//===-- ObjectFileMachO.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/StringRef.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Core/StreamFile.h" #include "lldb/Host/Host.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadList.h" #include "lldb/Utility/ArchSpec.h" #include "lldb/Utility/DataBuffer.h" #include "lldb/Utility/FileSpec.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RangeMap.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/Timer.h" #include "lldb/Utility/UUID.h" #include "lldb/Host/SafeMachO.h" #include "llvm/Support/MemoryBuffer.h" #include "ObjectFileMachO.h" #if defined(__APPLE__) #include // GetLLDBSharedCacheUUID() needs to call dlsym() #include #endif #ifndef __APPLE__ #include "Utility/UuidCompatibility.h" #else #include #endif #include #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull using namespace lldb; using namespace lldb_private; using namespace llvm::MachO; LLDB_PLUGIN_DEFINE(ObjectFileMachO) // Some structure definitions needed for parsing the dyld shared cache files // found on iOS devices. struct lldb_copy_dyld_cache_header_v1 { char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info uint32_t mappingCount; // number of dyld_cache_mapping_info entries uint32_t imagesOffset; uint32_t imagesCount; uint64_t dyldBaseAddress; uint64_t codeSignatureOffset; uint64_t codeSignatureSize; uint64_t slideInfoOffset; uint64_t slideInfoSize; uint64_t localSymbolsOffset; uint64_t localSymbolsSize; uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 // and later }; struct lldb_copy_dyld_cache_mapping_info { uint64_t address; uint64_t size; uint64_t fileOffset; uint32_t maxProt; uint32_t initProt; }; struct lldb_copy_dyld_cache_local_symbols_info { uint32_t nlistOffset; uint32_t nlistCount; uint32_t stringsOffset; uint32_t stringsSize; uint32_t entriesOffset; uint32_t entriesCount; }; struct lldb_copy_dyld_cache_local_symbols_entry { uint32_t dylibOffset; uint32_t nlistStartIndex; uint32_t nlistCount; }; static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); if (reg_info == nullptr) reg_info = reg_ctx->GetRegisterInfoByName(alt_name); if (reg_info) { lldb_private::RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_info->byte_size >= reg_byte_size) data.Write(reg_value.GetBytes(), reg_byte_size); else { data.Write(reg_value.GetBytes(), reg_info->byte_size); for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) data.PutChar(0); } return; } } // Just write zeros if all else fails for (size_t i = 0; i < reg_byte_size; ++i) data.PutChar(0); } class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { public: RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_x86_64(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); if (flavor == 0) done = true; else { uint32_t i; uint32_t count = data.GetU32(&offset); switch (flavor) { case GPRRegSet: for (i = 0; i < count; ++i) (&gpr.rax)[i] = data.GetU64(&offset); SetError(GPRRegSet, Read, 0); done = true; break; case FPURegSet: // TODO: fill in FPU regs.... // SetError (FPURegSet, Read, -1); done = true; break; case EXCRegSet: exc.trapno = data.GetU32(&offset); exc.err = data.GetU32(&offset); exc.faultvaddr = data.GetU64(&offset); SetError(EXCRegSet, Read, 0); done = true; break; case 7: case 8: case 9: // fancy flavors that encapsulate of the above flavors... break; default: done = true; break; } } } } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data); PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data); PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data); PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data); PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data); PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data); // // Write out the FPU registers // const size_t fpu_byte_size = sizeof(FPU); // size_t bytes_written = 0; // data.PutHex32 (FPURegSet); // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); // bytes_written += data.PutHex32(0); // uint32_t pad[0] // bytes_written += data.PutHex32(0); // uint32_t pad[1] // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, // data); // uint16_t fcw; // "fctrl" // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, // data); // uint16_t fsw; // "fstat" // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, // data); // uint8_t ftw; // "ftag" // bytes_written += data.PutHex8 (0); // uint8_t pad1; // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, // data); // uint16_t fop; // "fop" // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, // data); // uint32_t ip; // "fioff" // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, // data); // uint16_t cs; // "fiseg" // bytes_written += data.PutHex16 (0); // uint16_t pad2; // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, // data); // uint32_t dp; // "fooff" // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, // data); // uint16_t ds; // "foseg" // bytes_written += data.PutHex16 (0); // uint16_t pad3; // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, // data); // uint32_t mxcsr; // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, // 4, data);// uint32_t mxcsrmask; // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, // sizeof(MMSReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, // sizeof(XMMReg), data); // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, // sizeof(XMMReg), data); // // // Fill rest with zeros // for (size_t i=0, n = fpu_byte_size - bytes_written; iGetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data); PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data); PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data); PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data); PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data); PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data); PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data); PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data); PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data); PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data); PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data); PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data); PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data); PrintRegisterValue(reg_ctx, "es", nullptr, 4, data); PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data); PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data); // Write out the EXC registers data.PutHex32(EXCRegSet); data.PutHex32(EXCWordCount); PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } }; class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { public: RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); uint32_t count = data.GetU32(&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRAltRegSet: case GPRRegSet: // On ARM, the CPSR register is also included in the count but it is // not included in gpr.r so loop until (count-1). for (uint32_t i = 0; i < (count - 1); ++i) { gpr.r[i] = data.GetU32(&offset); } // Save cpsr explicitly. gpr.cpsr = data.GetU32(&offset); SetError(GPRRegSet, Read, 0); offset = next_thread_state; break; case FPURegSet: { uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; const int fpu_reg_buf_size = sizeof(fpu.floats); if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) { offset += fpu_reg_buf_size; fpu.fpscr = data.GetU32(&offset); SetError(FPURegSet, Read, 0); } else { done = true; } } offset = next_thread_state; break; case EXCRegSet: if (count == 3) { exc.exception = data.GetU32(&offset); exc.fsr = data.GetU32(&offset); exc.far = data.GetU32(&offset); SetError(EXCRegSet, Read, 0); } done = true; offset = next_thread_state; break; // Unknown register set flavor, stop trying to parse. default: done = true; } } } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data); PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data); PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data); PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data); PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data); PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "exception", NULL, 4, data); // WriteRegister (reg_ctx, "fsr", NULL, 4, data); // WriteRegister (reg_ctx, "far", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { public: RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, const DataExtractor &data) : RegisterContextDarwin_arm64(thread, 0) { SetRegisterDataFrom_LC_THREAD(data); } void InvalidateAllRegisters() override { // Do nothing... registers are always valid... } void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { lldb::offset_t offset = 0; SetError(GPRRegSet, Read, -1); SetError(FPURegSet, Read, -1); SetError(EXCRegSet, Read, -1); bool done = false; while (!done) { int flavor = data.GetU32(&offset); uint32_t count = data.GetU32(&offset); lldb::offset_t next_thread_state = offset + (count * 4); switch (flavor) { case GPRRegSet: // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 // 32-bit register) if (count >= (33 * 2) + 1) { for (uint32_t i = 0; i < 29; ++i) gpr.x[i] = data.GetU64(&offset); gpr.fp = data.GetU64(&offset); gpr.lr = data.GetU64(&offset); gpr.sp = data.GetU64(&offset); gpr.pc = data.GetU64(&offset); gpr.cpsr = data.GetU32(&offset); SetError(GPRRegSet, Read, 0); } offset = next_thread_state; break; case FPURegSet: { uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; const int fpu_reg_buf_size = sizeof(fpu); if (fpu_reg_buf_size == count * sizeof(uint32_t) && data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) { SetError(FPURegSet, Read, 0); } else { done = true; } } offset = next_thread_state; break; case EXCRegSet: if (count == 4) { exc.far = data.GetU64(&offset); exc.esr = data.GetU32(&offset); exc.exception = data.GetU32(&offset); SetError(EXCRegSet, Read, 0); } offset = next_thread_state; break; default: done = true; break; } } } static bool Create_LC_THREAD(Thread *thread, Stream &data) { RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); if (reg_ctx_sp) { RegisterContext *reg_ctx = reg_ctx_sp.get(); data.PutHex32(GPRRegSet); // Flavor data.PutHex32(GPRWordCount); PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data); PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data); PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data); PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data); PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data); PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data); PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); // Write out the EXC registers // data.PutHex32 (EXCRegSet); // data.PutHex32 (EXCWordCount); // WriteRegister (reg_ctx, "far", NULL, 8, data); // WriteRegister (reg_ctx, "esr", NULL, 4, data); // WriteRegister (reg_ctx, "exception", NULL, 4, data); return true; } return false; } protected: int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { return 0; } int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { return 0; } int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { return 0; } int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { return -1; } }; static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { switch (magic) { case MH_MAGIC: case MH_CIGAM: return sizeof(struct mach_header); case MH_MAGIC_64: case MH_CIGAM_64: return sizeof(struct mach_header_64); break; default: break; } return 0; } #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 char ObjectFileMachO::ID; void ObjectFileMachO::Initialize() { PluginManager::RegisterPlugin( GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, CreateMemoryInstance, GetModuleSpecifications, SaveCore); } void ObjectFileMachO::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { static ConstString g_name("mach-o"); return g_name; } const char *ObjectFileMachO::GetPluginDescriptionStatic() { return "Mach-o object file reader (32 and 64 bit)"; } ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) { if (!data_sp) { data_sp = MapFileData(*file, length, file_offset); if (!data_sp) return nullptr; data_offset = 0; } if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) return nullptr; // Update the data to contain the entire file if it doesn't already if (data_sp->GetByteSize() < length) { data_sp = MapFileData(*file, length, file_offset); if (!data_sp) return nullptr; data_offset = 0; } auto objfile_up = std::make_unique( module_sp, data_sp, data_offset, file, file_offset, length); if (!objfile_up || !objfile_up->ParseHeader()) return nullptr; return objfile_up.release(); } ObjectFile *ObjectFileMachO::CreateMemoryInstance( const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, const ProcessSP &process_sp, lldb::addr_t header_addr) { if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { std::unique_ptr objfile_up( new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); if (objfile_up.get() && objfile_up->ParseHeader()) return objfile_up.release(); } return nullptr; } size_t ObjectFileMachO::GetModuleSpecifications( const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs) { const size_t initial_count = specs.GetSize(); if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { DataExtractor data; data.SetData(data_sp); llvm::MachO::mach_header header; if (ParseHeader(data, &data_offset, header)) { size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); if (header_and_load_cmds >= data_sp->GetByteSize()) { data_sp = MapFileData(file, header_and_load_cmds, file_offset); data.SetData(data_sp); data_offset = MachHeaderSizeFromMagic(header.magic); } if (data_sp) { ModuleSpec base_spec; base_spec.GetFileSpec() = file; base_spec.SetObjectOffset(file_offset); base_spec.SetObjectSize(length); GetAllArchSpecs(header, data, data_offset, base_spec, specs); } } } return specs.GetSize() - initial_count; } ConstString ObjectFileMachO::GetSegmentNameTEXT() { static ConstString g_segment_name_TEXT("__TEXT"); return g_segment_name_TEXT; } ConstString ObjectFileMachO::GetSegmentNameDATA() { static ConstString g_segment_name_DATA("__DATA"); return g_segment_name_DATA; } ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() { static ConstString g_segment_name("__DATA_DIRTY"); return g_segment_name; } ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() { static ConstString g_segment_name("__DATA_CONST"); return g_segment_name; } ConstString ObjectFileMachO::GetSegmentNameOBJC() { static ConstString g_segment_name_OBJC("__OBJC"); return g_segment_name_OBJC; } ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() { static ConstString g_section_name_LINKEDIT("__LINKEDIT"); return g_section_name_LINKEDIT; } ConstString ObjectFileMachO::GetSegmentNameDWARF() { static ConstString g_section_name("__DWARF"); return g_section_name; } ConstString ObjectFileMachO::GetSectionNameEHFrame() { static ConstString g_section_name_eh_frame("__eh_frame"); return g_section_name_eh_frame; } bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, lldb::addr_t data_offset, lldb::addr_t data_length) { DataExtractor data; data.SetData(data_sp, data_offset, data_length); lldb::offset_t offset = 0; uint32_t magic = data.GetU32(&offset); return MachHeaderSizeFromMagic(magic) != 0; } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, lldb::offset_t data_offset, const FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length) : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false), m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { ::memset(&m_header, 0, sizeof(m_header)); ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, lldb::DataBufferSP &header_data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), m_mach_segments(), m_mach_sections(), m_entry_point_address(), m_thread_context_offsets(), m_thread_context_offsets_valid(false), m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { ::memset(&m_header, 0, sizeof(m_header)); ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } bool ObjectFileMachO::ParseHeader(DataExtractor &data, lldb::offset_t *data_offset_ptr, llvm::MachO::mach_header &header) { data.SetByteOrder(endian::InlHostByteOrder()); // Leave magic in the original byte order header.magic = data.GetU32(data_offset_ptr); bool can_parse = false; bool is_64_bit = false; switch (header.magic) { case MH_MAGIC: data.SetByteOrder(endian::InlHostByteOrder()); data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: data.SetByteOrder(endian::InlHostByteOrder()); data.SetAddressByteSize(8); can_parse = true; is_64_bit = true; break; case MH_CIGAM: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); data.SetAddressByteSize(8); is_64_bit = true; can_parse = true; break; default: break; } if (can_parse) { data.GetU32(data_offset_ptr, &header.cputype, 6); if (is_64_bit) *data_offset_ptr += 4; return true; } else { memset(&header, 0, sizeof(header)); } return false; } bool ObjectFileMachO::ParseHeader() { ModuleSP module_sp(GetModule()); if (!module_sp) return false; std::lock_guard guard(module_sp->GetMutex()); bool can_parse = false; lldb::offset_t offset = 0; m_data.SetByteOrder(endian::InlHostByteOrder()); // Leave magic in the original byte order m_header.magic = m_data.GetU32(&offset); switch (m_header.magic) { case MH_MAGIC: m_data.SetByteOrder(endian::InlHostByteOrder()); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_MAGIC_64: m_data.SetByteOrder(endian::InlHostByteOrder()); m_data.SetAddressByteSize(8); can_parse = true; break; case MH_CIGAM: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(4); can_parse = true; break; case MH_CIGAM_64: m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); m_data.SetAddressByteSize(8); can_parse = true; break; default: break; } if (can_parse) { m_data.GetU32(&offset, &m_header.cputype, 6); ModuleSpecList all_specs; ModuleSpec base_spec; GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), base_spec, all_specs); for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { ArchSpec mach_arch = all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); // Check if the module has a required architecture const ArchSpec &module_arch = module_sp->GetArchitecture(); if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) continue; if (SetModulesArchitecture(mach_arch)) { const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); if (m_data.GetByteSize() < header_and_lc_size) { DataBufferSP data_sp; ProcessSP process_sp(m_process_wp.lock()); if (process_sp) { data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size); } else { // Read in all only the load command data from the file on disk data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset); if (data_sp->GetByteSize() != header_and_lc_size) continue; } if (data_sp) m_data.SetData(data_sp); } } return true; } // None found. return false; } else { memset(&m_header, 0, sizeof(struct mach_header)); } return false; } ByteOrder ObjectFileMachO::GetByteOrder() const { return m_data.GetByteOrder(); } bool ObjectFileMachO::IsExecutable() const { return m_header.filetype == MH_EXECUTE; } bool ObjectFileMachO::IsDynamicLoader() const { return m_header.filetype == MH_DYLINKER; } uint32_t ObjectFileMachO::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { Symtab *symtab = GetSymtab(); if (!symtab) return AddressClass::eUnknown; Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); if (symbol) { if (symbol->ValueIsAddress()) { SectionSP section_sp(symbol->GetAddressRef().GetSection()); if (section_sp) { const lldb::SectionType section_type = section_sp->GetType(); switch (section_type) { case eSectionTypeInvalid: return AddressClass::eUnknown; case eSectionTypeCode: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol that // tells us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return AddressClass::eCodeAlternateISA; } return AddressClass::eCode; case eSectionTypeContainer: return AddressClass::eUnknown; case eSectionTypeData: case eSectionTypeDataCString: case eSectionTypeDataCStringPointers: case eSectionTypeDataSymbolAddress: case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: case eSectionTypeDataPointers: case eSectionTypeZeroFill: case eSectionTypeDataObjCMessageRefs: case eSectionTypeDataObjCCFStrings: case eSectionTypeGoSymtab: return AddressClass::eData; case eSectionTypeDebug: case eSectionTypeDWARFDebugAbbrev: case eSectionTypeDWARFDebugAbbrevDwo: case eSectionTypeDWARFDebugAddr: case eSectionTypeDWARFDebugAranges: case eSectionTypeDWARFDebugCuIndex: case eSectionTypeDWARFDebugFrame: case eSectionTypeDWARFDebugInfo: case eSectionTypeDWARFDebugInfoDwo: case eSectionTypeDWARFDebugLine: case eSectionTypeDWARFDebugLineStr: case eSectionTypeDWARFDebugLoc: case eSectionTypeDWARFDebugLocDwo: case eSectionTypeDWARFDebugLocLists: case eSectionTypeDWARFDebugLocListsDwo: case eSectionTypeDWARFDebugMacInfo: case eSectionTypeDWARFDebugMacro: case eSectionTypeDWARFDebugNames: case eSectionTypeDWARFDebugPubNames: case eSectionTypeDWARFDebugPubTypes: case eSectionTypeDWARFDebugRanges: case eSectionTypeDWARFDebugRngLists: case eSectionTypeDWARFDebugRngListsDwo: case eSectionTypeDWARFDebugStr: case eSectionTypeDWARFDebugStrDwo: case eSectionTypeDWARFDebugStrOffsets: case eSectionTypeDWARFDebugStrOffsetsDwo: case eSectionTypeDWARFDebugTuIndex: case eSectionTypeDWARFDebugTypes: case eSectionTypeDWARFDebugTypesDwo: case eSectionTypeDWARFAppleNames: case eSectionTypeDWARFAppleTypes: case eSectionTypeDWARFAppleNamespaces: case eSectionTypeDWARFAppleObjC: case eSectionTypeDWARFGNUDebugAltLink: return AddressClass::eDebug; case eSectionTypeEHFrame: case eSectionTypeARMexidx: case eSectionTypeARMextab: case eSectionTypeCompactUnwind: return AddressClass::eRuntime; case eSectionTypeAbsoluteAddress: case eSectionTypeELFSymbolTable: case eSectionTypeELFDynamicSymbols: case eSectionTypeELFRelocationEntries: case eSectionTypeELFDynamicLinkInfo: case eSectionTypeOther: return AddressClass::eUnknown; } } } const SymbolType symbol_type = symbol->GetType(); switch (symbol_type) { case eSymbolTypeAny: return AddressClass::eUnknown; case eSymbolTypeAbsolute: return AddressClass::eUnknown; case eSymbolTypeCode: case eSymbolTypeTrampoline: case eSymbolTypeResolver: if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { // For ARM we have a bit in the n_desc field of the symbol that tells // us ARM/Thumb which is bit 0x0008. if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) return AddressClass::eCodeAlternateISA; } return AddressClass::eCode; case eSymbolTypeData: return AddressClass::eData; case eSymbolTypeRuntime: return AddressClass::eRuntime; case eSymbolTypeException: return AddressClass::eRuntime; case eSymbolTypeSourceFile: return AddressClass::eDebug; case eSymbolTypeHeaderFile: return AddressClass::eDebug; case eSymbolTypeObjectFile: return AddressClass::eDebug; case eSymbolTypeCommonBlock: return AddressClass::eDebug; case eSymbolTypeBlock: return AddressClass::eDebug; case eSymbolTypeLocal: return AddressClass::eData; case eSymbolTypeParam: return AddressClass::eData; case eSymbolTypeVariable: return AddressClass::eData; case eSymbolTypeVariableType: return AddressClass::eDebug; case eSymbolTypeLineEntry: return AddressClass::eDebug; case eSymbolTypeLineHeader: return AddressClass::eDebug; case eSymbolTypeScopeBegin: return AddressClass::eDebug; case eSymbolTypeScopeEnd: return AddressClass::eDebug; case eSymbolTypeAdditional: return AddressClass::eUnknown; case eSymbolTypeCompiler: return AddressClass::eDebug; case eSymbolTypeInstrumentation: return AddressClass::eDebug; case eSymbolTypeUndefined: return AddressClass::eUnknown; case eSymbolTypeObjCClass: return AddressClass::eRuntime; case eSymbolTypeObjCMetaClass: return AddressClass::eRuntime; case eSymbolTypeObjCIVar: return AddressClass::eRuntime; case eSymbolTypeReExported: return AddressClass::eRuntime; } } return AddressClass::eUnknown; } Symtab *ObjectFileMachO::GetSymtab() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (m_symtab_up == nullptr) { m_symtab_up = std::make_unique(this); std::lock_guard symtab_guard( m_symtab_up->GetMutex()); ParseSymtab(); m_symtab_up->Finalize(); } } return m_symtab_up.get(); } bool ObjectFileMachO::IsStripped() { if (m_dysymtab.cmd == 0) { ModuleSP module_sp(GetModule()); if (module_sp) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; load_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == LC_DYSYMTAB) { m_dysymtab.cmd = lc.cmd; m_dysymtab.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == nullptr) { // Clear m_dysymtab if we were unable to read all items from the // load command ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); } } offset = load_cmd_offset + lc.cmdsize; } } } if (m_dysymtab.cmd) return m_dysymtab.nlocalsym <= 1; return false; } ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() { EncryptedFileRanges result; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); encryption_info_command encryption_cmd; for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr) break; // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the // 3 fields we care about, so treat them the same. if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { if (encryption_cmd.cryptid != 0) { EncryptedFileRanges::Entry entry; entry.SetRangeBase(encryption_cmd.cryptoff); entry.SetByteSize(encryption_cmd.cryptsize); result.Append(entry); } } } offset = load_cmd_offset + encryption_cmd.cmdsize; } return result; } void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd, uint32_t cmd_idx) { if (m_length == 0 || seg_cmd.filesize == 0) return; if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { // In shared cache images, the load commands are relative to the // shared cache file, and not the the specific image we are // examining. Let's fix this up so that it looks like a normal // image. if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0) m_text_address = seg_cmd.vmaddr; if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0) m_linkedit_original_offset = seg_cmd.fileoff; seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address; } if (seg_cmd.fileoff > m_length) { // We have a load command that says it extends past the end of the file. // This is likely a corrupt file. We don't have any way to return an error // condition here (this method was likely invoked from something like // ObjectFile::GetSectionList()), so we just null out the section contents, // and dump a message to stdout. The most common case here is core file // debugging with a truncated file. const char *lc_segment_name = seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; GetModule()->ReportWarning( "load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length); seg_cmd.fileoff = 0; seg_cmd.filesize = 0; } if (seg_cmd.fileoff + seg_cmd.filesize > m_length) { // We have a load command that says it extends past the end of the file. // This is likely a corrupt file. We don't have any way to return an error // condition here (this method was likely invoked from something like // ObjectFile::GetSectionList()), so we just null out the section contents, // and dump a message to stdout. The most common case here is core file // debugging with a truncated file. const char *lc_segment_name = seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; GetModule()->ReportWarning( "load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length); // Truncate the length seg_cmd.filesize = m_length - seg_cmd.fileoff; } } static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) { uint32_t result = 0; if (seg_cmd.initprot & VM_PROT_READ) result |= ePermissionsReadable; if (seg_cmd.initprot & VM_PROT_WRITE) result |= ePermissionsWritable; if (seg_cmd.initprot & VM_PROT_EXECUTE) result |= ePermissionsExecutable; return result; } static lldb::SectionType GetSectionType(uint32_t flags, ConstString section_name) { if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) return eSectionTypeCode; uint32_t mach_sect_type = flags & SECTION_TYPE; static ConstString g_sect_name_objc_data("__objc_data"); static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); static ConstString g_sect_name_objc_classrefs("__objc_classrefs"); static ConstString g_sect_name_objc_superrefs("__objc_superrefs"); static ConstString g_sect_name_objc_const("__objc_const"); static ConstString g_sect_name_objc_classlist("__objc_classlist"); static ConstString g_sect_name_cfstring("__cfstring"); static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev"); static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges"); static ConstString g_sect_name_dwarf_debug_frame("__debug_frame"); static ConstString g_sect_name_dwarf_debug_info("__debug_info"); static ConstString g_sect_name_dwarf_debug_line("__debug_line"); static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists"); static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo"); static ConstString g_sect_name_dwarf_debug_names("__debug_names"); static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames"); static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes"); static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges"); static ConstString g_sect_name_dwarf_debug_str("__debug_str"); static ConstString g_sect_name_dwarf_debug_types("__debug_types"); static ConstString g_sect_name_dwarf_apple_names("__apple_names"); static ConstString g_sect_name_dwarf_apple_types("__apple_types"); static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac"); static ConstString g_sect_name_dwarf_apple_objc("__apple_objc"); static ConstString g_sect_name_eh_frame("__eh_frame"); static ConstString g_sect_name_compact_unwind("__unwind_info"); static ConstString g_sect_name_text("__text"); static ConstString g_sect_name_data("__data"); static ConstString g_sect_name_go_symtab("__gosymtab"); if (section_name == g_sect_name_dwarf_debug_abbrev) return eSectionTypeDWARFDebugAbbrev; if (section_name == g_sect_name_dwarf_debug_aranges) return eSectionTypeDWARFDebugAranges; if (section_name == g_sect_name_dwarf_debug_frame) return eSectionTypeDWARFDebugFrame; if (section_name == g_sect_name_dwarf_debug_info) return eSectionTypeDWARFDebugInfo; if (section_name == g_sect_name_dwarf_debug_line) return eSectionTypeDWARFDebugLine; if (section_name == g_sect_name_dwarf_debug_loc) return eSectionTypeDWARFDebugLoc; if (section_name == g_sect_name_dwarf_debug_loclists) return eSectionTypeDWARFDebugLocLists; if (section_name == g_sect_name_dwarf_debug_macinfo) return eSectionTypeDWARFDebugMacInfo; if (section_name == g_sect_name_dwarf_debug_names) return eSectionTypeDWARFDebugNames; if (section_name == g_sect_name_dwarf_debug_pubnames) return eSectionTypeDWARFDebugPubNames; if (section_name == g_sect_name_dwarf_debug_pubtypes) return eSectionTypeDWARFDebugPubTypes; if (section_name == g_sect_name_dwarf_debug_ranges) return eSectionTypeDWARFDebugRanges; if (section_name == g_sect_name_dwarf_debug_str) return eSectionTypeDWARFDebugStr; if (section_name == g_sect_name_dwarf_debug_types) return eSectionTypeDWARFDebugTypes; if (section_name == g_sect_name_dwarf_apple_names) return eSectionTypeDWARFAppleNames; if (section_name == g_sect_name_dwarf_apple_types) return eSectionTypeDWARFAppleTypes; if (section_name == g_sect_name_dwarf_apple_namespaces) return eSectionTypeDWARFAppleNamespaces; if (section_name == g_sect_name_dwarf_apple_objc) return eSectionTypeDWARFAppleObjC; if (section_name == g_sect_name_objc_selrefs) return eSectionTypeDataCStringPointers; if (section_name == g_sect_name_objc_msgrefs) return eSectionTypeDataObjCMessageRefs; if (section_name == g_sect_name_eh_frame) return eSectionTypeEHFrame; if (section_name == g_sect_name_compact_unwind) return eSectionTypeCompactUnwind; if (section_name == g_sect_name_cfstring) return eSectionTypeDataObjCCFStrings; if (section_name == g_sect_name_go_symtab) return eSectionTypeGoSymtab; if (section_name == g_sect_name_objc_data || section_name == g_sect_name_objc_classrefs || section_name == g_sect_name_objc_superrefs || section_name == g_sect_name_objc_const || section_name == g_sect_name_objc_classlist) { return eSectionTypeDataPointers; } switch (mach_sect_type) { // TODO: categorize sections by other flags for regular sections case S_REGULAR: if (section_name == g_sect_name_text) return eSectionTypeCode; if (section_name == g_sect_name_data) return eSectionTypeData; return eSectionTypeOther; case S_ZEROFILL: return eSectionTypeZeroFill; case S_CSTRING_LITERALS: // section with only literal C strings return eSectionTypeDataCString; case S_4BYTE_LITERALS: // section with only 4 byte literals return eSectionTypeData4; case S_8BYTE_LITERALS: // section with only 8 byte literals return eSectionTypeData8; case S_LITERAL_POINTERS: // section with only pointers to literals return eSectionTypeDataPointers; case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers return eSectionTypeDataPointers; case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers return eSectionTypeDataPointers; case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in // the reserved2 field return eSectionTypeCode; case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for // initialization return eSectionTypeDataPointers; case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for // termination return eSectionTypeDataPointers; case S_COALESCED: return eSectionTypeOther; case S_GB_ZEROFILL: return eSectionTypeZeroFill; case S_INTERPOSING: // section with only pairs of function pointers for // interposing return eSectionTypeCode; case S_16BYTE_LITERALS: // section with only 16 byte literals return eSectionTypeData16; case S_DTRACE_DOF: return eSectionTypeDebug; case S_LAZY_DYLIB_SYMBOL_POINTERS: return eSectionTypeDataPointers; default: return eSectionTypeOther; } } struct ObjectFileMachO::SegmentParsingContext { const EncryptedFileRanges EncryptedRanges; lldb_private::SectionList &UnifiedList; uint32_t NextSegmentIdx = 0; uint32_t NextSectionIdx = 0; bool FileAddressesChanged = false; SegmentParsingContext(EncryptedFileRanges EncryptedRanges, lldb_private::SectionList &UnifiedList) : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {} }; void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_, lldb::offset_t offset, uint32_t cmd_idx, SegmentParsingContext &context) { segment_command_64 load_cmd; memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_)); if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) return; ModuleSP module_sp = GetModule(); const bool is_core = GetType() == eTypeCoreFile; const bool is_dsym = (m_header.filetype == MH_DSYM); bool add_section = true; bool add_to_unified = true; ConstString const_segname( load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname))); SectionSP unified_section_sp( context.UnifiedList.FindSectionByName(const_segname)); if (is_dsym && unified_section_sp) { if (const_segname == GetSegmentNameLINKEDIT()) { // We need to keep the __LINKEDIT segment private to this object file // only add_to_unified = false; } else { // This is the dSYM file and this section has already been created by the // object file, no need to create it. add_section = false; } } load_cmd.vmaddr = m_data.GetAddress(&offset); load_cmd.vmsize = m_data.GetAddress(&offset); load_cmd.fileoff = m_data.GetAddress(&offset); load_cmd.filesize = m_data.GetAddress(&offset); if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4)) return; SanitizeSegmentCommand(load_cmd, cmd_idx); const uint32_t segment_permissions = GetSegmentPermissions(load_cmd); const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; // Keep a list of mach segments around in case we need to get at data that // isn't stored in the abstracted Sections. m_mach_segments.push_back(load_cmd); // Use a segment ID of the segment index shifted left by 8 so they never // conflict with any of the sections. SectionSP segment_sp; if (add_section && (const_segname || is_core)) { segment_sp = std::make_shared
( module_sp, // Module to which this section belongs this, // Object file to which this sections belongs ++context.NextSegmentIdx << 8, // Section ID is the 1 based segment index // shifted right by 8 bits as not to collide with any of the 256 // section IDs that are possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of other // sections. load_cmd.vmaddr, // File VM address == addresses as they are // found in the object file load_cmd.vmsize, // VM size in bytes of this section load_cmd.fileoff, // Offset to the data for this section in // the file load_cmd.filesize, // Size in bytes of this section as found // in the file 0, // Segments have no alignment information load_cmd.flags); // Flags for this section segment_sp->SetIsEncrypted(segment_is_encrypted); m_sections_up->AddSection(segment_sp); segment_sp->SetPermissions(segment_permissions); if (add_to_unified) context.UnifiedList.AddSection(segment_sp); } else if (unified_section_sp) { if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { // Check to see if the module was read from memory? if (module_sp->GetObjectFile()->IsInMemory()) { // We have a module that is in memory and needs to have its file // address adjusted. We need to do this because when we load a file // from memory, its addresses will be slid already, yet the addresses // in the new symbol file will still be unslid. Since everything is // stored as section offset, this shouldn't cause any problems. // Make sure we've parsed the symbol table from the ObjectFile before // we go around changing its Sections. module_sp->GetObjectFile()->GetSymtab(); // eh_frame would present the same problems but we parse that on a per- // function basis as-needed so it's more difficult to remove its use of // the Sections. Realistically, the environments where this code path // will be taken will not have eh_frame sections. unified_section_sp->SetFileAddress(load_cmd.vmaddr); // Notify the module that the section addresses have been changed once // we're done so any file-address caches can be updated. context.FileAddressesChanged = true; } } m_sections_up->AddSection(unified_section_sp); } struct section_64 sect64; ::memset(§64, 0, sizeof(sect64)); // Push a section into our mach sections for the section at index zero // (NO_SECT) if we don't have any mach sections yet... if (m_mach_sections.empty()) m_mach_sections.push_back(sect64); uint32_t segment_sect_idx; const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1; const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; ++segment_sect_idx) { if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, sizeof(sect64.sectname)) == nullptr) break; if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, sizeof(sect64.segname)) == nullptr) break; sect64.addr = m_data.GetAddress(&offset); sect64.size = m_data.GetAddress(&offset); if (m_data.GetU32(&offset, §64.offset, num_u32s) == nullptr) break; if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { sect64.offset = sect64.addr - m_text_address; } // Keep a list of mach sections around in case we need to get at data that // isn't stored in the abstracted Sections. m_mach_sections.push_back(sect64); if (add_section) { ConstString section_name( sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname))); if (!const_segname) { // We have a segment with no name so we need to conjure up segments // that correspond to the section's segname if there isn't already such // a section. If there is such a section, we resize the section so that // it spans all sections. We also mark these sections as fake so // address matches don't hit if they land in the gaps between the child // sections. const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); segment_sp = context.UnifiedList.FindSectionByName(const_segname); if (segment_sp.get()) { Section *segment = segment_sp.get(); // Grow the section size as needed. const lldb::addr_t sect64_min_addr = sect64.addr; const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; if (sect64_min_addr >= curr_seg_min_addr) { const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; // Only grow the section size if needed if (new_seg_byte_size > curr_seg_byte_size) segment->SetByteSize(new_seg_byte_size); } else { // We need to change the base address of the segment and adjust the // child section offsets for all existing children. const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; segment->Slide(slide_amount, false); segment->GetChildren().Slide(-slide_amount, false); segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); } // Grow the section size as needed. if (sect64.offset) { const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); const lldb::addr_t section_min_file_offset = sect64.offset; const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; const lldb::addr_t new_file_offset = std::min(section_min_file_offset, segment_min_file_offset); const lldb::addr_t new_file_size = std::max(section_max_file_offset, segment_max_file_offset) - new_file_offset; segment->SetFileOffset(new_file_offset); segment->SetFileSize(new_file_size); } } else { // Create a fake section for the section's named segment segment_sp = std::make_shared
( segment_sp, // Parent section module_sp, // Module to which this section belongs this, // Object file to which this section belongs ++context.NextSegmentIdx << 8, // Section ID is the 1 based segment index // shifted right by 8 bits as not to // collide with any of the 256 section IDs // that are possible const_segname, // Name of this section eSectionTypeContainer, // This section is a container of // other sections. sect64.addr, // File VM address == addresses as they are // found in the object file sect64.size, // VM size in bytes of this section sect64.offset, // Offset to the data for this section in // the file sect64.offset ? sect64.size : 0, // Size in bytes of // this section as // found in the file sect64.align, load_cmd.flags); // Flags for this section segment_sp->SetIsFake(true); segment_sp->SetPermissions(segment_permissions); m_sections_up->AddSection(segment_sp); if (add_to_unified) context.UnifiedList.AddSection(segment_sp); segment_sp->SetIsEncrypted(segment_is_encrypted); } } assert(segment_sp.get()); lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name); SectionSP section_sp(new Section( segment_sp, module_sp, this, ++context.NextSectionIdx, section_name, sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, sect64.flags)); // Set the section to be encrypted to match the segment bool section_is_encrypted = false; if (!segment_is_encrypted && load_cmd.filesize != 0) section_is_encrypted = context.EncryptedRanges.FindEntryThatContains( sect64.offset) != nullptr; section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); section_sp->SetPermissions(segment_permissions); segment_sp->GetChildren().AddSection(section_sp); if (segment_sp->IsFake()) { segment_sp.reset(); const_segname.Clear(); } } } if (segment_sp && is_dsym) { if (first_segment_sectID <= context.NextSectionIdx) { lldb::user_id_t sect_uid; for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx; ++sect_uid) { SectionSP curr_section_sp( segment_sp->GetChildren().FindSectionByID(sect_uid)); SectionSP next_section_sp; if (sect_uid + 1 <= context.NextSectionIdx) next_section_sp = segment_sp->GetChildren().FindSectionByID(sect_uid + 1); if (curr_section_sp.get()) { if (curr_section_sp->GetByteSize() == 0) { if (next_section_sp.get() != nullptr) curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress()); else curr_section_sp->SetByteSize(load_cmd.vmsize); } } } } } } void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd, lldb::offset_t offset) { m_dysymtab.cmd = load_cmd.cmd; m_dysymtab.cmdsize = load_cmd.cmdsize; m_data.GetU32(&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); } void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { if (m_sections_up) return; m_sections_up = std::make_unique(); lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); // bool dump_sections = false; ModuleSP module_sp(GetModule()); offset = MachHeaderSizeFromMagic(m_header.magic); SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list); struct load_command load_cmd; for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) break; if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) ProcessSegmentCommand(load_cmd, offset, i, context); else if (load_cmd.cmd == LC_DYSYMTAB) ProcessDysymtabCommand(load_cmd, offset); offset = load_cmd_offset + load_cmd.cmdsize; } if (context.FileAddressesChanged && module_sp) module_sp->SectionFileAddressesChanged(); } class MachSymtabSectionInfo { public: MachSymtabSectionInfo(SectionList *section_list) : m_section_list(section_list), m_section_infos() { // Get the number of sections down to a depth of 1 to include all segments // and their sections, but no other sections that may be added for debug // map or m_section_infos.resize(section_list->GetNumSections(1)); } SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { if (n_sect == 0) return SectionSP(); if (n_sect < m_section_infos.size()) { if (!m_section_infos[n_sect].section_sp) { SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); m_section_infos[n_sect].section_sp = section_sp; if (section_sp) { m_section_infos[n_sect].vm_range.SetBaseAddress( section_sp->GetFileAddress()); m_section_infos[n_sect].vm_range.SetByteSize( section_sp->GetByteSize()); } else { std::string filename = ""; SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0)); if (first_section_sp) filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath(); Host::SystemLog(Host::eSystemLogError, "error: unable to find section %d for a symbol in %s, corrupt file?\n", n_sect, filename.c_str()); } } if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { // Symbol is in section. return m_section_infos[n_sect].section_sp; } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) { // Symbol is in section with zero size, but has the same start address // as the section. This can happen with linker symbols (symbols that // start with the letter 'l' or 'L'. return m_section_infos[n_sect].section_sp; } } return m_section_list->FindSectionContainingFileAddress(file_addr); } protected: struct SectionInfo { SectionInfo() : vm_range(), section_sp() {} VMRange vm_range; SectionSP section_sp; }; SectionList *m_section_list; std::vector m_section_infos; }; #define TRIE_SYMBOL_IS_THUMB (1ULL << 63) struct TrieEntry { void Dump() const { printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", static_cast(address), static_cast(flags), static_cast(other), name.GetCString()); if (import_name) printf(" -> \"%s\"\n", import_name.GetCString()); else printf("\n"); } ConstString name; uint64_t address = LLDB_INVALID_ADDRESS; uint64_t flags = 0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, // TRIE_SYMBOL_IS_THUMB uint64_t other = 0; ConstString import_name; }; struct TrieEntryWithOffset { lldb::offset_t nodeOffset; TrieEntry entry; TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} void Dump(uint32_t idx) const { printf("[%3u] 0x%16.16llx: ", idx, static_cast(nodeOffset)); entry.Dump(); } bool operator<(const TrieEntryWithOffset &other) const { return (nodeOffset < other.nodeOffset); } }; static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, const bool is_arm, addr_t text_seg_base_addr, std::vector &nameSlices, std::set &resolver_addresses, std::vector &reexports, std::vector &ext_symbols) { if (!data.ValidOffset(offset)) return true; // Terminal node -- end of a branch, possibly add this to // the symbol table or resolver table. const uint64_t terminalSize = data.GetULEB128(&offset); lldb::offset_t children_offset = offset + terminalSize; if (terminalSize != 0) { TrieEntryWithOffset e(offset); e.entry.flags = data.GetULEB128(&offset); const char *import_name = nullptr; if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { e.entry.address = 0; e.entry.other = data.GetULEB128(&offset); // dylib ordinal import_name = data.GetCStr(&offset); } else { e.entry.address = data.GetULEB128(&offset); if (text_seg_base_addr != LLDB_INVALID_ADDRESS) e.entry.address += text_seg_base_addr; if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { e.entry.other = data.GetULEB128(&offset); uint64_t resolver_addr = e.entry.other; if (text_seg_base_addr != LLDB_INVALID_ADDRESS) resolver_addr += text_seg_base_addr; if (is_arm) resolver_addr &= THUMB_ADDRESS_BIT_MASK; resolver_addresses.insert(resolver_addr); } else e.entry.other = 0; } bool add_this_entry = false; if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) && import_name && import_name[0]) { // add symbols that are reexport symbols with a valid import name. add_this_entry = true; } else if (e.entry.flags == 0 && (import_name == nullptr || import_name[0] == '\0')) { // add externally visible symbols, in case the nlist record has // been stripped/omitted. add_this_entry = true; } if (add_this_entry) { std::string name; if (!nameSlices.empty()) { for (auto name_slice : nameSlices) name.append(name_slice.data(), name_slice.size()); } if (name.size() > 1) { // Skip the leading '_' e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); } if (import_name) { // Skip the leading '_' e.entry.import_name.SetCString(import_name + 1); } if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) { reexports.push_back(e); } else { if (is_arm && (e.entry.address & 1)) { e.entry.flags |= TRIE_SYMBOL_IS_THUMB; e.entry.address &= THUMB_ADDRESS_BIT_MASK; } ext_symbols.push_back(e); } } } const uint8_t childrenCount = data.GetU8(&children_offset); for (uint8_t i = 0; i < childrenCount; ++i) { const char *cstr = data.GetCStr(&children_offset); if (cstr) nameSlices.push_back(llvm::StringRef(cstr)); else return false; // Corrupt data lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); if (childNodeOffset) { if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr, nameSlices, resolver_addresses, reexports, ext_symbols)) { return false; } } nameSlices.pop_back(); } return true; } static SymbolType GetSymbolType(const char *&symbol_name, bool &demangled_is_synthesized, const SectionSP &text_section_sp, const SectionSP &data_section_sp, const SectionSP &data_dirty_section_sp, const SectionSP &data_const_section_sp, const SectionSP &symbol_section) { SymbolType type = eSymbolTypeInvalid; const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant(text_section_sp.get())) { if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant(data_section_sp.get()) || symbol_section->IsDescendant(data_dirty_section_sp.get()) || symbol_section->IsDescendant(data_const_section_sp.get())) { if (symbol_sect_name && ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("OBJC_")) { static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_metaclass( "OBJC_METACLASS_$_"); static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_"); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } return type; } // Read the UUID out of a dyld_shared_cache file on-disk. UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, const ByteOrder byte_order, const uint32_t addr_byte_size) { UUID dsc_uuid; DataBufferSP DscData = MapFileData( dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); if (!DscData) return dsc_uuid; DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size); char version_str[7]; lldb::offset_t offset = 0; memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); version_str[6] = '\0'; if (strcmp(version_str, "dyld_v") == 0) { offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); dsc_uuid = UUID::fromOptionalData( dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); } Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); if (log && dsc_uuid.IsValid()) { LLDB_LOGF(log, "Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(), dsc_uuid.GetAsString().c_str()); } return dsc_uuid; } static llvm::Optional ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset, size_t nlist_byte_size) { struct nlist_64 nlist; if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) return {}; nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); return nlist; } enum { DebugSymbols = true, NonDebugSymbols = false }; size_t ObjectFileMachO::ParseSymtab() { static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s", m_file.GetFilename().AsCString("")); ModuleSP module_sp(GetModule()); if (!module_sp) return 0; struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // The data element of type bool indicates that this entry is thumb // code. typedef AddressDataArray FunctionStarts; // Record the address of every function/data that we add to the symtab. // We add symbols to the table in the order of most information (nlist // records) to least (function starts), and avoid duplicating symbols // via this set. std::set symbols_added; FunctionStarts function_starts; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; FileSpecList dylib_files; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; // Read in the load command and load command size struct load_command lc; if (m_data.GetU32(&offset, &lc, 2) == nullptr) break; // Watch for the symbol table load command switch (lc.cmd) { case LC_SYMTAB: symtab_load_command.cmd = lc.cmd; symtab_load_command.cmdsize = lc.cmdsize; // Read in the rest of the symtab load command if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == nullptr) // fill in symoff, nsyms, stroff, strsize fields return 0; break; case LC_DYLD_INFO: case LC_DYLD_INFO_ONLY: if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { dyld_info.cmd = lc.cmd; dyld_info.cmdsize = lc.cmdsize; } else { memset(&dyld_info, 0, sizeof(dyld_info)); } break; case LC_LOAD_DYLIB: case LC_LOAD_WEAK_DYLIB: case LC_REEXPORT_DYLIB: case LC_LOADFVMLIB: case LC_LOAD_UPWARD_DYLIB: { uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); const char *path = m_data.PeekCStr(name_offset); if (path) { FileSpec file_spec(path); // Strip the path if there is @rpath, @executable, etc so we just use // the basename if (path[0] == '@') file_spec.GetDirectory().Clear(); if (lc.cmd == LC_REEXPORT_DYLIB) { m_reexported_dylibs.AppendIfUnique(file_spec); } dylib_files.Append(file_spec); } } break; case LC_FUNCTION_STARTS: function_starts_load_command.cmd = lc.cmd; function_starts_load_command.cmdsize = lc.cmdsize; if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == nullptr) // fill in symoff, nsyms, stroff, strsize fields memset(&function_starts_load_command, 0, sizeof(function_starts_load_command)); break; default: break; } offset = cmd_offset + lc.cmdsize; } if (!symtab_load_command.cmd) return 0; Symtab *symtab = m_symtab_up.get(); SectionList *section_list = GetSectionList(); if (section_list == nullptr) return 0; const uint32_t addr_byte_size = m_data.GetAddressByteSize(); const ByteOrder byte_order = m_data.GetByteOrder(); bool bit_width_32 = addr_byte_size == 4; const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size); DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size); DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size); DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order, addr_byte_size); DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size); const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; const addr_t strtab_data_byte_size = symtab_load_command.strsize; addr_t strtab_addr = LLDB_INVALID_ADDRESS; ProcessSP process_sp(m_process_wp.lock()); Process *process = process_sp.get(); uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; bool is_shared_cache_image = m_header.flags & MH_DYLIB_IN_CACHE; bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory(); SectionSP linkedit_section_sp( section_list->FindSectionByName(GetSegmentNameLINKEDIT())); if (process && m_header.filetype != llvm::MachO::MH_OBJECT && !is_local_shared_cache_image) { Target &target = process->GetTarget(); memory_module_load_level = target.GetMemoryModuleLoadLevel(); // Reading mach file from memory in a process or core file... if (linkedit_section_sp) { addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { // We might be trying to access the symbol table before the // __LINKEDIT's load address has been set in the target. We can't // fail to read the symbol table, so calculate the right address // manually linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); } const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; // Always load dyld - the dynamic linker - from memory if we didn't // find a binary anywhere else. lldb will not register // dylib/framework/bundle loads/unloads if we don't have the dyld // symbols, we force dyld to load from memory despite the user's // target.memory-module-load-level setting. if (memory_module_load_level == eMemoryModuleLoadLevelComplete || m_header.filetype == llvm::MachO::MH_DYLINKER) { DataBufferSP nlist_data_sp( ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); if (nlist_data_sp) nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize()); if (m_dysymtab.nindirectsyms != 0) { const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; DataBufferSP indirect_syms_data_sp(ReadMemory( process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); if (indirect_syms_data_sp) indirect_symbol_index_data.SetData( indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); // If this binary is outside the shared cache, // cache the string table. // Binaries in the shared cache all share a giant string table, // and we can't share the string tables across multiple // ObjectFileMachO's, so we'd end up re-reading this mega-strtab // for every binary in the shared cache - it would be a big perf // problem. For binaries outside the shared cache, it's faster to // read the entire strtab at once instead of piece-by-piece as we // process the nlist records. if (!is_shared_cache_image) { DataBufferSP strtab_data_sp( ReadMemory(process_sp, strtab_addr, strtab_data_byte_size)); if (strtab_data_sp) { strtab_data.SetData(strtab_data_sp, 0, strtab_data_sp->GetByteSize()); } } } if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { if (function_starts_load_command.cmd) { const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; DataBufferSP func_start_data_sp( ReadMemory(process_sp, func_start_addr, function_starts_load_command.datasize)); if (func_start_data_sp) function_starts_data.SetData(func_start_data_sp, 0, func_start_data_sp->GetByteSize()); } } } } } else { if (is_local_shared_cache_image) { // The load commands in shared cache images are relative to the // beginning of the shared cache, not the library image. The // data we get handed when creating the ObjectFileMachO starts // at the beginning of a specific library and spans to the end // of the cache to be able to reach the shared LINKEDIT // segments. We need to convert the load command offsets to be // relative to the beginning of our specific image. lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset(); lldb::offset_t linkedit_slide = linkedit_offset - m_linkedit_original_offset; symtab_load_command.symoff += linkedit_slide; symtab_load_command.stroff += linkedit_slide; dyld_info.export_off += linkedit_slide; m_dysymtab.indirectsymoff += linkedit_slide; function_starts_load_command.dataoff += linkedit_slide; } nlist_data.SetData(m_data, symtab_load_command.symoff, nlist_data_byte_size); strtab_data.SetData(m_data, symtab_load_command.stroff, strtab_data_byte_size); if (dyld_info.export_size > 0) { dyld_trie_data.SetData(m_data, dyld_info.export_off, dyld_info.export_size); } if (m_dysymtab.nindirectsyms != 0) { indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); } if (function_starts_load_command.cmd) { function_starts_data.SetData(m_data, function_starts_load_command.dataoff, function_starts_load_command.datasize); } } const bool have_strtab_data = strtab_data.GetByteSize() > 0; ConstString g_segment_name_TEXT = GetSegmentNameTEXT(); ConstString g_segment_name_DATA = GetSegmentNameDATA(); ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); ConstString g_segment_name_OBJC = GetSegmentNameOBJC(); ConstString g_section_name_eh_frame = GetSectionNameEHFrame(); SectionSP text_section_sp( section_list->FindSectionByName(g_segment_name_TEXT)); SectionSP data_section_sp( section_list->FindSectionByName(g_segment_name_DATA)); SectionSP data_dirty_section_sp( section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); SectionSP data_const_section_sp( section_list->FindSectionByName(g_segment_name_DATA_CONST)); SectionSP objc_section_sp( section_list->FindSectionByName(g_segment_name_OBJC)); SectionSP eh_frame_section_sp; if (text_section_sp.get()) eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( g_section_name_eh_frame); else eh_frame_section_sp = section_list->FindSectionByName(g_section_name_eh_frame); const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions(); // lldb works best if it knows the start address of all functions in a // module. Linker symbols or debug info are normally the best source of // information for start addr / size but they may be stripped in a released // binary. Two additional sources of information exist in Mach-O binaries: // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each // function's start address in the // binary, relative to the text section. // eh_frame - the eh_frame FDEs have the start addr & size of // each function // LC_FUNCTION_STARTS is the fastest source to read in, and is present on // all modern binaries. // Binaries built to run on older releases may need to use eh_frame // information. if (text_section_sp && function_starts_data.GetByteSize()) { FunctionStarts::Entry function_start_entry; function_start_entry.data = false; lldb::offset_t function_start_offset = 0; function_start_entry.addr = text_section_sp->GetFileAddress(); uint64_t delta; while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) { // Now append the current entry function_start_entry.addr += delta; if (is_arm) { if (function_start_entry.addr & 1) { function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; function_start_entry.data = true; } else if (always_thumb) { function_start_entry.data = true; } } function_starts.Append(function_start_entry); } } else { // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the // load command claiming an eh_frame but it doesn't actually have the // eh_frame content. And if we have a dSYM, we don't need to do any of // this fill-in-the-missing-symbols works anyway - the debug info should // give us all the functions in the module. if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) { DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, DWARFCallFrameInfo::EH); DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; eh_frame.GetFunctionAddressAndSizeVector(functions); addr_t text_base_addr = text_section_sp->GetFileAddress(); size_t count = functions.GetSize(); for (size_t i = 0; i < count; ++i) { const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex(i); if (func) { FunctionStarts::Entry function_start_entry; function_start_entry.addr = func->base - text_base_addr; if (is_arm) { if (function_start_entry.addr & 1) { function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; function_start_entry.data = true; } else if (always_thumb) { function_start_entry.data = true; } } function_starts.Append(function_start_entry); } } } } const size_t function_starts_count = function_starts.GetSize(); // For user process binaries (executables, dylibs, frameworks, bundles), if // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're // going to assume the binary has been stripped. Don't allow assembly // language instruction emulation because we don't know proper function // start boundaries. // // For all other types of binaries (kernels, stand-alone bare board // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame // sections - we should not make any assumptions about them based on that. if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { m_allow_assembly_emulation_unwind_plans = false; Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); if (unwind_or_symbol_log) module_sp->LogMessage( unwind_or_symbol_log, "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); } const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : static_cast(NO_SECT); lldb::offset_t nlist_data_offset = 0; uint32_t N_SO_index = UINT32_MAX; MachSymtabSectionInfo section_info(section_list); std::vector N_FUN_indexes; std::vector N_NSYM_indexes; std::vector N_INCL_indexes; std::vector N_BRAC_indexes; std::vector N_COMM_indexes; typedef std::multimap ValueToSymbolIndexMap; typedef llvm::DenseMap NListIndexToSymbolIndexMap; typedef llvm::DenseMap ConstNameToSymbolIndexMap; ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; // Any symbols that get merged into another will get an entry in this map // so we know NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; uint32_t nlist_idx = 0; Symbol *symbol_ptr = nullptr; uint32_t sym_idx = 0; Symbol *sym = nullptr; size_t num_syms = 0; std::string memory_symbol_name; uint32_t unmapped_local_symbols_found = 0; std::vector reexport_trie_entries; std::vector external_sym_trie_entries; std::set resolver_addresses; if (dyld_trie_data.GetByteSize() > 0) { ConstString text_segment_name("__TEXT"); SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS; if (text_segment_sp) text_segment_file_addr = text_segment_sp->GetFileAddress(); std::vector nameSlices; ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr, nameSlices, resolver_addresses, reexport_trie_entries, external_sym_trie_entries); } typedef std::set IndirectSymbols; IndirectSymbols indirect_symbol_names; #if defined(__APPLE__) && TARGET_OS_EMBEDDED // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been // optimized by moving LOCAL symbols out of the memory mapped portion of // the DSC. The symbol information has all been retained, but it isn't // available in the normal nlist data. However, there *are* duplicate // entries of *some* // LOCAL symbols in the normal nlist data. To handle this situation // correctly, we must first attempt // to parse any DSC unmapped symbol information. If we find any, we set a // flag that tells the normal nlist parser to ignore all LOCAL symbols. if (m_header.flags & MH_DYLIB_IN_CACHE) { // Before we can start mapping the DSC, we need to make certain the // target process is actually using the cache we can find. // Next we need to determine the correct path for the dyld shared cache. ArchSpec header_arch = GetArchitecture(); char dsc_path[PATH_MAX]; char dsc_path_development[PATH_MAX]; snprintf( dsc_path, sizeof(dsc_path), "%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName()); snprintf( dsc_path_development, sizeof(dsc_path), "%s%s%s%s", "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ header_arch.GetArchitectureName(), ".development"); FileSpec dsc_nondevelopment_filespec(dsc_path); FileSpec dsc_development_filespec(dsc_path_development); FileSpec dsc_filespec; UUID dsc_uuid; UUID process_shared_cache_uuid; addr_t process_shared_cache_base_addr; if (process) { GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid); } // First see if we can find an exact match for the inferior process // shared cache UUID in the development or non-development shared caches // on disk. if (process_shared_cache_uuid.IsValid()) { if (FileSystem::Instance().Exists(dsc_development_filespec)) { UUID dsc_development_uuid = GetSharedCacheUUID( dsc_development_filespec, byte_order, addr_byte_size); if (dsc_development_uuid.IsValid() && dsc_development_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_development_filespec; dsc_uuid = dsc_development_uuid; } } if (!dsc_uuid.IsValid() && FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) { UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( dsc_nondevelopment_filespec, byte_order, addr_byte_size); if (dsc_nondevelopment_uuid.IsValid() && dsc_nondevelopment_uuid == process_shared_cache_uuid) { dsc_filespec = dsc_nondevelopment_filespec; dsc_uuid = dsc_nondevelopment_uuid; } } } // Failing a UUID match, prefer the development dyld_shared cache if both // are present. if (!FileSystem::Instance().Exists(dsc_filespec)) { if (FileSystem::Instance().Exists(dsc_development_filespec)) { dsc_filespec = dsc_development_filespec; } else { dsc_filespec = dsc_nondevelopment_filespec; } } /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). The dyld_cache_local_symbols_info structure gives us three things: 1. The start and count of the nlist records in the dyld_shared_cache file 2. The start and size of the strings for these nlist records 3. The start and count of dyld_cache_local_symbols_entry entries There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records and the count of how many nlist records there are for this dylib/framework. */ // Process the dyld shared cache header to find the unmapped symbols DataBufferSP dsc_data_sp = MapFileData( dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); if (!dsc_uuid.IsValid()) { dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); } if (dsc_data_sp) { DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); bool uuid_match = true; if (dsc_uuid.IsValid() && process) { if (process_shared_cache_uuid.IsValid() && dsc_uuid != process_shared_cache_uuid) { // The on-disk dyld_shared_cache file is not the same as the one in // this process' memory, don't use it. uuid_match = false; ModuleSP module_sp(GetModule()); if (module_sp) module_sp->ReportWarning("process shared cache does not match " "on-disk dyld_shared_cache file, some " "symbol names will be missing."); } } offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); uint32_t mappingOffset = dsc_header_data.GetU32(&offset); // If the mappingOffset points to a location inside the header, we've // opened an old dyld shared cache, and should not proceed further. if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { DataBufferSP dsc_mapping_info_data_sp = MapFileData( dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info), mappingOffset); DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); offset = 0; // The File addresses (from the in-memory Mach-O load commands) for // the shared libraries in the shared library cache need to be // adjusted by an offset to match up with the dylibOffset identifying // field in the dyld_cache_local_symbol_entry's. This offset is // recorded in mapping_offset_value. const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); offset = offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); if (localSymbolsOffset && localSymbolsSize) { // Map the local symbols DataBufferSP dsc_local_symbols_data_sp = MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset); if (dsc_local_symbols_data_sp) { DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); offset = 0; typedef llvm::DenseMap UndefinedNameToDescMap; typedef llvm::DenseMap SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; // Read the local_symbols_infos struct in one shot struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); SectionSP text_section_sp( section_list->FindSectionByName(GetSegmentNameTEXT())); uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); offset = local_symbols_info.entriesOffset; for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) { struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); if (header_file_offset == local_symbols_entry.dylibOffset) { unmapped_local_symbols_found = local_symbols_entry.nlistCount; // The normal nlist code cannot correctly size the Symbols // array, we need to allocate it here. sym = symtab->Resize( symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); num_syms = symtab->GetNumSymbols(); nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); uint32_t string_table_offset = local_symbols_info.stringsOffset; for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) { ///////////////////////////// { llvm::Optional nlist_maybe = ParseNList(dsc_local_symbols_data, nlist_data_offset, nlist_byte_size); if (!nlist_maybe) break; struct nlist_64 nlist = *nlist_maybe; SymbolType type = eSymbolTypeInvalid; const char *symbol_name = dsc_local_symbols_data.PeekCStr( string_table_offset + nlist.n_strx); if (symbol_name == NULL) { // No symbol should be NULL, even the symbols with no // string values should have an offset zero which // points to an empty C-string Host::SystemLog( Host::eSystemLogError, "error: DSC unmapped local symbol[%u] has invalid " "string table offset 0x%x in %s, ignoring symbol\n", entry_index, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); continue; } if (symbol_name[0] == '\0') symbol_name = NULL; const char *symbol_name_non_abi_mangled = NULL; SectionSP symbol_section; uint32_t symbol_byte_size = 0; bool add_nlist = true; bool is_debug = ((nlist.n_type & N_STAB) != 0); bool demangled_is_synthesized = false; bool is_gsym = false; bool set_value = true; assert(sym_idx < num_syms); sym[sym_idx].SetDebug(is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug // symbol for all the ObjC data. They // have the same address, but we want to ensure that // we always find only the real symbol, 'cause we // don't currently correctly attribute the // GSYM one to the ObjCClass/Ivar/MetaClass // symbol type. This is a temporary hack to make // sure the ObjectiveC symbols get treated correctly. // To do this right, we should coalesce all the GSYM // & global symbols that have the same address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith( g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection( nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the // symbol table in lieu of using nlist_idx in case // we ever start trimming entries out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if (!N_FUN_indexes.empty()) { // Copy the size of the function into the // original // STAB entry so we don't have // to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back()) ->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as // it contains the size which we already placed // with the original symbol, so don't add it if // we want a minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName( symbol_name + 1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol // table in lieu of using nlist_idx in case we ever // start trimming entries out Skip these if we want // minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating // index of this N_ENSYM so that we can always skip // the entire symbol if we need to navigate more // quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == NULL) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating // index of this N_SO so that we can always skip // the entire N_SO if we need to navigate more // quickly at the source level when parsing STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the // symbol table in lieu of using nlist_idx in case // we ever start trimming entries out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where // the first contains a directory and the // second contains a full path. sym[sym_idx - 1].GetMangled().SetValue( ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that // contains a directory or // a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that // contains just the filename, so here we combine // it with the first one if we are minimizing the // symbol table const char *so_path = sym[sym_idx - 1] .GetMangled() .GetDemangledName() .AsCString(); if (so_path && so_path[0]) { std::string full_so_path(so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO // entries with doubled up paths // in the format "%s%s" where the first // string in the DW_AT_comp_dir, and the // second is the directory for the source // file so you end up with a path that looks // like "/tmp/src//tmp/src/" FileSpec so_dir(so_path); if (!FileSystem::Instance().Exists(so_dir)) { so_dir.SetFile( &full_so_path[double_slash_pos + 1], FileSpec::Style::native); if (FileSystem::Instance().Exists(so_dir)) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue( ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; // INCL scopes case N_BINCL: // include file beginning: name,,NO_SECT,0,sum We use // the current number of symbols in the symbol table // in lieu of using nlist_idx in case we ever start // trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating // index of this N_EINCL so that we can always skip // the entire symbol if we need to navigate more // quickly at the source level when parsing STABS if (!N_INCL_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; // Left and Right Braces case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address We // use the current number of symbols in the symbol // table in lieu of using nlist_idx in case we ever // start trimming entries out symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address // Set the size of the N_LBRAC to the terminating // index of this N_RBRAC so that we can always skip // the entire symbol if we need to navigate more // quickly at the source level when parsing STABS symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (!N_BRAC_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; // COMM scopes case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol // table in lieu of using nlist_idx in case we ever // start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); // Fall through case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating // index of this N_ECOMM/N_ECOML so that we can // always skip the entire symbol if we need to // navigate more quickly at the source level when // parsing STABS if (!N_COMM_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { // uint8_t n_pext = N_PEXT & nlist.n_type; uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name( reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert(ConstString( symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name( symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } // Fall through case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (symbol_section == NULL) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol // pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte // size of stub in the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for // initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for // termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function // pointers for interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string // data case eSectionTypeDataCStringPointers: // Pointers // to C // string // data case eSectionTypeDataSymbolAddress: // Address of // a symbol in // the symbol // table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant( text_section_sp.get())) { if (symbol_section->IsClear( S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant( data_section_sp.get()) || symbol_section->IsDescendant( data_dirty_section_sp.get()) || symbol_section->IsDescendant( data_const_section_sp.get())) { if (symbol_sect_name && ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { llvm::StringRef g_objc_v2_prefix_class( "_OBJC_CLASS_$_"); llvm::StringRef g_objc_v2_prefix_metaclass( "_OBJC_METACLASS_$_"); llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); if (symbol_name_ref.startswith( g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if ( symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant( objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); llvm::StringRef g_objc_v1_prefix_class(".objc_class_name_"); if (symbol_name_ref.startswith( g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (add_nlist) { uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName( ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName( ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue( const_symbol_name, symbol_name_is_mangled); if (is_gsym && is_debug) { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(Mangled::ePreferMangled) .GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } } } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, // else get the closest since the symbol might be a // thumb symbol which has an address with bit zero // set FunctionStarts::Entry *func_start_entry = function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the // symbol address (ARM) or the symbol address + 1 // (thumb) if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = NULL; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (is_arm) { if (symbol_file_addr & 1) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; } const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry(func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when // we calculate the size from the current and // next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (is_debug == false) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code // symbols. If we do find a match, and the name // matches, then we can merge the two into just the // function symbol to avoid duplicate entries in // the symbol table auto range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { bool found_it = false; for (auto pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker // symbol, so put these flags // into the N_FUN flags to avoid duplicate // symbols in the symbol table sym[pos->second].SetExternal( sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType(eSymbolTypeResolver); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar) { // See if we can find a N_STSYM entry for any data // symbols. If we do find a match, and the name // matches, then we can merge the two into just the // Static symbol to avoid duplicate entries in the // symbol table auto range = N_STSYM_addr_to_sym_idx.equal_range( nlist.n_value); if (range.first != range.second) { bool found_it = false; for (auto pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName( Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker // symbol, so put these flags // into the N_STSYM flags to avoid duplicate // symbols in the symbol table sym[pos->second].SetExternal( sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); found_it = true; break; } } if (found_it) continue; } else { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(Mangled::ePreferMangled) .GetCString(); if (gsym_name) { // Combine N_GSYM stab entries with the non // stab symbol ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM // address has an invalid address of zero // when the global is a common symbol sym[GSYM_sym_idx].GetAddressRef().SetSection( symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset( symbol_value); symbols_added.insert(sym[GSYM_sym_idx] .GetAddress() .GetFileAddress()); // We just need the flags from the linker // symbol, so put these flags // into the N_GSYM flags to avoid duplicate // symbols in the symbol table sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); continue; } } } } } sym[sym_idx].SetID(nlist_idx); sym[sym_idx].SetType(type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection(symbol_section); sym[sym_idx].GetAddressRef().SetOffset(symbol_value); symbols_added.insert( sym[sym_idx].GetAddress().GetFileAddress()); } sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; } else { sym[sym_idx].Clear(); } } ///////////////////////////// } break; // No more entries to consider } } for (const auto &pos : reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); } } } } } } } // Must reset this in case it was mutated above! nlist_data_offset = 0; #endif if (nlist_data.GetByteSize() > 0) { // If the sym array was not created while parsing the DSC unmapped // symbols, create it now. if (sym == nullptr) { sym = symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms); num_syms = symtab->GetNumSymbols(); } if (unmapped_local_symbols_found) { assert(m_dysymtab.ilocalsym == 0); nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); nlist_idx = m_dysymtab.nlocalsym; } else { nlist_idx = 0; } typedef llvm::DenseMap UndefinedNameToDescMap; typedef llvm::DenseMap SymbolIndexToName; UndefinedNameToDescMap undefined_name_to_desc; SymbolIndexToName reexport_shlib_needs_fixup; // Symtab parsing is a huge mess. Everything is entangled and the code // requires access to a ridiculous amount of variables. LLDB depends // heavily on the proper merging of symbols and to get that right we need // to make sure we have parsed all the debug symbols first. Therefore we // invoke the lambda twice, once to parse only the debug symbols and then // once more to parse the remaining symbols. auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx, bool debug_only) { const bool is_debug = ((nlist.n_type & N_STAB) != 0); if (is_debug != debug_only) return true; const char *symbol_name_non_abi_mangled = nullptr; const char *symbol_name = nullptr; if (have_strtab_data) { symbol_name = strtab_data.PeekCStr(nlist.n_strx); if (symbol_name == nullptr) { // No symbol should be NULL, even the symbols with no string values // should have an offset zero which points to an empty C-string Host::SystemLog(Host::eSystemLogError, "error: symbol[%u] has invalid string table offset " "0x%x in %s, ignoring symbol\n", nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath().c_str()); return true; } if (symbol_name[0] == '\0') symbol_name = nullptr; } else { const addr_t str_addr = strtab_addr + nlist.n_strx; Status str_error; if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) symbol_name = memory_symbol_name.c_str(); } SymbolType type = eSymbolTypeInvalid; SectionSP symbol_section; lldb::addr_t symbol_byte_size = 0; bool add_nlist = true; bool is_gsym = false; bool demangled_is_synthesized = false; bool set_value = true; assert(sym_idx < num_syms); sym[sym_idx].SetDebug(is_debug); if (is_debug) { switch (nlist.n_type) { case N_GSYM: // global symbol: name,,NO_SECT,type,0 // Sometimes the N_GSYM value contains the address. // FIXME: In the .o files, we have a GSYM and a debug symbol for all // the ObjC data. They // have the same address, but we want to ensure that we always find // only the real symbol, 'cause we don't currently correctly // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol // type. This is a temporary hack to make sure the ObjectiveC // symbols get treated correctly. To do this right, we should // coalesce all the GSYM & global symbols that have the same // address. is_gsym = true; sym[sym_idx].SetExternal(true); if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } else { if (nlist.n_value != 0) symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeData; } break; case N_FNAME: // procedure name (f77 kludge): name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_FUN: // procedure: name,,n_sect,linenumber,address if (symbol_name) { type = eSymbolTypeCode; symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); N_FUN_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); // We use the current number of symbols in the symbol table in // lieu of using nlist_idx in case we ever start trimming entries // out N_FUN_indexes.push_back(sym_idx); } else { type = eSymbolTypeCompiler; if (!N_FUN_indexes.empty()) { // Copy the size of the function into the original STAB entry // so we don't have to hunt for it later symtab->SymbolAtIndex(N_FUN_indexes.back()) ->SetByteSize(nlist.n_value); N_FUN_indexes.pop_back(); // We don't really need the end function STAB as it contains // the size which we already placed with the original symbol, // so don't add it if we want a minimal symbol table add_nlist = false; } } break; case N_STSYM: // static symbol: name,,n_sect,type,address N_STSYM_addr_to_sym_idx.insert( std::make_pair(nlist.n_value, sym_idx)); symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (symbol_name && symbol_name[0]) { type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, eSymbolTypeData); } break; case N_LCSYM: // .lcomm symbol: name,,n_sect,type,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeCommonBlock; break; case N_BNSYM: // We use the current number of symbols in the symbol table in lieu // of using nlist_idx in case we ever start trimming entries out // Skip these if we want minimal symbol tables add_nlist = false; break; case N_ENSYM: // Set the size of the N_BNSYM to the terminating index of this // N_ENSYM so that we can always skip the entire symbol if we need // to navigate more quickly at the source level when parsing STABS // Skip these if we want minimal symbol tables add_nlist = false; break; case N_OPT: // emitted with gcc2_compiled and in gcc source type = eSymbolTypeCompiler; break; case N_RSYM: // register sym: name,,NO_SECT,type,register type = eSymbolTypeVariable; break; case N_SLINE: // src line: 0,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; case N_SSYM: // structure elt: name,,NO_SECT,type,struct_offset type = eSymbolTypeVariableType; break; case N_SO: // source file name type = eSymbolTypeSourceFile; if (symbol_name == nullptr) { add_nlist = false; if (N_SO_index != UINT32_MAX) { // Set the size of the N_SO to the terminating index of this // N_SO so that we can always skip the entire N_SO if we need // to navigate more quickly at the source level when parsing // STABS symbol_ptr = symtab->SymbolAtIndex(N_SO_index); symbol_ptr->SetByteSize(sym_idx); symbol_ptr->SetSizeIsSibling(true); } N_NSYM_indexes.clear(); N_INCL_indexes.clear(); N_BRAC_indexes.clear(); N_COMM_indexes.clear(); N_FUN_indexes.clear(); N_SO_index = UINT32_MAX; } else { // We use the current number of symbols in the symbol table in // lieu of using nlist_idx in case we ever start trimming entries // out const bool N_SO_has_full_path = symbol_name[0] == '/'; if (N_SO_has_full_path) { if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // We have two consecutive N_SO entries where the first // contains a directory and the second contains a full path. sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; add_nlist = false; } else { // This is the first entry in a N_SO that contains a // directory or a full path to the source file N_SO_index = sym_idx; } } else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { // This is usually the second N_SO entry that contains just the // filename, so here we combine it with the first one if we are // minimizing the symbol table const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); if (so_path && so_path[0]) { std::string full_so_path(so_path); const size_t double_slash_pos = full_so_path.find("//"); if (double_slash_pos != std::string::npos) { // The linker has been generating bad N_SO entries with // doubled up paths in the format "%s%s" where the first // string in the DW_AT_comp_dir, and the second is the // directory for the source file so you end up with a path // that looks like "/tmp/src//tmp/src/" FileSpec so_dir(so_path); if (!FileSystem::Instance().Exists(so_dir)) { so_dir.SetFile(&full_so_path[double_slash_pos + 1], FileSpec::Style::native); if (FileSystem::Instance().Exists(so_dir)) { // Trim off the incorrect path full_so_path.erase(0, double_slash_pos + 1); } } } if (*full_so_path.rbegin() != '/') full_so_path += '/'; full_so_path += symbol_name; sym[sym_idx - 1].GetMangled().SetValue( ConstString(full_so_path.c_str()), false); add_nlist = false; m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; } } else { // This could be a relative path to a N_SO N_SO_index = sym_idx; } } break; case N_OSO: // object file name: name,,0,0,st_mtime type = eSymbolTypeObjectFile; break; case N_LSYM: // local sym: name,,NO_SECT,type,offset type = eSymbolTypeLocal; break; // INCL scopes case N_BINCL: // include file beginning: name,,NO_SECT,0,sum We use the current // number of symbols in the symbol table in lieu of using nlist_idx // in case we ever start trimming entries out N_INCL_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_EINCL: // include file end: name,,NO_SECT,0,0 // Set the size of the N_BINCL to the terminating index of this // N_EINCL so that we can always skip the entire symbol if we need // to navigate more quickly at the source level when parsing STABS if (!N_INCL_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_INCL_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_SOL: // #included file name: name,,n_sect,0,address type = eSymbolTypeHeaderFile; // We currently don't use the header files on darwin add_nlist = false; break; case N_PARAMS: // compiler parameters: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_VERSION: // compiler version: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_OLEVEL: // compiler -O level: name,,NO_SECT,0,0 type = eSymbolTypeCompiler; break; case N_PSYM: // parameter: name,,NO_SECT,type,offset type = eSymbolTypeVariable; break; case N_ENTRY: // alternate entry: name,,n_sect,linenumber,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); type = eSymbolTypeLineEntry; break; // Left and Right Braces case N_LBRAC: // left bracket: 0,,NO_SECT,nesting level,address We use the // current number of symbols in the symbol table in lieu of using // nlist_idx in case we ever start trimming entries out symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); N_BRAC_indexes.push_back(sym_idx); type = eSymbolTypeScopeBegin; break; case N_RBRAC: // right bracket: 0,,NO_SECT,nesting level,address Set the size of // the N_LBRAC to the terminating index of this N_RBRAC so that we // can always skip the entire symbol if we need to navigate more // quickly at the source level when parsing STABS symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (!N_BRAC_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_BRAC_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_EXCL: // deleted include file: name,,NO_SECT,0,sum type = eSymbolTypeHeaderFile; break; // COMM scopes case N_BCOMM: // begin common: name,,NO_SECT,0,0 // We use the current number of symbols in the symbol table in lieu // of using nlist_idx in case we ever start trimming entries out type = eSymbolTypeScopeBegin; N_COMM_indexes.push_back(sym_idx); break; case N_ECOML: // end common (local name): 0,,n_sect,0,address symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); LLVM_FALLTHROUGH; case N_ECOMM: // end common: name,,n_sect,0,0 // Set the size of the N_BCOMM to the terminating index of this // N_ECOMM/N_ECOML so that we can always skip the entire symbol if // we need to navigate more quickly at the source level when // parsing STABS if (!N_COMM_indexes.empty()) { symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); symbol_ptr->SetByteSize(sym_idx + 1); symbol_ptr->SetSizeIsSibling(true); N_COMM_indexes.pop_back(); } type = eSymbolTypeScopeEnd; break; case N_LENG: // second stab entry with length information type = eSymbolTypeAdditional; break; default: break; } } else { uint8_t n_type = N_TYPE & nlist.n_type; sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); switch (n_type) { case N_INDR: { const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); if (reexport_name_cstr && reexport_name_cstr[0]) { type = eSymbolTypeReExported; ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); sym[sym_idx].SetReExportedSymbolName(reexport_name); set_value = false; reexport_shlib_needs_fixup[sym_idx] = reexport_name; indirect_symbol_names.insert( ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); } else type = eSymbolTypeUndefined; } break; case N_UNDF: if (symbol_name && symbol_name[0]) { ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); undefined_name_to_desc[undefined_name] = nlist.n_desc; } LLVM_FALLTHROUGH; case N_PBUD: type = eSymbolTypeUndefined; break; case N_ABS: type = eSymbolTypeAbsolute; break; case N_SECT: { symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); if (!symbol_section) { // TODO: warn about this? add_nlist = false; break; } if (TEXT_eh_frame_sectID == nlist.n_sect) { type = eSymbolTypeException; } else { uint32_t section_type = symbol_section->Get() & SECTION_TYPE; switch (section_type) { case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in // the reserved2 field case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for // interposing case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; default: switch (symbol_section->GetType()) { case lldb::eSectionTypeCode: type = eSymbolTypeCode; break; case eSectionTypeData: case eSectionTypeDataCString: // Inlined C string data case eSectionTypeDataCStringPointers: // Pointers to C string // data case eSectionTypeDataSymbolAddress: // Address of a symbol in // the symbol table case eSectionTypeData4: case eSectionTypeData8: case eSectionTypeData16: type = eSymbolTypeData; break; default: break; } break; } if (type == eSymbolTypeInvalid) { const char *symbol_sect_name = symbol_section->GetName().AsCString(); if (symbol_section->IsDescendant(text_section_sp.get())) { if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SELF_MODIFYING_CODE | S_ATTR_SOME_INSTRUCTIONS)) type = eSymbolTypeData; else type = eSymbolTypeCode; } else if (symbol_section->IsDescendant(data_section_sp.get()) || symbol_section->IsDescendant( data_dirty_section_sp.get()) || symbol_section->IsDescendant( data_const_section_sp.get())) { if (symbol_sect_name && ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { type = eSymbolTypeRuntime; if (symbol_name) { llvm::StringRef symbol_name_ref(symbol_name); if (symbol_name_ref.startswith("_OBJC_")) { llvm::StringRef g_objc_v2_prefix_class( "_OBJC_CLASS_$_"); llvm::StringRef g_objc_v2_prefix_metaclass( "_OBJC_METACLASS_$_"); llvm::StringRef g_objc_v2_prefix_ivar( "_OBJC_IVAR_$_"); if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_metaclass)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); type = eSymbolTypeObjCMetaClass; demangled_is_synthesized = true; } else if (symbol_name_ref.startswith( g_objc_v2_prefix_ivar)) { symbol_name_non_abi_mangled = symbol_name + 1; symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); type = eSymbolTypeObjCIVar; demangled_is_synthesized = true; } } } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) { type = eSymbolTypeException; } else { type = eSymbolTypeData; } } else if (symbol_sect_name && ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { type = eSymbolTypeTrampoline; } else if (symbol_section->IsDescendant(objc_section_sp.get())) { type = eSymbolTypeRuntime; if (symbol_name && symbol_name[0] == '.') { llvm::StringRef symbol_name_ref(symbol_name); llvm::StringRef g_objc_v1_prefix_class( ".objc_class_name_"); if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { symbol_name_non_abi_mangled = symbol_name; symbol_name = symbol_name + g_objc_v1_prefix_class.size(); type = eSymbolTypeObjCClass; demangled_is_synthesized = true; } } } } } } break; } } if (!add_nlist) { sym[sym_idx].Clear(); return true; } uint64_t symbol_value = nlist.n_value; if (symbol_name_non_abi_mangled) { sym[sym_idx].GetMangled().SetMangledName( ConstString(symbol_name_non_abi_mangled)); sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name)); } else { bool symbol_name_is_mangled = false; if (symbol_name && symbol_name[0] == '_') { symbol_name_is_mangled = symbol_name[1] == '_'; symbol_name++; // Skip the leading underscore } if (symbol_name) { ConstString const_symbol_name(symbol_name); sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); } } if (is_gsym) { const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(Mangled::ePreferMangled) .GetCString(); if (gsym_name) N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; } if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); if (symbol_byte_size == 0 && function_starts_count > 0) { addr_t symbol_lookup_file_addr = nlist.n_value; // Do an exact address match for non-ARM addresses, else get the // closest since the symbol might be a thumb symbol which has an // address with bit zero set. FunctionStarts::Entry *func_start_entry = function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); if (is_arm && func_start_entry) { // Verify that the function start address is the symbol address // (ARM) or the symbol address + 1 (thumb). if (func_start_entry->addr != symbol_lookup_file_addr && func_start_entry->addr != (symbol_lookup_file_addr + 1)) { // Not the right entry, NULL it out... func_start_entry = nullptr; } } if (func_start_entry) { func_start_entry->data = true; addr_t symbol_file_addr = func_start_entry->addr; if (is_arm) symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry(func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; // Be sure the clear the Thumb address bit when we calculate the // size from the current and next address if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } } } symbol_value -= section_file_addr; } if (!is_debug) { if (type == eSymbolTypeCode) { // See if we can find a N_FUN entry for any code symbols. If we do // find a match, and the name matches, then we can merge the two into // just the function symbol to avoid duplicate entries in the symbol // table. std::pair range; range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these // flags into the N_FUN flags to avoid duplicate symbols in the // symbol table. sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) sym[pos->second].SetType(eSymbolTypeResolver); sym[sym_idx].Clear(); return true; } } } else { if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) type = eSymbolTypeResolver; } } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || type == eSymbolTypeObjCMetaClass || type == eSymbolTypeObjCIVar) { // See if we can find a N_STSYM entry for any data symbols. If we do // find a match, and the name matches, then we can merge the two into // just the Static symbol to avoid duplicate entries in the symbol // table. std::pair range; range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); if (range.first != range.second) { for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) { if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName( Mangled::ePreferMangled)) { m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; // We just need the flags from the linker symbol, so put these // flags into the N_STSYM flags to avoid duplicate symbols in // the symbol table. sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); return true; } } } else { // Combine N_GSYM stab entries with the non stab symbol. const char *gsym_name = sym[sym_idx] .GetMangled() .GetName(Mangled::ePreferMangled) .GetCString(); if (gsym_name) { ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); if (pos != N_GSYM_name_to_sym_idx.end()) { const uint32_t GSYM_sym_idx = pos->second; m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; // Copy the address, because often the N_GSYM address has an // invalid address of zero when the global is a common symbol. sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section); sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); symbols_added.insert( sym[GSYM_sym_idx].GetAddress().GetFileAddress()); // We just need the flags from the linker symbol, so put these // flags into the N_GSYM flags to avoid duplicate symbols in // the symbol table. sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); sym[sym_idx].Clear(); return true; } } } } } sym[sym_idx].SetID(nlist_idx); sym[sym_idx].SetType(type); if (set_value) { sym[sym_idx].GetAddressRef().SetSection(symbol_section); sym[sym_idx].GetAddressRef().SetOffset(symbol_value); symbols_added.insert(sym[sym_idx].GetAddress().GetFileAddress()); } sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); if (nlist.n_desc & N_WEAK_REF) sym[sym_idx].SetIsWeak(true); if (symbol_byte_size > 0) sym[sym_idx].SetByteSize(symbol_byte_size); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); ++sym_idx; return true; }; // First parse all the nlists but don't process them yet. See the next // comment for an explanation why. std::vector nlists; nlists.reserve(symtab_load_command.nsyms); for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { if (auto nlist = ParseNList(nlist_data, nlist_data_offset, nlist_byte_size)) nlists.push_back(*nlist); else break; } // Now parse all the debug symbols. This is needed to merge non-debug // symbols in the next step. Non-debug symbols are always coalesced into // the debug symbol. Doing this in one step would mean that some symbols // won't be merged. nlist_idx = 0; for (auto &nlist : nlists) { if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols)) break; } // Finally parse all the non debug symbols. nlist_idx = 0; for (auto &nlist : nlists) { if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols)) break; } for (const auto &pos : reexport_shlib_needs_fixup) { const auto undef_pos = undefined_name_to_desc.find(pos.second); if (undef_pos != undefined_name_to_desc.end()) { const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) sym[pos.first].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); } } } // Count how many trie symbols we'll add to the symbol table int trie_symbol_table_augment_count = 0; for (auto &e : external_sym_trie_entries) { if (symbols_added.find(e.entry.address) == symbols_added.end()) trie_symbol_table_augment_count++; } if (num_syms < sym_idx + trie_symbol_table_augment_count) { num_syms = sym_idx + trie_symbol_table_augment_count; sym = symtab->Resize(num_syms); } uint32_t synthetic_sym_id = symtab_load_command.nsyms; // Add symbols from the trie to the symbol table. for (auto &e : external_sym_trie_entries) { if (symbols_added.find(e.entry.address) != symbols_added.end()) continue; // Find the section that this trie address is in, use that to annotate // symbol type as we add the trie address and name to the symbol table. Address symbol_addr; if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) { SectionSP symbol_section(symbol_addr.GetSection()); const char *symbol_name = e.entry.name.GetCString(); bool demangled_is_synthesized = false; SymbolType type = GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp, data_section_sp, data_dirty_section_sp, data_const_section_sp, symbol_section); sym[sym_idx].SetType(type); if (symbol_section) { sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name)); if (demangled_is_synthesized) sym[sym_idx].SetDemangledNameIsSynthesized(true); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].SetExternal(true); sym[sym_idx].GetAddressRef() = symbol_addr; symbols_added.insert(symbol_addr.GetFileAddress()); if (e.entry.flags & TRIE_SYMBOL_IS_THUMB) sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB); ++sym_idx; } } } if (function_starts_count > 0) { uint32_t num_synthetic_function_symbols = 0; for (i = 0; i < function_starts_count; ++i) { if (symbols_added.find(function_starts.GetEntryRef(i).addr) == symbols_added.end()) ++num_synthetic_function_symbols; } if (num_synthetic_function_symbols > 0) { if (num_syms < sym_idx + num_synthetic_function_symbols) { num_syms = sym_idx + num_synthetic_function_symbols; sym = symtab->Resize(num_syms); } for (i = 0; i < function_starts_count; ++i) { const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex(i); if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) { addr_t symbol_file_addr = func_start_entry->addr; uint32_t symbol_flags = 0; if (func_start_entry->data) symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; Address symbol_addr; if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { SectionSP symbol_section(symbol_addr.GetSection()); uint32_t symbol_byte_size = 0; if (symbol_section) { const addr_t section_file_addr = symbol_section->GetFileAddress(); const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry(func_start_entry); const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); if (next_func_start_entry) { addr_t next_symbol_file_addr = next_func_start_entry->addr; if (is_arm) next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; symbol_byte_size = std::min( next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); } else { symbol_byte_size = section_end_file_addr - symbol_file_addr; } sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled().SetDemangledName( GetNextSyntheticSymbolName()); sym[sym_idx].SetType(eSymbolTypeCode); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].GetAddressRef() = symbol_addr; symbols_added.insert(symbol_addr.GetFileAddress()); if (symbol_flags) sym[sym_idx].SetFlags(symbol_flags); if (symbol_byte_size) sym[sym_idx].SetByteSize(symbol_byte_size); ++sym_idx; } } } } } } // Trim our symbols down to just what we ended up with after removing any // symbols. if (sym_idx < num_syms) { num_syms = sym_idx; sym = symtab->Resize(num_syms); } // Now synthesize indirect symbols if (m_dysymtab.nindirectsyms != 0) { if (indirect_symbol_index_data.GetByteSize()) { NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) { if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) { uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; if (symbol_stub_byte_size == 0) continue; const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; if (num_symbol_stubs == 0) continue; const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; if (indirect_symbol_index_data.ValidOffsetForDataOfSize( symbol_stub_offset, 4)) { const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32(&symbol_stub_offset); if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) continue; NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find(stub_sym_id); Symbol *stub_symbol = nullptr; if (index_pos != end_index_pos) { // We have a remapping from the original nlist index to a // current symbol index, so just look this up by index stub_symbol = symtab->SymbolAtIndex(index_pos->second); } else { // We need to lookup a symbol using the original nlist symbol // index since this index is coming from the S_SYMBOL_STUBS stub_symbol = symtab->FindSymbolByID(stub_sym_id); } if (stub_symbol) { Address so_addr(symbol_stub_addr, section_list); if (stub_symbol->GetType() == eSymbolTypeUndefined) { // Change the external symbol into a trampoline that makes // sense These symbols were N_UNDF N_EXT, and are useless // to us, so we can re-use them so we don't have to make up // a synthetic symbol for no good reason. if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) stub_symbol->SetType(eSymbolTypeTrampoline); else stub_symbol->SetType(eSymbolTypeResolver); stub_symbol->SetExternal(false); stub_symbol->GetAddressRef() = so_addr; stub_symbol->SetByteSize(symbol_stub_byte_size); } else { // Make a synthetic symbol to describe the trampoline stub Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); if (sym_idx >= num_syms) { sym = symtab->Resize(++num_syms); stub_symbol = nullptr; // this pointer no longer valid } sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled() = stub_symbol_mangled_name; if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) sym[sym_idx].SetType(eSymbolTypeTrampoline); else sym[sym_idx].SetType(eSymbolTypeResolver); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].GetAddressRef() = so_addr; symbols_added.insert(so_addr.GetFileAddress()); sym[sym_idx].SetByteSize(symbol_stub_byte_size); ++sym_idx; } } else { if (log) log->Warning("symbol stub referencing symbol table symbol " "%u that isn't in our minimal symbol table, " "fix this!!!", stub_sym_id); } } } } } } } if (!reexport_trie_entries.empty()) { for (const auto &e : reexport_trie_entries) { if (e.entry.import_name) { // Only add indirect symbols from the Trie entries if we didn't have // a N_INDR nlist entry for this already if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) { // Make a synthetic symbol to describe re-exported symbol. if (sym_idx >= num_syms) sym = symtab->Resize(++num_syms); sym[sym_idx].SetID(synthetic_sym_id++); sym[sym_idx].GetMangled() = Mangled(e.entry.name); sym[sym_idx].SetType(eSymbolTypeReExported); sym[sym_idx].SetIsSynthetic(true); sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { sym[sym_idx].SetReExportedSymbolSharedLibrary( dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); } ++sym_idx; } } } } // StreamFile s(stdout, false); // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); // Set symbol byte sizes correctly since mach-o nlist entries don't have // sizes symtab->CalculateSymbolSizes(); // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); // symtab->Dump(&s, NULL, eSortOrderNone); return symtab->GetNumSymbols(); } void ObjectFileMachO::Dump(Stream *s) { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); s->Printf("%p: ", static_cast(this)); s->Indent(); if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) s->PutCString("ObjectFileMachO64"); else s->PutCString("ObjectFileMachO32"); *s << ", file = '" << m_file; ModuleSpecList all_specs; ModuleSpec base_spec; GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), base_spec, all_specs); for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { *s << "', triple"; if (e) s->Printf("[%d]", i); *s << " = "; *s << all_specs.GetModuleSpecRefAtIndex(i) .GetArchitecture() .GetTriple() .getTriple(); } *s << "\n"; SectionList *sections = GetSectionList(); if (sections) sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true, UINT32_MAX); if (m_symtab_up) m_symtab_up->Dump(s, nullptr, eSortOrderNone); } } UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) { uint32_t i; struct uuid_command load_cmd; lldb::offset_t offset = lc_offset; for (i = 0; i < header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (data.GetU32(&offset, &load_cmd, 2) == nullptr) break; if (load_cmd.cmd == LC_UUID) { const uint8_t *uuid_bytes = data.PeekData(offset, 16); if (uuid_bytes) { // OpenCL on Mac OS X uses the same UUID for each of its object files. // We pretend these object files have no UUID to prevent crashing. const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d}; if (!memcmp(uuid_bytes, opencl_uuid, 16)) return UUID(); return UUID::fromOptionalData(uuid_bytes, 16); } return UUID(); } offset = cmd_offset + load_cmd.cmdsize; } return UUID(); } static llvm::StringRef GetOSName(uint32_t cmd) { switch (cmd) { case llvm::MachO::LC_VERSION_MIN_IPHONEOS: return llvm::Triple::getOSTypeName(llvm::Triple::IOS); case llvm::MachO::LC_VERSION_MIN_MACOSX: return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); case llvm::MachO::LC_VERSION_MIN_TVOS: return llvm::Triple::getOSTypeName(llvm::Triple::TvOS); case llvm::MachO::LC_VERSION_MIN_WATCHOS: return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); default: llvm_unreachable("unexpected LC_VERSION load command"); } } namespace { struct OSEnv { llvm::StringRef os_type; llvm::StringRef environment; OSEnv(uint32_t cmd) { switch (cmd) { case llvm::MachO::PLATFORM_MACOS: os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); return; case llvm::MachO::PLATFORM_IOS: os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); return; case llvm::MachO::PLATFORM_TVOS: os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); return; case llvm::MachO::PLATFORM_WATCHOS: os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); return; // NEED_BRIDGEOS_TRIPLE case llvm::MachO::PLATFORM_BRIDGEOS: // NEED_BRIDGEOS_TRIPLE os_type = // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS); // NEED_BRIDGEOS_TRIPLE return; case llvm::MachO::PLATFORM_MACCATALYST: os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI); return; case llvm::MachO::PLATFORM_IOSSIMULATOR: os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); return; case llvm::MachO::PLATFORM_TVOSSIMULATOR: os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); return; case llvm::MachO::PLATFORM_WATCHOSSIMULATOR: os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); return; default: { Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS)); LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION"); } } } }; struct MinOS { uint32_t major_version, minor_version, patch_version; MinOS(uint32_t version) : major_version(version >> 16), minor_version((version >> 8) & 0xffu), patch_version(version & 0xffu) {} }; } // namespace void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset, ModuleSpec &base_spec, lldb_private::ModuleSpecList &all_specs) { auto &base_arch = base_spec.GetArchitecture(); base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); if (!base_arch.IsValid()) return; bool found_any = false; auto add_triple = [&](const llvm::Triple &triple) { auto spec = base_spec; spec.GetArchitecture().GetTriple() = triple; if (spec.GetArchitecture().IsValid()) { spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset); all_specs.Append(spec); found_any = true; } }; // Set OS to an unspecified unknown or a "*" so it can match any OS llvm::Triple base_triple = base_arch.GetTriple(); base_triple.setOS(llvm::Triple::UnknownOS); base_triple.setOSName(llvm::StringRef()); if (header.filetype == MH_PRELOAD) { if (header.cputype == CPU_TYPE_ARM) { // If this is a 32-bit arm binary, and it's a standalone binary, force // the Vendor to Apple so we don't accidentally pick up the generic // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the // frame pointer register; most other armv7 ABIs use a combination of // r7 and r11. base_triple.setVendor(llvm::Triple::Apple); } else { // Set vendor to an unspecified unknown or a "*" so it can match any // vendor This is required for correct behavior of EFI debugging on // x86_64 base_triple.setVendor(llvm::Triple::UnknownVendor); base_triple.setVendorName(llvm::StringRef()); } return add_triple(base_triple); } struct load_command load_cmd; // See if there is an LC_VERSION_MIN_* load command that can give // us the OS type. lldb::offset_t offset = lc_offset; for (uint32_t i = 0; i < header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (data.GetU32(&offset, &load_cmd, 2) == NULL) break; struct version_min_command version_min; switch (load_cmd.cmd) { case llvm::MachO::LC_VERSION_MIN_MACOSX: case llvm::MachO::LC_VERSION_MIN_IPHONEOS: case llvm::MachO::LC_VERSION_MIN_TVOS: case llvm::MachO::LC_VERSION_MIN_WATCHOS: { if (load_cmd.cmdsize != sizeof(version_min)) break; if (data.ExtractBytes(cmd_offset, sizeof(version_min), data.GetByteOrder(), &version_min) == 0) break; MinOS min_os(version_min.version); llvm::SmallString<32> os_name; llvm::raw_svector_ostream os(os_name); os << GetOSName(load_cmd.cmd) << min_os.major_version << '.' << min_os.minor_version << '.' << min_os.patch_version; auto triple = base_triple; triple.setOSName(os.str()); // Disambiguate legacy simulator platforms. if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX && (base_triple.getArch() == llvm::Triple::x86_64 || base_triple.getArch() == llvm::Triple::x86)) { // The combination of legacy LC_VERSION_MIN load command and // x86 architecture always indicates a simulator environment. // The combination of LC_VERSION_MIN and arm architecture only // appears for native binaries. Back-deploying simulator // binaries on Apple Silicon Macs use the modern unambigous // LC_BUILD_VERSION load commands; no special handling required. triple.setEnvironment(llvm::Triple::Simulator); } add_triple(triple); break; } default: break; } offset = cmd_offset + load_cmd.cmdsize; } // See if there are LC_BUILD_VERSION load commands that can give // us the OS type. offset = lc_offset; for (uint32_t i = 0; i < header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (data.GetU32(&offset, &load_cmd, 2) == NULL) break; do { if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) { struct build_version_command build_version; if (load_cmd.cmdsize < sizeof(build_version)) { // Malformed load command. break; } if (data.ExtractBytes(cmd_offset, sizeof(build_version), data.GetByteOrder(), &build_version) == 0) break; MinOS min_os(build_version.minos); OSEnv os_env(build_version.platform); llvm::SmallString<16> os_name; llvm::raw_svector_ostream os(os_name); os << os_env.os_type << min_os.major_version << '.' << min_os.minor_version << '.' << min_os.patch_version; auto triple = base_triple; triple.setOSName(os.str()); os_name.clear(); if (!os_env.environment.empty()) triple.setEnvironmentName(os_env.environment); add_triple(triple); } } while (0); offset = cmd_offset + load_cmd.cmdsize; } if (!found_any) { if (header.filetype == MH_KEXT_BUNDLE) { base_triple.setVendor(llvm::Triple::Apple); add_triple(base_triple); } else { // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT // so lets not say our Vendor is Apple, leave it as an unspecified // unknown. base_triple.setVendor(llvm::Triple::UnknownVendor); base_triple.setVendorName(llvm::StringRef()); add_triple(base_triple); } } } ArchSpec ObjectFileMachO::GetArchitecture( ModuleSP module_sp, const llvm::MachO::mach_header &header, const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) { ModuleSpecList all_specs; ModuleSpec base_spec; GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic), base_spec, all_specs); // If the object file offers multiple alternative load commands, // pick the one that matches the module. if (module_sp) { const ArchSpec &module_arch = module_sp->GetArchitecture(); for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { ArchSpec mach_arch = all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); if (module_arch.IsCompatibleMatch(mach_arch)) return mach_arch; } } // Return the first arch we found. if (all_specs.GetSize() == 0) return {}; return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); } UUID ObjectFileMachO::GetUUID() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); return GetUUID(m_header, m_data, offset); } return UUID(); } uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { uint32_t count = 0; ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); std::vector rpath_paths; std::vector rpath_relative_paths; std::vector at_exec_relative_paths; uint32_t i; for (i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) break; switch (load_cmd.cmd) { case LC_RPATH: case LC_LOAD_DYLIB: case LC_LOAD_WEAK_DYLIB: case LC_REEXPORT_DYLIB: case LC_LOAD_DYLINKER: case LC_LOADFVMLIB: case LC_LOAD_UPWARD_DYLIB: { uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); const char *path = m_data.PeekCStr(name_offset); if (path) { if (load_cmd.cmd == LC_RPATH) rpath_paths.push_back(path); else { if (path[0] == '@') { if (strncmp(path, "@rpath", strlen("@rpath")) == 0) rpath_relative_paths.push_back(path + strlen("@rpath")); else if (strncmp(path, "@executable_path", strlen("@executable_path")) == 0) at_exec_relative_paths.push_back(path + strlen("@executable_path")); } else { FileSpec file_spec(path); if (files.AppendIfUnique(file_spec)) count++; } } } } break; default: break; } offset = cmd_offset + load_cmd.cmdsize; } FileSpec this_file_spec(m_file); FileSystem::Instance().Resolve(this_file_spec); if (!rpath_paths.empty()) { // Fixup all LC_RPATH values to be absolute paths std::string loader_path("@loader_path"); std::string executable_path("@executable_path"); for (auto &rpath : rpath_paths) { if (llvm::StringRef(rpath).startswith(loader_path)) { rpath.erase(0, loader_path.size()); rpath.insert(0, this_file_spec.GetDirectory().GetCString()); } else if (llvm::StringRef(rpath).startswith(executable_path)) { rpath.erase(0, executable_path.size()); rpath.insert(0, this_file_spec.GetDirectory().GetCString()); } } for (const auto &rpath_relative_path : rpath_relative_paths) { for (const auto &rpath : rpath_paths) { std::string path = rpath; path += rpath_relative_path; // It is OK to resolve this path because we must find a file on disk // for us to accept it anyway if it is rpath relative. FileSpec file_spec(path); FileSystem::Instance().Resolve(file_spec); if (FileSystem::Instance().Exists(file_spec) && files.AppendIfUnique(file_spec)) { count++; break; } } } } // We may have @executable_paths but no RPATHS. Figure those out here. // Only do this if this object file is the executable. We have no way to // get back to the actual executable otherwise, so we won't get the right // path. if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) { FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent(); for (const auto &at_exec_relative_path : at_exec_relative_paths) { FileSpec file_spec = exec_dir.CopyByAppendingPathComponent(at_exec_relative_path); if (FileSystem::Instance().Exists(file_spec) && files.AppendIfUnique(file_spec)) count++; } } } return count; } lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { // If the object file is not an executable it can't hold the entry point. // m_entry_point_address is initialized to an invalid address, so we can just // return that. If m_entry_point_address is valid it means we've found it // already, so return the cached value. if ((!IsExecutable() && !IsDynamicLoader()) || m_entry_point_address.IsValid()) { return m_entry_point_address; } // Otherwise, look for the UnixThread or Thread command. The data for the // Thread command is given in /usr/include/mach-o.h, but it is basically: // // uint32_t flavor - this is the flavor argument you would pass to // thread_get_state // uint32_t count - this is the count of longs in the thread state data // struct XXX_thread_state state - this is the structure from // corresponding to the flavor. // // // So we just keep reading the various register flavors till we find the GPR // one, then read the PC out of there. // FIXME: We will need to have a "RegisterContext data provider" class at some // point that can get all the registers // out of data in this form & attach them to a given thread. That should // underlie the MacOS X User process plugin, and we'll also need it for the // MacOS X Core File process plugin. When we have that we can also use it // here. // // For now we hard-code the offsets and flavors we need: // // ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct load_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t i; lldb::addr_t start_address = LLDB_INVALID_ADDRESS; bool done = false; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) break; switch (load_cmd.cmd) { case LC_UNIXTHREAD: case LC_THREAD: { while (offset < cmd_offset + load_cmd.cmdsize) { uint32_t flavor = m_data.GetU32(&offset); uint32_t count = m_data.GetU32(&offset); if (count == 0) { // We've gotten off somehow, log and exit; return m_entry_point_address; } switch (m_header.cputype) { case llvm::MachO::CPU_TYPE_ARM: if (flavor == 1 || flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 // from mach/arm/thread_status.h { offset += 60; // This is the offset of pc in the GPR thread state // data structure. start_address = m_data.GetU32(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_ARM64: case llvm::MachO::CPU_TYPE_ARM64_32: if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h { offset += 256; // This is the offset of pc in the GPR thread state // data structure. start_address = m_data.GetU64(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_I386: if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h { offset += 40; // This is the offset of eip in the GPR thread state // data structure. start_address = m_data.GetU32(&offset); done = true; } break; case llvm::MachO::CPU_TYPE_X86_64: if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h { offset += 16 * 8; // This is the offset of rip in the GPR thread // state data structure. start_address = m_data.GetU64(&offset); done = true; } break; default: return m_entry_point_address; } // Haven't found the GPR flavor yet, skip over the data for this // flavor: if (done) break; offset += count * 4; } } break; case LC_MAIN: { ConstString text_segment_name("__TEXT"); uint64_t entryoffset = m_data.GetU64(&offset); SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); if (text_segment_sp) { done = true; start_address = text_segment_sp->GetFileAddress() + entryoffset; } } break; default: break; } if (done) break; // Go to the next load command: offset = cmd_offset + load_cmd.cmdsize; } if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) { if (GetSymtab()) { Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType( ConstString("_dyld_start"), SymbolType::eSymbolTypeCode, Symtab::eDebugAny, Symtab::eVisibilityAny); if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) { start_address = dyld_start_sym->GetAddress().GetFileAddress(); } } } if (start_address != LLDB_INVALID_ADDRESS) { // We got the start address from the load commands, so now resolve that // address in the sections of this ObjectFile: if (!m_entry_point_address.ResolveAddressUsingFileSections( start_address, GetSectionList())) { m_entry_point_address.Clear(); } } else { // We couldn't read the UnixThread load command - maybe it wasn't there. // As a fallback look for the "start" symbol in the main executable. ModuleSP module_sp(GetModule()); if (module_sp) { SymbolContextList contexts; SymbolContext context; module_sp->FindSymbolsWithNameAndType(ConstString("start"), eSymbolTypeCode, contexts); if (contexts.GetSize()) { if (contexts.GetContextAtIndex(0, context)) m_entry_point_address = context.symbol->GetAddress(); } } } } return m_entry_point_address; } lldb_private::Address ObjectFileMachO::GetBaseAddress() { lldb_private::Address header_addr; SectionList *section_list = GetSectionList(); if (section_list) { SectionSP text_segment_sp( section_list->FindSectionByName(GetSegmentNameTEXT())); if (text_segment_sp) { header_addr.SetSection(text_segment_sp); header_addr.SetOffset(0); } } return header_addr; } uint32_t ObjectFileMachO::GetNumThreadContexts() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) { m_thread_context_offsets_valid = true; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); FileRangeArray::Entry file_range; thread_command thread_cmd; for (uint32_t i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr) break; if (thread_cmd.cmd == LC_THREAD) { file_range.SetRangeBase(offset); file_range.SetByteSize(thread_cmd.cmdsize - 8); m_thread_context_offsets.Append(file_range); } offset = cmd_offset + thread_cmd.cmdsize; } } } return m_thread_context_offsets.GetSize(); } std::string ObjectFileMachO::GetIdentifierString() { std::string result; ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); // First, look over the load commands for an LC_NOTE load command with // data_owner string "kern ver str" & use that if found. lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; load_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == LC_NOTE) { char data_owner[17]; m_data.CopyData(offset, 16, data_owner); data_owner[16] = '\0'; offset += 16; uint64_t fileoff = m_data.GetU64_unchecked(&offset); uint64_t size = m_data.GetU64_unchecked(&offset); // "kern ver str" has a uint32_t version and then a nul terminated // c-string. if (strcmp("kern ver str", data_owner) == 0) { offset = fileoff; uint32_t version; if (m_data.GetU32(&offset, &version, 1) != nullptr) { if (version == 1) { uint32_t strsize = size - sizeof(uint32_t); char *buf = (char *)malloc(strsize); if (buf) { m_data.CopyData(offset, strsize, buf); buf[strsize - 1] = '\0'; result = buf; if (buf) free(buf); return result; } } } } } offset = cmd_offset + lc.cmdsize; } // Second, make a pass over the load commands looking for an obsolete // LC_IDENT load command. offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; struct ident_command ident_command; if (m_data.GetU32(&offset, &ident_command, 2) == nullptr) break; if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) { char *buf = (char *)malloc(ident_command.cmdsize); if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize, buf) == ident_command.cmdsize) { buf[ident_command.cmdsize - 1] = '\0'; result = buf; } if (buf) free(buf); } offset = cmd_offset + ident_command.cmdsize; } } return result; } bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid, ObjectFile::BinaryType &type) { address = LLDB_INVALID_ADDRESS; uuid.Clear(); ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const uint32_t cmd_offset = offset; load_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == LC_NOTE) { char data_owner[17]; memset(data_owner, 0, sizeof(data_owner)); m_data.CopyData(offset, 16, data_owner); offset += 16; uint64_t fileoff = m_data.GetU64_unchecked(&offset); uint64_t size = m_data.GetU64_unchecked(&offset); // "main bin spec" (main binary specification) data payload is // formatted: // uint32_t version [currently 1] // uint32_t type [0 == unspecified, 1 == kernel, // 2 == user process, 3 == firmware ] // uint64_t address [ UINT64_MAX if address not specified ] // uuid_t uuid [ all zero's if uuid not specified ] // uint32_t log2_pagesize [ process page size in log base // 2, e.g. 4k pages are 12. // 0 for unspecified ] // uint32_t unused [ for alignment ] if (strcmp("main bin spec", data_owner) == 0 && size >= 32) { offset = fileoff; uint32_t version; if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) { uint32_t binspec_type = 0; uuid_t raw_uuid; memset(raw_uuid, 0, sizeof(uuid_t)); if (m_data.GetU32(&offset, &binspec_type, 1) && m_data.GetU64(&offset, &address, 1) && m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); // convert the "main bin spec" type into our // ObjectFile::BinaryType enum switch (binspec_type) { case 0: type = eBinaryTypeUnknown; break; case 1: type = eBinaryTypeKernel; break; case 2: type = eBinaryTypeUser; break; case 3: type = eBinaryTypeStandalone; break; } return true; } } } } offset = cmd_offset + lc.cmdsize; } } return false; } lldb::RegisterContextSP ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, lldb_private::Thread &thread) { lldb::RegisterContextSP reg_ctx_sp; ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); if (!m_thread_context_offsets_valid) GetNumThreadContexts(); const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex(idx); if (thread_context_file_range) { DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), thread_context_file_range->GetByteSize()); switch (m_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: case llvm::MachO::CPU_TYPE_ARM64_32: reg_ctx_sp = std::make_shared(thread, data); break; case llvm::MachO::CPU_TYPE_ARM: reg_ctx_sp = std::make_shared(thread, data); break; case llvm::MachO::CPU_TYPE_I386: reg_ctx_sp = std::make_shared(thread, data); break; case llvm::MachO::CPU_TYPE_X86_64: reg_ctx_sp = std::make_shared(thread, data); break; } } } return reg_ctx_sp; } ObjectFile::Type ObjectFileMachO::CalculateType() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u if (GetAddressByteSize() == 4) { // 32 bit kexts are just object files, but they do have a valid // UUID load command. if (GetUUID()) { // this checking for the UUID load command is not enough we could // eventually look for the symbol named "OSKextGetCurrentIdentifier" as // this is required of kexts if (m_strata == eStrataInvalid) m_strata = eStrataKernel; return eTypeSharedLibrary; } } return eTypeObjectFile; case MH_EXECUTE: return eTypeExecutable; // 0x2u case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u case MH_CORE: return eTypeCoreFile; // 0x4u case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u case MH_DYLIB: return eTypeSharedLibrary; // 0x6u case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u case MH_DSYM: return eTypeDebugInfo; // 0xAu case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu default: break; } return eTypeUnknown; } ObjectFile::Strata ObjectFileMachO::CalculateStrata() { switch (m_header.filetype) { case MH_OBJECT: // 0x1u { // 32 bit kexts are just object files, but they do have a valid // UUID load command. if (GetUUID()) { // this checking for the UUID load command is not enough we could // eventually look for the symbol named "OSKextGetCurrentIdentifier" as // this is required of kexts if (m_type == eTypeInvalid) m_type = eTypeSharedLibrary; return eStrataKernel; } } return eStrataUnknown; case MH_EXECUTE: // 0x2u // Check for the MH_DYLDLINK bit in the flags if (m_header.flags & MH_DYLDLINK) { return eStrataUser; } else { SectionList *section_list = GetSectionList(); if (section_list) { static ConstString g_kld_section_name("__KLD"); if (section_list->FindSectionByName(g_kld_section_name)) return eStrataKernel; } } return eStrataRawImage; case MH_FVMLIB: return eStrataUser; // 0x3u case MH_CORE: return eStrataUnknown; // 0x4u case MH_PRELOAD: return eStrataRawImage; // 0x5u case MH_DYLIB: return eStrataUser; // 0x6u case MH_DYLINKER: return eStrataUser; // 0x7u case MH_BUNDLE: return eStrataUser; // 0x8u case MH_DYLIB_STUB: return eStrataUser; // 0x9u case MH_DSYM: return eStrataUnknown; // 0xAu case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu default: break; } return eStrataUnknown; } llvm::VersionTuple ObjectFileMachO::GetVersion() { ModuleSP module_sp(GetModule()); if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); struct dylib_command load_cmd; lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); uint32_t version_cmd = 0; uint64_t version = 0; uint32_t i; for (i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t cmd_offset = offset; if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) break; if (load_cmd.cmd == LC_ID_DYLIB) { if (version_cmd == 0) { version_cmd = load_cmd.cmd; if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr) break; version = load_cmd.dylib.current_version; } break; // Break for now unless there is another more complete version // number load command in the future. } offset = cmd_offset + load_cmd.cmdsize; } if (version_cmd == LC_ID_DYLIB) { unsigned major = (version & 0xFFFF0000ull) >> 16; unsigned minor = (version & 0x0000FF00ull) >> 8; unsigned subminor = (version & 0x000000FFull); return llvm::VersionTuple(major, minor, subminor); } } return llvm::VersionTuple(); } ArchSpec ObjectFileMachO::GetArchitecture() { ModuleSP module_sp(GetModule()); ArchSpec arch; if (module_sp) { std::lock_guard guard(module_sp->GetMutex()); return GetArchitecture(module_sp, m_header, m_data, MachHeaderSizeFromMagic(m_header.magic)); } return arch; } void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) { uuid.Clear(); base_addr = LLDB_INVALID_ADDRESS; if (process && process->GetDynamicLoader()) { DynamicLoader *dl = process->GetDynamicLoader(); LazyBool using_shared_cache; LazyBool private_shared_cache; dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache, private_shared_cache); } Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS)); LLDB_LOGF( log, "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr); } // From dyld SPI header dyld_process_info.h typedef void *dyld_process_info; struct lldb_copy__dyld_process_cache_info { uuid_t cacheUUID; // UUID of cache used by process uint64_t cacheBaseAddress; // load address of dyld shared cache bool noCache; // process is running without a dyld cache bool privateCache; // process is using a private copy of its dyld cache }; // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile // errors. So we need to use the actual underlying types of task_t and // kern_return_t below. extern "C" unsigned int /*task_t*/ mach_task_self(); void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) { uuid.Clear(); base_addr = LLDB_INVALID_ADDRESS; #if defined(__APPLE__) uint8_t *(*dyld_get_all_image_infos)(void); dyld_get_all_image_infos = (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); if (dyld_get_all_image_infos) { uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); if (dyld_all_image_infos_address) { uint32_t *version = (uint32_t *) dyld_all_image_infos_address; // version if (*version >= 13) { uuid_t *sharedCacheUUID_address = 0; int wordsize = sizeof(uint8_t *); if (wordsize == 8) { sharedCacheUUID_address = (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 160); // sharedCacheUUID if (*version >= 15) base_addr = *(uint64_t *)((uint8_t *)dyld_all_image_infos_address + 176); // sharedCacheBaseAddress } else { sharedCacheUUID_address = (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 84); // sharedCacheUUID if (*version >= 15) { base_addr = 0; base_addr = *(uint32_t *)((uint8_t *)dyld_all_image_infos_address + 100); // sharedCacheBaseAddress } } uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t)); } } } else { // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI dyld_process_info (*dyld_process_info_create)( unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError); void (*dyld_process_info_get_cache)(void *info, void *cacheInfo); void (*dyld_process_info_release)(dyld_process_info info); dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *)) dlsym(RTLD_DEFAULT, "_dyld_process_info_create"); dyld_process_info_get_cache = (void (*)(void *, void *))dlsym( RTLD_DEFAULT, "_dyld_process_info_get_cache"); dyld_process_info_release = (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release"); if (dyld_process_info_create && dyld_process_info_get_cache) { unsigned int /*kern_return_t */ kern_ret; dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret); if (process_info) { struct lldb_copy__dyld_process_cache_info sc_info; memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info)); dyld_process_info_get_cache(process_info, &sc_info); if (sc_info.cacheBaseAddress != 0) { base_addr = sc_info.cacheBaseAddress; uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t)); } dyld_process_info_release(process_info); } } } Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS)); if (log && uuid.IsValid()) LLDB_LOGF(log, "lldb's in-memory shared cache has a UUID of %s base address of " "0x%" PRIx64, uuid.GetAsString().c_str(), base_addr); #endif } llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() { if (!m_min_os_version) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { if (m_data.GetU32(&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) { const uint32_t xxxx = lc.version >> 16; const uint32_t yy = (lc.version >> 8) & 0xffu; const uint32_t zz = lc.version & 0xffu; if (xxxx) { m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); break; } } } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { // struct build_version_command { // uint32_t cmd; /* LC_BUILD_VERSION */ // uint32_t cmdsize; /* sizeof(struct // build_version_command) plus */ // /* ntools * sizeof(struct // build_tool_version) */ // uint32_t platform; /* platform */ // uint32_t minos; /* X.Y.Z is encoded in nibbles // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in // nibbles xxxx.yy.zz */ uint32_t ntools; /* number of // tool entries following this */ // }; offset += 4; // skip platform uint32_t minos = m_data.GetU32(&offset); const uint32_t xxxx = minos >> 16; const uint32_t yy = (minos >> 8) & 0xffu; const uint32_t zz = minos & 0xffu; if (xxxx) { m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); break; } } offset = load_cmd_offset + lc.cmdsize; } if (!m_min_os_version) { // Set version to an empty value so we don't keep trying to m_min_os_version = llvm::VersionTuple(); } } return *m_min_os_version; } llvm::VersionTuple ObjectFileMachO::GetSDKVersion() { if (!m_sdk_versions.hasValue()) { lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { if (m_data.GetU32(&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) { const uint32_t xxxx = lc.sdk >> 16; const uint32_t yy = (lc.sdk >> 8) & 0xffu; const uint32_t zz = lc.sdk & 0xffu; if (xxxx) { m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); break; } else { GetModule()->ReportWarning("minimum OS version load command with " "invalid (0) version found."); } } } offset = load_cmd_offset + lc.cmdsize; } if (!m_sdk_versions.hasValue()) { offset = MachHeaderSizeFromMagic(m_header.magic); for (uint32_t i = 0; i < m_header.ncmds; ++i) { const lldb::offset_t load_cmd_offset = offset; version_min_command lc; if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) break; if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { // struct build_version_command { // uint32_t cmd; /* LC_BUILD_VERSION */ // uint32_t cmdsize; /* sizeof(struct // build_version_command) plus */ // /* ntools * sizeof(struct // build_tool_version) */ // uint32_t platform; /* platform */ // uint32_t minos; /* X.Y.Z is encoded in nibbles // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number // of tool entries following this */ // }; offset += 4; // skip platform uint32_t minos = m_data.GetU32(&offset); const uint32_t xxxx = minos >> 16; const uint32_t yy = (minos >> 8) & 0xffu; const uint32_t zz = minos & 0xffu; if (xxxx) { m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); break; } } offset = load_cmd_offset + lc.cmdsize; } } if (!m_sdk_versions.hasValue()) m_sdk_versions = llvm::VersionTuple(); } return m_sdk_versions.getValue(); } bool ObjectFileMachO::GetIsDynamicLinkEditor() { return m_header.filetype == llvm::MachO::MH_DYLINKER; } bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { return m_allow_assembly_emulation_unwind_plans; } // PluginInterface protocol lldb_private::ConstString ObjectFileMachO::GetPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileMachO::GetPluginVersion() { return 1; } Section *ObjectFileMachO::GetMachHeaderSection() { // Find the first address of the mach header which is the first non-zero file // sized section whose file offset is zero. This is the base file address of // the mach-o file which can be subtracted from the vmaddr of the other // segments found in memory and added to the load address ModuleSP module_sp = GetModule(); if (!module_sp) return nullptr; SectionList *section_list = GetSectionList(); if (!section_list) return nullptr; const size_t num_sections = section_list->GetSize(); for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { Section *section = section_list->GetSectionAtIndex(sect_idx).get(); if (section->GetFileOffset() == 0 && SectionIsLoadable(section)) return section; } return nullptr; } bool ObjectFileMachO::SectionIsLoadable(const Section *section) { if (!section) return false; const bool is_dsym = (m_header.filetype == MH_DSYM); if (section->GetFileSize() == 0 && !is_dsym) return false; if (section->IsThreadSpecific()) return false; if (GetModule().get() != section->GetModule().get()) return false; // Be careful with __LINKEDIT and __DWARF segments if (section->GetName() == GetSegmentNameLINKEDIT() || section->GetName() == GetSegmentNameDWARF()) { // Only map __LINKEDIT and __DWARF if we have an in memory image and // this isn't a kernel binary like a kext or mach_kernel. const bool is_memory_image = (bool)m_process_wp.lock(); const Strata strata = GetStrata(); if (is_memory_image == false || strata == eStrataKernel) return false; } return true; } lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( lldb::addr_t header_load_address, const Section *header_section, const Section *section) { ModuleSP module_sp = GetModule(); if (module_sp && header_section && section && header_load_address != LLDB_INVALID_ADDRESS) { lldb::addr_t file_addr = header_section->GetFileAddress(); if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section)) return section->GetFileAddress() - file_addr + header_load_address; } return LLDB_INVALID_ADDRESS; } bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, bool value_is_offset) { ModuleSP module_sp = GetModule(); if (!module_sp) return false; SectionList *section_list = GetSectionList(); if (!section_list) return false; size_t num_loaded_sections = 0; const size_t num_sections = section_list->GetSize(); if (value_is_offset) { // "value" is an offset to apply to each top level segment for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { // Iterate through the object file sections to find all of the // sections that size on disk (to avoid __PAGEZERO) and load them SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); if (SectionIsLoadable(section_sp.get())) if (target.GetSectionLoadList().SetSectionLoadAddress( section_sp, section_sp->GetFileAddress() + value)) ++num_loaded_sections; } } else { // "value" is the new base address of the mach_header, adjust each // section accordingly Section *mach_header_section = GetMachHeaderSection(); if (mach_header_section) { for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage( value, mach_header_section, section_sp.get()); if (section_load_addr != LLDB_INVALID_ADDRESS) { if (target.GetSectionLoadList().SetSectionLoadAddress( section_sp, section_load_addr)) ++num_loaded_sections; } } } } return num_loaded_sections > 0; } bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, const FileSpec &outfile, Status &error) { if (!process_sp) return false; Target &target = process_sp->GetTarget(); const ArchSpec target_arch = target.GetArchitecture(); const llvm::Triple &target_triple = target_arch.GetTriple(); if (target_triple.getVendor() == llvm::Triple::Apple && (target_triple.getOS() == llvm::Triple::MacOSX || target_triple.getOS() == llvm::Triple::IOS || target_triple.getOS() == llvm::Triple::WatchOS || target_triple.getOS() == llvm::Triple::TvOS)) { // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) // { bool make_core = false; switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::x86: case llvm::Triple::x86_64: make_core = true; break; default: error.SetErrorStringWithFormat("unsupported core architecture: %s", target_triple.str().c_str()); break; } if (make_core) { std::vector segment_load_commands; // uint32_t range_info_idx = 0; MemoryRegionInfo range_info; Status range_error = process_sp->GetMemoryRegionInfo(0, range_info); const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); const ByteOrder byte_order = target_arch.GetByteOrder(); if (range_error.Success()) { while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { const addr_t addr = range_info.GetRange().GetRangeBase(); const addr_t size = range_info.GetRange().GetByteSize(); if (size == 0) break; // Calculate correct protections uint32_t prot = 0; if (range_info.GetReadable() == MemoryRegionInfo::eYes) prot |= VM_PROT_READ; if (range_info.GetWritable() == MemoryRegionInfo::eYes) prot |= VM_PROT_WRITE; if (range_info.GetExecutable() == MemoryRegionInfo::eYes) prot |= VM_PROT_EXECUTE; if (prot != 0) { uint32_t cmd_type = LC_SEGMENT_64; uint32_t segment_size = sizeof(segment_command_64); if (addr_byte_size == 4) { cmd_type = LC_SEGMENT; segment_size = sizeof(segment_command); } segment_command_64 segment = { cmd_type, // uint32_t cmd; segment_size, // uint32_t cmdsize; {0}, // char segname[16]; addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O size, // uint64_t filesize; // uint32_t for 32-bit Mach-O prot, // uint32_t maxprot; prot, // uint32_t initprot; 0, // uint32_t nsects; 0}; // uint32_t flags; segment_load_commands.push_back(segment); } else { // No protections and a size of 1 used to be returned from old // debugservers when we asked about a region that was past the // last memory region and it indicates the end... if (size == 1) break; } range_error = process_sp->GetMemoryRegionInfo( range_info.GetRange().GetRangeEnd(), range_info); if (range_error.Fail()) break; } StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); mach_header_64 mach_header; if (addr_byte_size == 8) { mach_header.magic = MH_MAGIC_64; } else { mach_header.magic = MH_MAGIC; } mach_header.cputype = target_arch.GetMachOCPUType(); mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); mach_header.filetype = MH_CORE; mach_header.ncmds = segment_load_commands.size(); mach_header.flags = 0; mach_header.reserved = 0; ThreadList &thread_list = process_sp->GetThreadList(); const uint32_t num_threads = thread_list.GetSize(); // Make an array of LC_THREAD data items. Each one contains the // contents of the LC_THREAD load command. The data doesn't contain // the load command + load command size, we will add the load command // and load command size as we emit the data. std::vector LC_THREAD_datas(num_threads); for (auto &LC_THREAD_data : LC_THREAD_datas) { LC_THREAD_data.GetFlags().Set(Stream::eBinary); LC_THREAD_data.SetAddressByteSize(addr_byte_size); LC_THREAD_data.SetByteOrder(byte_order); } for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); if (thread_sp) { switch (mach_header.cputype) { case llvm::MachO::CPU_TYPE_ARM64: case llvm::MachO::CPU_TYPE_ARM64_32: RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_ARM: RegisterContextDarwin_arm_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_I386: RegisterContextDarwin_i386_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; case llvm::MachO::CPU_TYPE_X86_64: RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( thread_sp.get(), LC_THREAD_datas[thread_idx]); break; } } } // The size of the load command is the size of the segments... if (addr_byte_size == 8) { mach_header.sizeofcmds = segment_load_commands.size() * sizeof(struct segment_command_64); } else { mach_header.sizeofcmds = segment_load_commands.size() * sizeof(struct segment_command); } // and the size of all LC_THREAD load command for (const auto &LC_THREAD_data : LC_THREAD_datas) { ++mach_header.ncmds; mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); } // Write the mach header buffer.PutHex32(mach_header.magic); buffer.PutHex32(mach_header.cputype); buffer.PutHex32(mach_header.cpusubtype); buffer.PutHex32(mach_header.filetype); buffer.PutHex32(mach_header.ncmds); buffer.PutHex32(mach_header.sizeofcmds); buffer.PutHex32(mach_header.flags); if (addr_byte_size == 8) { buffer.PutHex32(mach_header.reserved); } // Skip the mach header and all load commands and align to the next // 0x1000 byte boundary addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; if (file_offset & 0x00000fff) { file_offset += 0x00001000ull; file_offset &= (~0x00001000ull + 1); } for (auto &segment : segment_load_commands) { segment.fileoff = file_offset; file_offset += segment.filesize; } // Write out all of the LC_THREAD load commands for (const auto &LC_THREAD_data : LC_THREAD_datas) { const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); buffer.PutHex32(LC_THREAD); buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size); } // Write out all of the segment load commands for (const auto &segment : segment_load_commands) { printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", segment.cmd, segment.cmdsize, segment.vmaddr, segment.vmaddr + segment.vmsize, segment.fileoff, segment.filesize, segment.maxprot, segment.initprot, segment.nsects, segment.flags); buffer.PutHex32(segment.cmd); buffer.PutHex32(segment.cmdsize); buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); if (addr_byte_size == 8) { buffer.PutHex64(segment.vmaddr); buffer.PutHex64(segment.vmsize); buffer.PutHex64(segment.fileoff); buffer.PutHex64(segment.filesize); } else { buffer.PutHex32(static_cast(segment.vmaddr)); buffer.PutHex32(static_cast(segment.vmsize)); buffer.PutHex32(static_cast(segment.fileoff)); buffer.PutHex32(static_cast(segment.filesize)); } buffer.PutHex32(segment.maxprot); buffer.PutHex32(segment.initprot); buffer.PutHex32(segment.nsects); buffer.PutHex32(segment.flags); } std::string core_file_path(outfile.GetPath()); auto core_file = FileSystem::Instance().Open( outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate | File::eOpenOptionCanCreate); if (!core_file) { error = core_file.takeError(); } else { // Read 1 page at a time uint8_t bytes[0x1000]; // Write the mach header and load commands out to the core file size_t bytes_written = buffer.GetString().size(); error = core_file.get()->Write(buffer.GetString().data(), bytes_written); if (error.Success()) { // Now write the file data for all memory segments in the process for (const auto &segment : segment_load_commands) { if (core_file.get()->SeekFromStart(segment.fileoff) == -1) { error.SetErrorStringWithFormat( "unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); break; } printf("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); addr_t bytes_left = segment.vmsize; addr_t addr = segment.vmaddr; Status memory_read_error; while (bytes_left > 0 && error.Success()) { const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; // In a savecore setting, we don't really care about caching, // as the data is dumped and very likely never read again, // so we call ReadMemoryFromInferior to bypass it. const size_t bytes_read = process_sp->ReadMemoryFromInferior( addr, bytes, bytes_to_read, memory_read_error); if (bytes_read == bytes_to_read) { size_t bytes_written = bytes_read; error = core_file.get()->Write(bytes, bytes_written); bytes_left -= bytes_read; addr += bytes_read; } else { // Some pages within regions are not readable, those should // be zero filled memset(bytes, 0, bytes_to_read); size_t bytes_written = bytes_to_read; error = core_file.get()->Write(bytes, bytes_written); bytes_left -= bytes_to_read; addr += bytes_to_read; } } } } } } else { error.SetErrorString( "process doesn't support getting memory region info"); } } return true; // This is the right plug to handle saving core files for // this process } return false; }