiMap) if (!ti.isSimple()) ++m->ipiCounts[ti.toArrayIndex()]; } return Error::success(); } Expected UseTypeServerSource::getTypeServerSource() { const codeview::GUID &tsId = typeServerDependency.getGuid(); StringRef tsPath = typeServerDependency.getName(); TypeServerSource *tsSrc; auto it = TypeServerSource::mappings.find(tsId); if (it != TypeServerSource::mappings.end()) { tsSrc = it->second; } else { // The file failed to load, lookup by name PDBInputFile *pdb = PDBInputFile::findFromRecordPath(tsPath, file); if (!pdb) return createFileError(tsPath, errorCodeToError(std::error_code( ENOENT, std::generic_category()))); // If an error occurred during loading, throw it now if (pdb->loadErr && *pdb->loadErr) return createFileError(tsPath, std::move(*pdb->loadErr)); tsSrc = (TypeServerSource *)pdb->debugTypesObj; } return tsSrc; } Error UseTypeServerSource::mergeDebugT(TypeMerger *m) { Expected tsSrc = getTypeServerSource(); if (!tsSrc) return tsSrc.takeError(); pdb::PDBFile &pdbSession = (*tsSrc)->pdbInputFile->session->getPDBFile(); auto expectedInfo = pdbSession.getPDBInfoStream(); if (!expectedInfo) return expectedInfo.takeError(); // Just because a file with a matching name was found and it was an actual // PDB file doesn't mean it matches. For it to match the InfoStream's GUID // must match the GUID specified in the TypeServer2 record. if (expectedInfo->getGuid() != typeServerDependency.getGuid()) return createFileError( typeServerDependency.getName(), make_error(pdb::pdb_error_code::signature_out_of_date)); // Reuse the type index map of the type server. tpiMap = (*tsSrc)->tpiMap; ipiMap = (*tsSrc)->ipiMap; return Error::success(); } static bool equalsPath(StringRef path1, StringRef path2) { #if defined(_WIN32) return path1.equals_lower(path2); #else return path1.equals(path2); #endif } // Find by name an OBJ provided on the command line static PrecompSource *findObjByName(StringRef fileNameOnly) { SmallString<128> currentPath; for (auto kv : PrecompSource::mappings) { StringRef currentFileName = sys::path::filename(kv.second->file->getName(), sys::path::Style::windows); // Compare based solely on the file name (link.exe behavior) if (equalsPath(currentFileName, fileNameOnly)) return kv.second; } return nullptr; } static PrecompSource *findPrecompSource(ObjFile *file, PrecompRecord &pr) { // Cross-compile warning: given that Clang doesn't generate LF_PRECOMP // records, we assume the OBJ comes from a Windows build of cl.exe. Thusly, // the paths embedded in the OBJs are in the Windows format. SmallString<128> prFileName = sys::path::filename(pr.getPrecompFilePath(), sys::path::Style::windows); auto it = PrecompSource::mappings.find(pr.getSignature()); if (it != PrecompSource::mappings.end()) { return it->second; } // Lookup by name return findObjByName(prFileName); } static Expected findPrecompMap(ObjFile *file, PrecompRecord &pr) { PrecompSource *precomp = findPrecompSource(file, pr); if (!precomp) return createFileError( pr.getPrecompFilePath(), make_error(pdb::pdb_error_code::no_matching_pch)); if (pr.getSignature() != file->pchSignature) return createFileError( toString(file), make_error(pdb::pdb_error_code::no_matching_pch)); if (pr.getSignature() != *precomp->file->pchSignature) return createFileError( toString(precomp->file), make_error(pdb::pdb_error_code::no_matching_pch)); return precomp; } /// Merges a precompiled headers TPI map into the current TPI map. The /// precompiled headers object will also be loaded and remapped in the /// process. Error UsePrecompSource::mergeInPrecompHeaderObj() { auto e = findPrecompMap(file, precompDependency); if (!e) return e.takeError(); PrecompSource *precompSrc = *e; if (precompSrc->tpiMap.empty()) return Error::success(); assert(precompDependency.getStartTypeIndex() == TypeIndex::FirstNonSimpleIndex); assert(precompDependency.getTypesCount() <= precompSrc->tpiMap.size()); // Use the previously remapped index map from the precompiled headers. indexMapStorage.append(precompSrc->tpiMap.begin(), precompSrc->tpiMap.begin() + precompDependency.getTypesCount()); return Error::success(); } Error UsePrecompSource::mergeDebugT(TypeMerger *m) { // This object was compiled with /Yu, so process the corresponding // precompiled headers object (/Yc) first. Some type indices in the current // object are referencing data in the precompiled headers object, so we need // both to be loaded. if (Error e = mergeInPrecompHeaderObj()) return e; return TpiSource::mergeDebugT(m); } uint32_t TpiSource::countTypeServerPDBs() { return TypeServerSource::mappings.size(); } uint32_t TpiSource::countPrecompObjs() { return PrecompSource::mappings.size(); } void TpiSource::clear() { // Clean up any owned ghash allocations. clearGHashes(); TpiSource::instances.clear(); TypeServerSource::mappings.clear(); PrecompSource::mappings.clear(); } //===----------------------------------------------------------------------===// // Parellel GHash type merging implementation. //===----------------------------------------------------------------------===// void TpiSource::loadGHashes() { if (Optional> debugH = getDebugH(file)) { ghashes = getHashesFromDebugH(*debugH); ownedGHashes = false; } else { CVTypeArray types; BinaryStreamReader reader(file->debugTypes, support::little); cantFail(reader.readArray(types, reader.getLength())); assignGHashesFromVector(GloballyHashedType::hashTypes(types)); } fillIsItemIndexFromDebugT(); } // Copies ghashes from a vector into an array. These are long lived, so it's // worth the time to copy these into an appropriately sized vector to reduce // memory usage. void TpiSource::assignGHashesFromVector( std::vector &&hashVec) { GloballyHashedType *hashes = new GloballyHashedType[hashVec.size()]; memcpy(hashes, hashVec.data(), hashVec.size() * sizeof(GloballyHashedType)); ghashes = makeArrayRef(hashes, hashVec.size()); ownedGHashes = true; } // Faster way to iterate type records. forEachTypeChecked is faster than // iterating CVTypeArray. It avoids virtual readBytes calls in inner loops. static void forEachTypeChecked(ArrayRef types, function_ref fn) { checkError( forEachCodeViewRecord(types, [fn](const CVType &ty) -> Error { fn(ty); return Error::success(); })); } // Walk over file->debugTypes and fill in the isItemIndex bit vector. // TODO: Store this information in .debug$H so that we don't have to recompute // it. This is the main bottleneck slowing down parallel ghashing with one // thread over single-threaded ghashing. void TpiSource::fillIsItemIndexFromDebugT() { uint32_t index = 0; isItemIndex.resize(ghashes.size()); forEachTypeChecked(file->debugTypes, [&](const CVType &ty) { if (isIdRecord(ty.kind())) isItemIndex.set(index); ++index; }); } void TpiSource::mergeTypeRecord(TypeIndex curIndex, CVType ty) { // Decide if the merged type goes into TPI or IPI. bool isItem = isIdRecord(ty.kind()); MergedInfo &merged = isItem ? mergedIpi : mergedTpi; // Copy the type into our mutable buffer. assert(ty.length() <= codeview::MaxRecordLength); size_t offset = merged.recs.size(); size_t newSize = alignTo(ty.length(), 4); merged.recs.resize(offset + newSize); auto newRec = makeMutableArrayRef(&merged.recs[offset], newSize); memcpy(newRec.data(), ty.data().data(), newSize); // Fix up the record prefix and padding bytes if it required resizing. if (newSize != ty.length()) { reinterpret_cast(newRec.data())->RecordLen = newSize - 2; for (size_t i = ty.length(); i < newSize; ++i) newRec[i] = LF_PAD0 + (newSize - i); } // Remap the type indices in the new record. remapTypesInTypeRecord(newRec); uint32_t pdbHash = check(pdb::hashTypeRecord(CVType(newRec))); merged.recSizes.push_back(static_cast(newSize)); merged.recHashes.push_back(pdbHash); // Retain a mapping from PDB function id to PDB function type. This mapping is // used during symbol processing to rewrite S_GPROC32_ID symbols to S_GPROC32 // symbols. if (ty.kind() == LF_FUNC_ID || ty.kind() == LF_MFUNC_ID) { bool success = ty.length() >= 12; TypeIndex funcId = curIndex; if (success) success &= remapTypeIndex(funcId, TiRefKind::IndexRef); TypeIndex funcType = *reinterpret_cast(&newRec.data()[8]); if (success) { funcIdToType.push_back({funcId, funcType}); } else { StringRef fname = file ? file->getName() : ""; warn("corrupt LF_[M]FUNC_ID record 0x" + utohexstr(curIndex.getIndex()) + " in " + fname); } } } void TpiSource::mergeUniqueTypeRecords(ArrayRef typeRecords, TypeIndex beginIndex) { // Re-sort the list of unique types by index. if (kind == PDB) assert(std::is_sorted(uniqueTypes.begin(), uniqueTypes.end())); else llvm::sort(uniqueTypes); // Accumulate all the unique types into one buffer in mergedTypes. uint32_t ghashIndex = 0; auto nextUniqueIndex = uniqueTypes.begin(); assert(mergedTpi.recs.empty()); assert(mergedIpi.recs.empty()); forEachTypeChecked(typeRecords, [&](const CVType &ty) { if (nextUniqueIndex != uniqueTypes.end() && *nextUniqueIndex == ghashIndex) { mergeTypeRecord(beginIndex + ghashIndex, ty); ++nextUniqueIndex; } ++ghashIndex; }); assert(nextUniqueIndex == uniqueTypes.end() && "failed to merge all desired records"); assert(uniqueTypes.size() == mergedTpi.recSizes.size() + mergedIpi.recSizes.size() && "missing desired record"); } void TpiSource::remapTpiWithGHashes(GHashState *g) { assert(config->debugGHashes && "ghashes must be enabled"); fillMapFromGHashes(g, indexMapStorage); tpiMap = indexMapStorage; ipiMap = indexMapStorage; mergeUniqueTypeRecords(file->debugTypes); // TODO: Free all unneeded ghash resources now that we have a full index map. if (config->showSummary) { nbTypeRecords = ghashes.size(); nbTypeRecordsBytes = file->debugTypes.size(); } } // PDBs do not actually store global hashes, so when merging a type server // PDB we have to synthesize global hashes. To do this, we first synthesize // global hashes for the TPI stream, since it is independent, then we // synthesize hashes for the IPI stream, using the hashes for the TPI stream // as inputs. void TypeServerSource::loadGHashes() { // Don't hash twice. if (!ghashes.empty()) return; pdb::PDBFile &pdbFile = pdbInputFile->session->getPDBFile(); // Hash TPI stream. Expected expectedTpi = pdbFile.getPDBTpiStream(); if (auto e = expectedTpi.takeError()) fatal("Type server does not have TPI stream: " + toString(std::move(e))); assignGHashesFromVector( GloballyHashedType::hashTypes(expectedTpi->typeArray())); isItemIndex.resize(ghashes.size()); // Hash IPI stream, which depends on TPI ghashes. if (!pdbFile.hasPDBIpiStream()) return; Expected expectedIpi = pdbFile.getPDBIpiStream(); if (auto e = expectedIpi.takeError()) fatal("error retrieving IPI stream: " + toString(std::move(e))); ipiSrc->assignGHashesFromVector( GloballyHashedType::hashIds(expectedIpi->typeArray(), ghashes)); // The IPI stream isItemIndex bitvector should be all ones. ipiSrc->isItemIndex.resize(ipiSrc->ghashes.size()); ipiSrc->isItemIndex.set(0, ipiSrc->ghashes.size()); } // Flatten discontiguous PDB type arrays to bytes so that we can use // forEachTypeChecked instead of CVTypeArray iteration. Copying all types from // type servers is faster than iterating all object files compiled with /Z7 with // CVTypeArray, which has high overheads due to the virtual interface of // BinaryStream::readBytes. static ArrayRef typeArrayToBytes(const CVTypeArray &types) { BinaryStreamRef stream = types.getUnderlyingStream(); ArrayRef debugTypes; checkError(stream.readBytes(0, stream.getLength(), debugTypes)); return debugTypes; } // Merge types from a type server PDB. void TypeServerSource::remapTpiWithGHashes(GHashState *g) { assert(config->debugGHashes && "ghashes must be enabled"); // IPI merging depends on TPI, so do TPI first, then do IPI. No need to // propagate errors, those should've been handled during ghash loading. pdb::PDBFile &pdbFile = pdbInputFile->session->getPDBFile(); pdb::TpiStream &tpi = check(pdbFile.getPDBTpiStream()); fillMapFromGHashes(g, indexMapStorage); tpiMap = indexMapStorage; mergeUniqueTypeRecords(typeArrayToBytes(tpi.typeArray())); if (pdbFile.hasPDBIpiStream()) { pdb::TpiStream &ipi = check(pdbFile.getPDBIpiStream()); ipiSrc->indexMapStorage.resize(ipiSrc->ghashes.size()); ipiSrc->fillMapFromGHashes(g, ipiSrc->indexMapStorage); ipiMap = ipiSrc->indexMapStorage; ipiSrc->tpiMap = tpiMap; ipiSrc->ipiMap = ipiMap; ipiSrc->mergeUniqueTypeRecords(typeArrayToBytes(ipi.typeArray())); if (config->showSummary) { nbTypeRecords = ipiSrc->ghashes.size(); nbTypeRecordsBytes = ipi.typeArray().getUnderlyingStream().getLength(); } } if (config->showSummary) { nbTypeRecords += ghashes.size(); nbTypeRecordsBytes += tpi.typeArray().getUnderlyingStream().getLength(); } } void UseTypeServerSource::remapTpiWithGHashes(GHashState *g) { // No remapping to do with /Zi objects. Simply use the index map from the type // server. Errors should have been reported earlier. Symbols from this object // will be ignored. Expected maybeTsSrc = getTypeServerSource(); if (!maybeTsSrc) { typeMergingError = joinErrors(std::move(typeMergingError), maybeTsSrc.takeError()); return; } TypeServerSource *tsSrc = *maybeTsSrc; tpiMap = tsSrc->tpiMap; ipiMap = tsSrc->ipiMap; } void PrecompSource::loadGHashes() { if (getDebugH(file)) { warn("ignoring .debug$H section; pch with ghash is not implemented"); } uint32_t ghashIdx = 0; std::vector hashVec; forEachTypeChecked(file->debugTypes, [&](const CVType &ty) { // Remember the index of the LF_ENDPRECOMP record so it can be excluded from // the PDB. There must be an entry in the list of ghashes so that the type // indexes of the following records in the /Yc PCH object line up. if (ty.kind() == LF_ENDPRECOMP) endPrecompGHashIdx = ghashIdx; hashVec.push_back(GloballyHashedType::hashType(ty, hashVec, hashVec)); isItemIndex.push_back(isIdRecord(ty.kind())); ++ghashIdx; }); assignGHashesFromVector(std::move(hashVec)); } void UsePrecompSource::loadGHashes() { PrecompSource *pchSrc = findPrecompSource(file, precompDependency); if (!pchSrc) return; // To compute ghashes of a /Yu object file, we need to build on the the // ghashes of the /Yc PCH object. After we are done hashing, discard the // ghashes from the PCH source so we don't unnecessarily try to deduplicate // them. std::vector hashVec = pchSrc->ghashes.take_front(precompDependency.getTypesCount()); forEachTypeChecked(file->debugTypes, [&](const CVType &ty) { hashVec.push_back(GloballyHashedType::hashType(ty, hashVec, hashVec)); isItemIndex.push_back(isIdRecord(ty.kind())); }); hashVec.erase(hashVec.begin(), hashVec.begin() + precompDependency.getTypesCount()); assignGHashesFromVector(std::move(hashVec)); } void UsePrecompSource::remapTpiWithGHashes(GHashState *g) { // This object was compiled with /Yu, so process the corresponding // precompiled headers object (/Yc) first. Some type indices in the current // object are referencing data in the precompiled headers object, so we need // both to be loaded. if (Error e = mergeInPrecompHeaderObj()) { typeMergingError = joinErrors(std::move(typeMergingError), std::move(e)); return; } fillMapFromGHashes(g, indexMapStorage); tpiMap = indexMapStorage; ipiMap = indexMapStorage; mergeUniqueTypeRecords(file->debugTypes, TypeIndex(precompDependency.getStartTypeIndex() + precompDependency.getTypesCount())); if (config->showSummary) { nbTypeRecords = ghashes.size(); nbTypeRecordsBytes = file->debugTypes.size(); } } namespace { /// A concurrent hash table for global type hashing. It is based on this paper: /// Concurrent Hash Tables: Fast and General(?)! /// https://dl.acm.org/doi/10.1145/3309206 /// /// This hash table is meant to be used in two phases: /// 1. concurrent insertions /// 2. concurrent reads /// It does not support lookup, deletion, or rehashing. It uses linear probing. /// /// The paper describes storing a key-value pair in two machine words. /// Generally, the values stored in this map are type indices, and we can use /// those values to recover the ghash key from a side table. This allows us to /// shrink the table entries further at the cost of some loads, and sidesteps /// the need for a 128 bit atomic compare-and-swap operation. /// /// During insertion, a priority function is used to decide which insertion /// should be preferred. This ensures that the output is deterministic. For /// ghashing, lower tpiSrcIdx values (earlier inputs) are preferred. /// class GHashCell; struct GHashTable { GHashCell *table = nullptr; uint32_t tableSize = 0; GHashTable() = default; ~GHashTable(); /// Initialize the table with the given size. Because the table cannot be /// resized, the initial size of the table must be large enough to contain all /// inputs, or insertion may not be able to find an empty cell. void init(uint32_t newTableSize); /// Insert the cell with the given ghash into the table. Return the insertion /// position in the table. It is safe for the caller to store the insertion /// position because the table cannot be resized. uint32_t insert(GloballyHashedType ghash, GHashCell newCell); }; /// A ghash table cell for deduplicating types from TpiSources. class GHashCell { uint64_t data = 0; public: GHashCell() = default; // Construct data most to least significant so that sorting works well: // - isItem // - tpiSrcIdx // - ghashIdx // Add one to the tpiSrcIdx so that the 0th record from the 0th source has a // non-zero representation. GHashCell(bool isItem, uint32_t tpiSrcIdx, uint32_t ghashIdx) : data((uint64_t(isItem) << 63U) | (uint64_t(tpiSrcIdx + 1) << 32ULL) | ghashIdx) { assert(tpiSrcIdx == getTpiSrcIdx() && "round trip failure"); assert(ghashIdx == getGHashIdx() && "round trip failure"); } explicit GHashCell(uint64_t data) : data(data) {} // The empty cell is all zeros. bool isEmpty() const { return data == 0ULL; } /// Extract the tpiSrcIdx. uint32_t getTpiSrcIdx() const { return ((uint32_t)(data >> 32U) & 0x7FFFFFFF) - 1; } /// Extract the index into the ghash array of the TpiSource. uint32_t getGHashIdx() const { return (uint32_t)data; } bool isItem() const { return data & (1ULL << 63U); } /// Get the ghash key for this cell. GloballyHashedType getGHash() const { return TpiSource::instances[getTpiSrcIdx()]->ghashes[getGHashIdx()]; } /// The priority function for the cell. The data is stored such that lower /// tpiSrcIdx and ghashIdx values are preferred, which means that type record /// from earlier sources are more likely to prevail. friend inline bool operator<(const GHashCell &l, const GHashCell &r) { return l.data < r.data; } }; } // namespace namespace lld { namespace coff { /// This type is just a wrapper around GHashTable with external linkage so it /// can be used from a header. struct GHashState { GHashTable table; }; } // namespace coff } // namespace lld GHashTable::~GHashTable() { delete[] table; } void GHashTable::init(uint32_t newTableSize) { table = new GHashCell[newTableSize]; memset(table, 0, newTableSize * sizeof(GHashCell)); tableSize = newTableSize; } uint32_t GHashTable::insert(GloballyHashedType ghash, GHashCell newCell) { assert(!newCell.isEmpty() && "cannot insert empty cell value"); // FIXME: The low bytes of SHA1 have low entropy for short records, which // type records are. Swap the byte order for better entropy. A better ghash // won't need this. uint32_t startIdx = ByteSwap_64(*reinterpret_cast(&ghash)) % tableSize; // Do a linear probe starting at startIdx. uint32_t idx = startIdx; while (true) { // Run a compare and swap loop. There are four cases: // - cell is empty: CAS into place and return // - cell has matching key, earlier priority: do nothing, return // - cell has matching key, later priority: CAS into place and return // - cell has non-matching key: hash collision, probe next cell auto *cellPtr = reinterpret_cast *>(&table[idx]); GHashCell oldCell(cellPtr->load()); while (oldCell.isEmpty() || oldCell.getGHash() == ghash) { // Check if there is an existing ghash entry with a higher priority // (earlier ordering). If so, this is a duplicate, we are done. if (!oldCell.isEmpty() && oldCell < newCell) return idx; // Either the cell is empty, or our value is higher priority. Try to // compare and swap. If it succeeds, we are done. if (cellPtr->compare_exchange_weak(oldCell, newCell)) return idx; // If the CAS failed, check this cell again. } // Advance the probe. Wrap around to the beginning if we run off the end. ++idx; idx = idx == tableSize ? 0 : idx; if (idx == startIdx) { // If this becomes an issue, we could mark failure and rehash from the // beginning with a bigger table. There is no difference between rehashing // internally and starting over. report_fatal_error("ghash table is full"); } } llvm_unreachable("left infloop"); } TypeMerger::TypeMerger(llvm::BumpPtrAllocator &alloc) : typeTable(alloc), idTable(alloc) {} TypeMerger::~TypeMerger() = default; void TypeMerger::mergeTypesWithGHash() { // Load ghashes. Do type servers and PCH objects first. { ScopedTimer t1(loadGHashTimer); parallelForEach(TpiSource::dependencySources, [&](TpiSource *source) { source->loadGHashes(); }); parallelForEach(TpiSource::objectSources, [&](TpiSource *source) { source->loadGHashes(); }); } ScopedTimer t2(mergeGHashTimer); GHashState ghashState; // Estimate the size of hash table needed to deduplicate ghashes. This *must* // be larger than the number of unique types, or hash table insertion may not // be able to find a vacant slot. Summing the input types guarantees this, but // it is a gross overestimate. The table size could be reduced to save memory, // but it would require implementing rehashing, and this table is generally // small compared to total memory usage, at eight bytes per input type record, // and most input type records are larger than eight bytes. size_t tableSize = 0; for (TpiSource *source : TpiSource::instances) tableSize += source->ghashes.size(); // Cap the table size so that we can use 32-bit cell indices. Type indices are // also 32-bit, so this is an inherent PDB file format limit anyway. tableSize = std::min(size_t(INT32_MAX), tableSize); ghashState.table.init(static_cast(tableSize)); // Insert ghashes in parallel. During concurrent insertion, we cannot observe // the contents of the hash table cell, but we can remember the insertion // position. Because the table does not rehash, the position will not change // under insertion. After insertion is done, the value of the cell can be read // to retreive the final PDB type index. parallelForEachN(0, TpiSource::instances.size(), [&](size_t tpiSrcIdx) { TpiSource *source = TpiSource::instances[tpiSrcIdx]; source->indexMapStorage.resize(source->ghashes.size()); for (uint32_t i = 0, e = source->ghashes.size(); i < e; i++) { if (source->shouldOmitFromPdb(i)) { source->indexMapStorage[i] = TypeIndex(SimpleTypeKind::NotTranslated); continue; } GloballyHashedType ghash = source->ghashes[i]; bool isItem = source->isItemIndex.test(i); uint32_t cellIdx = ghashState.table.insert(ghash, GHashCell(isItem, tpiSrcIdx, i)); // Store the ghash cell index as a type index in indexMapStorage. Later // we will replace it with the PDB type index. source->indexMapStorage[i] = TypeIndex::fromArrayIndex(cellIdx); } }); // Collect all non-empty cells and sort them. This will implicitly assign // destination type indices, and partition the entries into type records and // item records. It arranges types in this order: // - type records // - source 0, type 0... // - source 1, type 1... // - item records // - source 0, type 1... // - source 1, type 0... std::vector entries; for (const GHashCell &cell : makeArrayRef(ghashState.table.table, tableSize)) { if (!cell.isEmpty()) entries.push_back(cell); } parallelSort(entries, std::less()); log(formatv("ghash table load factor: {0:p} (size {1} / capacity {2})\n", tableSize ? double(entries.size()) / tableSize : 0, entries.size(), tableSize)); // Find out how many type and item indices there are. auto mid = std::lower_bound(entries.begin(), entries.end(), GHashCell(true, 0, 0)); assert((mid == entries.end() || mid->isItem()) && (mid == entries.begin() || !std::prev(mid)->isItem()) && "midpoint is not midpoint"); uint32_t numTypes = std::distance(entries.begin(), mid); uint32_t numItems = std::distance(mid, entries.end()); log("Tpi record count: " + Twine(numTypes)); log("Ipi record count: " + Twine(numItems)); // Make a list of the "unique" type records to merge for each tpi source. Type // merging will skip indices not on this list. Store the destination PDB type // index for these unique types in the tpiMap for each source. The entries for // non-unique types will be filled in prior to type merging. for (uint32_t i = 0, e = entries.size(); i < e; ++i) { auto &cell = entries[i]; uint32_t tpiSrcIdx = cell.getTpiSrcIdx(); TpiSource *source = TpiSource::instances[tpiSrcIdx]; source->uniqueTypes.push_back(cell.getGHashIdx()); // Update the ghash table to store the destination PDB type index in the // table. uint32_t pdbTypeIndex = i < numTypes ? i : i - numTypes; uint32_t ghashCellIndex = source->indexMapStorage[cell.getGHashIdx()].toArrayIndex(); ghashState.table.table[ghashCellIndex] = GHashCell(cell.isItem(), cell.getTpiSrcIdx(), pdbTypeIndex); } // In parallel, remap all types. for_each(TpiSource::dependencySources, [&](TpiSource *source) { source->remapTpiWithGHashes(&ghashState); }); parallelForEach(TpiSource::objectSources, [&](TpiSource *source) { source->remapTpiWithGHashes(&ghashState); }); // Build a global map of from function ID to function type. for (TpiSource *source : TpiSource::instances) { for (auto idToType : source->funcIdToType) funcIdToType.insert(idToType); source->funcIdToType.clear(); } TpiSource::clearGHashes(); } /// Given the index into the ghash table for a particular type, return the type /// index for that type in the output PDB. static TypeIndex loadPdbTypeIndexFromCell(GHashState *g, uint32_t ghashCellIdx) { GHashCell cell = g->table.table[ghashCellIdx]; return TypeIndex::fromArrayIndex(cell.getGHashIdx()); } // Fill in a TPI or IPI index map using ghashes. For each source type, use its // ghash to lookup its final type index in the PDB, and store that in the map. void TpiSource::fillMapFromGHashes(GHashState *g, SmallVectorImpl &mapToFill) { for (size_t i = 0, e = ghashes.size(); i < e; ++i) { TypeIndex fakeCellIndex = indexMapStorage[i]; if (fakeCellIndex.isSimple()) mapToFill[i] = fakeCellIndex; else mapToFill[i] = loadPdbTypeIndexFromCell(g, fakeCellIndex.toArrayIndex()); } } void TpiSource::clearGHashes() { for (TpiSource *src : TpiSource::instances) { if (src->ownedGHashes) delete[] src->ghashes.data(); src->ghashes = {}; src->isItemIndex.clear(); src->uniqueTypes.clear(); } }