//===- X86_64.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Support/Endian.h" using namespace llvm::MachO; using namespace llvm::support::endian; using namespace lld; using namespace lld::macho; namespace { struct X86_64 : TargetInfo { X86_64(); uint64_t getImplicitAddend(MemoryBufferRef, const section_64 &, const relocation_info &) const override; void relocateOne(uint8_t *loc, const Reloc &, uint64_t val) const override; void writeStub(uint8_t *buf, const macho::Symbol &) const override; void writeStubHelperHeader(uint8_t *buf) const override; void writeStubHelperEntry(uint8_t *buf, const DylibSymbol &, uint64_t entryAddr) const override; void prepareSymbolRelocation(lld::macho::Symbol *, const InputSection *, const Reloc &) override; uint64_t resolveSymbolVA(uint8_t *buf, const lld::macho::Symbol &, uint8_t type) const override; }; } // namespace static std::string getErrorLocation(MemoryBufferRef mb, const section_64 &sec, const relocation_info &rel) { return ("invalid relocation at offset " + std::to_string(rel.r_address) + " of " + sec.segname + "," + sec.sectname + " in " + mb.getBufferIdentifier()) .str(); } static void validateLength(MemoryBufferRef mb, const section_64 &sec, const relocation_info &rel, ArrayRef validLengths) { if (find(validLengths, rel.r_length) != validLengths.end()) return; std::string msg = getErrorLocation(mb, sec, rel) + ": relocations of type " + std::to_string(rel.r_type) + " must have r_length of "; bool first = true; for (uint8_t length : validLengths) { if (!first) msg += " or "; first = false; msg += std::to_string(length); } fatal(msg); } uint64_t X86_64::getImplicitAddend(MemoryBufferRef mb, const section_64 &sec, const relocation_info &rel) const { auto *buf = reinterpret_cast(mb.getBufferStart()); const uint8_t *loc = buf + sec.offset + rel.r_address; if (isThreadLocalVariables(sec.flags) && rel.r_type != X86_64_RELOC_UNSIGNED) error("relocations in thread-local variable sections must be " "X86_64_RELOC_UNSIGNED"); switch (rel.r_type) { case X86_64_RELOC_BRANCH: // XXX: ld64 also supports r_length = 0 here but I'm not sure when such a // relocation will actually be generated. validateLength(mb, sec, rel, {2}); break; case X86_64_RELOC_SIGNED: case X86_64_RELOC_SIGNED_1: case X86_64_RELOC_SIGNED_2: case X86_64_RELOC_SIGNED_4: case X86_64_RELOC_GOT_LOAD: case X86_64_RELOC_GOT: case X86_64_RELOC_TLV: if (!rel.r_pcrel) fatal(getErrorLocation(mb, sec, rel) + ": relocations of type " + std::to_string(rel.r_type) + " must be pcrel"); validateLength(mb, sec, rel, {2}); break; case X86_64_RELOC_UNSIGNED: if (rel.r_pcrel) fatal(getErrorLocation(mb, sec, rel) + ": relocations of type " + std::to_string(rel.r_type) + " must not be pcrel"); validateLength(mb, sec, rel, {2, 3}); break; default: error("TODO: Unhandled relocation type " + std::to_string(rel.r_type)); return 0; } switch (rel.r_length) { case 0: return *loc; case 1: return read16le(loc); case 2: return read32le(loc); case 3: return read64le(loc); default: llvm_unreachable("invalid r_length"); } } void X86_64::relocateOne(uint8_t *loc, const Reloc &r, uint64_t val) const { switch (r.type) { case X86_64_RELOC_BRANCH: case X86_64_RELOC_SIGNED: case X86_64_RELOC_SIGNED_1: case X86_64_RELOC_SIGNED_2: case X86_64_RELOC_SIGNED_4: case X86_64_RELOC_GOT_LOAD: case X86_64_RELOC_GOT: case X86_64_RELOC_TLV: // These types are only used for pc-relative relocations, so offset by 4 // since the RIP has advanced by 4 at this point. This is only valid when // r_length = 2, which is enforced by validateLength(). val -= 4; break; case X86_64_RELOC_UNSIGNED: break; default: llvm_unreachable( "getImplicitAddend should have flagged all unhandled relocation types"); } switch (r.length) { case 0: *loc = val; break; case 1: write16le(loc, val); break; case 2: write32le(loc, val); break; case 3: write64le(loc, val); break; default: llvm_unreachable("invalid r_length"); } } // The following methods emit a number of assembly sequences with RIP-relative // addressing. Note that RIP-relative addressing on X86-64 has the RIP pointing // to the next instruction, not the current instruction, so we always have to // account for the current instruction's size when calculating offsets. // writeRipRelative helps with that. // // bufAddr: The virtual address corresponding to buf[0]. // bufOff: The offset within buf of the next instruction. // destAddr: The destination address that the current instruction references. static void writeRipRelative(uint8_t *buf, uint64_t bufAddr, uint64_t bufOff, uint64_t destAddr) { uint64_t rip = bufAddr + bufOff; // For the instructions we care about, the RIP-relative address is always // stored in the last 4 bytes of the instruction. write32le(buf + bufOff - 4, destAddr - rip); } static constexpr uint8_t stub[] = { 0xff, 0x25, 0, 0, 0, 0, // jmpq *__la_symbol_ptr(%rip) }; void X86_64::writeStub(uint8_t *buf, const macho::Symbol &sym) const { memcpy(buf, stub, 2); // just copy the two nonzero bytes uint64_t stubAddr = in.stubs->addr + sym.stubsIndex * sizeof(stub); writeRipRelative(buf, stubAddr, sizeof(stub), in.lazyPointers->addr + sym.stubsIndex * WordSize); } static constexpr uint8_t stubHelperHeader[] = { 0x4c, 0x8d, 0x1d, 0, 0, 0, 0, // 0x0: leaq ImageLoaderCache(%rip), %r11 0x41, 0x53, // 0x7: pushq %r11 0xff, 0x25, 0, 0, 0, 0, // 0x9: jmpq *dyld_stub_binder@GOT(%rip) 0x90, // 0xf: nop }; static constexpr uint8_t stubHelperEntry[] = { 0x68, 0, 0, 0, 0, // 0x0: pushq 0xe9, 0, 0, 0, 0, // 0x5: jmp <__stub_helper> }; void X86_64::writeStubHelperHeader(uint8_t *buf) const { memcpy(buf, stubHelperHeader, sizeof(stubHelperHeader)); writeRipRelative(buf, in.stubHelper->addr, 7, in.imageLoaderCache->getVA()); writeRipRelative(buf, in.stubHelper->addr, 0xf, in.got->addr + in.stubHelper->stubBinder->gotIndex * WordSize); } void X86_64::writeStubHelperEntry(uint8_t *buf, const DylibSymbol &sym, uint64_t entryAddr) const { memcpy(buf, stubHelperEntry, sizeof(stubHelperEntry)); write32le(buf + 1, sym.lazyBindOffset); writeRipRelative(buf, entryAddr, sizeof(stubHelperEntry), in.stubHelper->addr); } void X86_64::prepareSymbolRelocation(lld::macho::Symbol *sym, const InputSection *isec, const Reloc &r) { switch (r.type) { case X86_64_RELOC_GOT_LOAD: { if (needsBinding(sym)) in.got->addEntry(sym); if (sym->isTlv()) error("found GOT relocation referencing thread-local variable in " + toString(isec)); break; } case X86_64_RELOC_GOT: { in.got->addEntry(sym); if (sym->isTlv()) error("found GOT relocation referencing thread-local variable in " + toString(isec)); break; } case X86_64_RELOC_BRANCH: { prepareBranchTarget(sym); break; } case X86_64_RELOC_UNSIGNED: { if (auto *dysym = dyn_cast(sym)) { if (r.length != 3) { error("X86_64_RELOC_UNSIGNED referencing the dynamic symbol " + dysym->getName() + " must have r_length = 3"); return; } } addNonLazyBindingEntries(sym, isec, r.offset, r.addend); break; } case X86_64_RELOC_SIGNED: case X86_64_RELOC_SIGNED_1: case X86_64_RELOC_SIGNED_2: case X86_64_RELOC_SIGNED_4: // TODO: warn if they refer to a weak global break; case X86_64_RELOC_TLV: { if (needsBinding(sym)) in.tlvPointers->addEntry(sym); if (!sym->isTlv()) error( "found X86_64_RELOC_TLV referencing a non-thread-local variable in " + toString(isec)); break; } case X86_64_RELOC_SUBTRACTOR: fatal("TODO: handle relocation type " + std::to_string(r.type)); break; default: llvm_unreachable("unexpected relocation type"); } } uint64_t X86_64::resolveSymbolVA(uint8_t *buf, const lld::macho::Symbol &sym, uint8_t type) const { switch (type) { case X86_64_RELOC_GOT_LOAD: { if (!sym.isInGot()) { if (buf[-2] != 0x8b) error("X86_64_RELOC_GOT_LOAD must be used with movq instructions"); buf[-2] = 0x8d; return sym.getVA(); } LLVM_FALLTHROUGH; } case X86_64_RELOC_GOT: return in.got->addr + sym.gotIndex * WordSize; case X86_64_RELOC_BRANCH: { if (sym.isInStubs()) return in.stubs->addr + sym.stubsIndex * sizeof(stub); return sym.getVA(); } case X86_64_RELOC_UNSIGNED: case X86_64_RELOC_SIGNED: case X86_64_RELOC_SIGNED_1: case X86_64_RELOC_SIGNED_2: case X86_64_RELOC_SIGNED_4: return sym.getVA(); case X86_64_RELOC_TLV: { if (sym.isInGot()) return in.tlvPointers->addr + sym.gotIndex * WordSize; // Convert the movq to a leaq. assert(isa(&sym)); if (buf[-2] != 0x8b) error("X86_64_RELOC_TLV must be used with movq instructions"); buf[-2] = 0x8d; return sym.getVA(); } case X86_64_RELOC_SUBTRACTOR: fatal("TODO: handle relocation type " + std::to_string(type)); default: llvm_unreachable("Unexpected relocation type"); } } X86_64::X86_64() { cpuType = CPU_TYPE_X86_64; cpuSubtype = CPU_SUBTYPE_X86_64_ALL; stubSize = sizeof(stub); stubHelperHeaderSize = sizeof(stubHelperHeader); stubHelperEntrySize = sizeof(stubHelperEntry); } TargetInfo *macho::createX86_64TargetInfo() { static X86_64 t; return &t; }