//===-- RegisterInfoPOSIX_arm64.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// #include #include #include #include "lldb/lldb-defines.h" #include "llvm/Support/Compiler.h" #include "RegisterInfoPOSIX_arm64.h" // Based on RegisterContextDarwin_arm64.cpp #define GPR_OFFSET(idx) ((idx)*8) #define GPR_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::GPR, reg)) #define FPU_OFFSET(idx) ((idx)*16 + sizeof(RegisterInfoPOSIX_arm64::GPR)) #define FPU_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::FPU, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR)) // This information is based on AArch64 with SVE architecture reference manual. // AArch64 with SVE has 32 Z and 16 P vector registers. There is also an FFR // (First Fault) register and a VG (Vector Granule) pseudo register. // SVE 16-byte quad word is the basic unit of expansion in vector length. #define SVE_QUAD_WORD_BYTES 16 // Vector length is the multiplier which decides the no of quad words, // (multiples of 128-bits or 16-bytes) present in a Z register. Vector length // is decided during execution and can change at runtime. SVE AArch64 register // infos have modes one for each valid value of vector length. A change in // vector length requires register context to update sizes of SVE Z, P and FFR. // Also register context needs to update byte offsets of all registers affected // by the change in vector length. #define SVE_REGS_DEFAULT_OFFSET_LINUX sizeof(RegisterInfoPOSIX_arm64::GPR) #define SVE_OFFSET_VG SVE_REGS_DEFAULT_OFFSET_LINUX #define EXC_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::EXC, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU)) #define DBG_OFFSET_NAME(reg) \ (LLVM_EXTENSION offsetof(RegisterInfoPOSIX_arm64::DBG, reg) + \ sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU) + \ sizeof(RegisterInfoPOSIX_arm64::EXC)) #define DEFINE_DBG(reg, i) \ #reg, NULL, \ sizeof(((RegisterInfoPOSIX_arm64::DBG *) NULL)->reg[i]), \ DBG_OFFSET_NAME(reg[i]), lldb::eEncodingUint, lldb::eFormatHex, \ {LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \ LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \ dbg_##reg##i }, \ NULL, NULL, NULL, 0 #define REG_CONTEXT_SIZE \ (sizeof(RegisterInfoPOSIX_arm64::GPR) + \ sizeof(RegisterInfoPOSIX_arm64::FPU) + \ sizeof(RegisterInfoPOSIX_arm64::EXC)) // Include RegisterInfos_arm64 to declare our g_register_infos_arm64 structure. #define DECLARE_REGISTER_INFOS_ARM64_STRUCT #include "RegisterInfos_arm64.h" #include "RegisterInfos_arm64_sve.h" #undef DECLARE_REGISTER_INFOS_ARM64_STRUCT static const lldb_private::RegisterInfo * GetRegisterInfoPtr(const lldb_private::ArchSpec &target_arch) { switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: return g_register_infos_arm64_le; default: assert(false && "Unhandled target architecture."); return nullptr; } } // Number of register sets provided by this context. enum { k_num_gpr_registers = gpr_w28 - gpr_x0 + 1, k_num_fpr_registers = fpu_fpcr - fpu_v0 + 1, k_num_sve_registers = sve_ffr - sve_vg + 1, k_num_register_sets = 3 }; // ARM64 general purpose registers. static const uint32_t g_gpr_regnums_arm64[] = { gpr_x0, gpr_x1, gpr_x2, gpr_x3, gpr_x4, gpr_x5, gpr_x6, gpr_x7, gpr_x8, gpr_x9, gpr_x10, gpr_x11, gpr_x12, gpr_x13, gpr_x14, gpr_x15, gpr_x16, gpr_x17, gpr_x18, gpr_x19, gpr_x20, gpr_x21, gpr_x22, gpr_x23, gpr_x24, gpr_x25, gpr_x26, gpr_x27, gpr_x28, gpr_fp, gpr_lr, gpr_sp, gpr_pc, gpr_cpsr, gpr_w0, gpr_w1, gpr_w2, gpr_w3, gpr_w4, gpr_w5, gpr_w6, gpr_w7, gpr_w8, gpr_w9, gpr_w10, gpr_w11, gpr_w12, gpr_w13, gpr_w14, gpr_w15, gpr_w16, gpr_w17, gpr_w18, gpr_w19, gpr_w20, gpr_w21, gpr_w22, gpr_w23, gpr_w24, gpr_w25, gpr_w26, gpr_w27, gpr_w28, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) - 1) == k_num_gpr_registers, "g_gpr_regnums_arm64 has wrong number of register infos"); // ARM64 floating point registers. static const uint32_t g_fpu_regnums_arm64[] = { fpu_v0, fpu_v1, fpu_v2, fpu_v3, fpu_v4, fpu_v5, fpu_v6, fpu_v7, fpu_v8, fpu_v9, fpu_v10, fpu_v11, fpu_v12, fpu_v13, fpu_v14, fpu_v15, fpu_v16, fpu_v17, fpu_v18, fpu_v19, fpu_v20, fpu_v21, fpu_v22, fpu_v23, fpu_v24, fpu_v25, fpu_v26, fpu_v27, fpu_v28, fpu_v29, fpu_v30, fpu_v31, fpu_s0, fpu_s1, fpu_s2, fpu_s3, fpu_s4, fpu_s5, fpu_s6, fpu_s7, fpu_s8, fpu_s9, fpu_s10, fpu_s11, fpu_s12, fpu_s13, fpu_s14, fpu_s15, fpu_s16, fpu_s17, fpu_s18, fpu_s19, fpu_s20, fpu_s21, fpu_s22, fpu_s23, fpu_s24, fpu_s25, fpu_s26, fpu_s27, fpu_s28, fpu_s29, fpu_s30, fpu_s31, fpu_d0, fpu_d1, fpu_d2, fpu_d3, fpu_d4, fpu_d5, fpu_d6, fpu_d7, fpu_d8, fpu_d9, fpu_d10, fpu_d11, fpu_d12, fpu_d13, fpu_d14, fpu_d15, fpu_d16, fpu_d17, fpu_d18, fpu_d19, fpu_d20, fpu_d21, fpu_d22, fpu_d23, fpu_d24, fpu_d25, fpu_d26, fpu_d27, fpu_d28, fpu_d29, fpu_d30, fpu_d31, fpu_fpsr, fpu_fpcr, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) - 1) == k_num_fpr_registers, "g_fpu_regnums_arm64 has wrong number of register infos"); // ARM64 SVE registers. static const uint32_t g_sve_regnums_arm64[] = { sve_vg, sve_z0, sve_z1, sve_z2, sve_z3, sve_z4, sve_z5, sve_z6, sve_z7, sve_z8, sve_z9, sve_z10, sve_z11, sve_z12, sve_z13, sve_z14, sve_z15, sve_z16, sve_z17, sve_z18, sve_z19, sve_z20, sve_z21, sve_z22, sve_z23, sve_z24, sve_z25, sve_z26, sve_z27, sve_z28, sve_z29, sve_z30, sve_z31, sve_p0, sve_p1, sve_p2, sve_p3, sve_p4, sve_p5, sve_p6, sve_p7, sve_p8, sve_p9, sve_p10, sve_p11, sve_p12, sve_p13, sve_p14, sve_p15, sve_ffr, LLDB_INVALID_REGNUM}; static_assert(((sizeof g_sve_regnums_arm64 / sizeof g_sve_regnums_arm64[0]) - 1) == k_num_sve_registers, "g_sve_regnums_arm64 has wrong number of register infos"); // Register sets for ARM64. static const lldb_private::RegisterSet g_reg_sets_arm64[k_num_register_sets] = { {"General Purpose Registers", "gpr", k_num_gpr_registers, g_gpr_regnums_arm64}, {"Floating Point Registers", "fpu", k_num_fpr_registers, g_fpu_regnums_arm64}, {"Scalable Vector Extension Registers", "sve", k_num_sve_registers, g_sve_regnums_arm64}}; static uint32_t GetRegisterInfoCount(const lldb_private::ArchSpec &target_arch) { switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: return static_cast(sizeof(g_register_infos_arm64_le) / sizeof(g_register_infos_arm64_le[0])); default: assert(false && "Unhandled target architecture."); return 0; } } RegisterInfoPOSIX_arm64::RegisterInfoPOSIX_arm64( const lldb_private::ArchSpec &target_arch) : lldb_private::RegisterInfoAndSetInterface(target_arch), m_register_info_p(GetRegisterInfoPtr(target_arch)), m_register_info_count(GetRegisterInfoCount(target_arch)) { } uint32_t RegisterInfoPOSIX_arm64::GetRegisterCount() const { if (IsSVEEnabled()) return k_num_gpr_registers + k_num_fpr_registers + k_num_sve_registers; return k_num_gpr_registers + k_num_fpr_registers; } size_t RegisterInfoPOSIX_arm64::GetGPRSize() const { return sizeof(struct RegisterInfoPOSIX_arm64::GPR); } size_t RegisterInfoPOSIX_arm64::GetFPRSize() const { return sizeof(struct RegisterInfoPOSIX_arm64::FPU); } const lldb_private::RegisterInfo * RegisterInfoPOSIX_arm64::GetRegisterInfo() const { return m_register_info_p; } size_t RegisterInfoPOSIX_arm64::GetRegisterSetCount() const { if (IsSVEEnabled()) return k_num_register_sets; return k_num_register_sets - 1; } size_t RegisterInfoPOSIX_arm64::GetRegisterSetFromRegisterIndex( uint32_t reg_index) const { if (reg_index <= gpr_w28) return GPRegSet; if (reg_index <= fpu_fpcr) return FPRegSet; if (reg_index <= sve_ffr) return SVERegSet; return LLDB_INVALID_REGNUM; } const lldb_private::RegisterSet * RegisterInfoPOSIX_arm64::GetRegisterSet(size_t set_index) const { if (set_index < GetRegisterSetCount()) return &g_reg_sets_arm64[set_index]; return nullptr; } uint32_t RegisterInfoPOSIX_arm64::ConfigureVectorRegisterInfos(uint32_t sve_vq) { // sve_vq contains SVE Quad vector length in context of AArch64 SVE. // SVE register infos if enabled cannot be disabled by selecting sve_vq = 0. // Also if an invalid or previously set vector length is passed to this // function then it will exit immediately with previously set vector length. if (!VectorSizeIsValid(sve_vq) || m_vector_reg_vq == sve_vq) return m_vector_reg_vq; // We cannot enable AArch64 only mode if SVE was enabled. if (sve_vq == eVectorQuadwordAArch64 && m_vector_reg_vq > eVectorQuadwordAArch64) sve_vq = eVectorQuadwordAArch64SVE; m_vector_reg_vq = sve_vq; if (sve_vq == eVectorQuadwordAArch64) { m_register_info_count = static_cast(sizeof(g_register_infos_arm64_le) / sizeof(g_register_infos_arm64_le[0])); m_register_info_p = g_register_infos_arm64_le; return m_vector_reg_vq; } m_register_info_count = static_cast(sizeof(g_register_infos_arm64_sve_le) / sizeof(g_register_infos_arm64_sve_le[0])); std::vector ®_info_ref = m_per_vq_reg_infos[sve_vq]; if (reg_info_ref.empty()) { reg_info_ref = llvm::makeArrayRef(g_register_infos_arm64_sve_le, m_register_info_count); uint32_t offset = SVE_REGS_DEFAULT_OFFSET_LINUX; reg_info_ref[fpu_fpsr].byte_offset = offset; reg_info_ref[fpu_fpcr].byte_offset = offset + 4; reg_info_ref[sve_vg].byte_offset = offset + 8; offset += 16; // Update Z registers size and offset uint32_t s_reg_base = fpu_s0; uint32_t d_reg_base = fpu_d0; uint32_t v_reg_base = fpu_v0; uint32_t z_reg_base = sve_z0; for (uint32_t index = 0; index < 32; index++) { reg_info_ref[s_reg_base + index].byte_offset = offset; reg_info_ref[d_reg_base + index].byte_offset = offset; reg_info_ref[v_reg_base + index].byte_offset = offset; reg_info_ref[z_reg_base + index].byte_offset = offset; reg_info_ref[z_reg_base + index].byte_size = sve_vq * SVE_QUAD_WORD_BYTES; offset += reg_info_ref[z_reg_base + index].byte_size; } // Update P registers and FFR size and offset for (uint32_t it = sve_p0; it <= sve_ffr; it++) { reg_info_ref[it].byte_offset = offset; reg_info_ref[it].byte_size = sve_vq * SVE_QUAD_WORD_BYTES / 8; offset += reg_info_ref[it].byte_size; } m_per_vq_reg_infos[sve_vq] = reg_info_ref; } m_register_info_p = reg_info_ref.data(); return m_vector_reg_vq; } bool RegisterInfoPOSIX_arm64::IsSVEZReg(unsigned reg) const { return (sve_z0 <= reg && reg <= sve_z31); } bool RegisterInfoPOSIX_arm64::IsSVEPReg(unsigned reg) const { return (sve_p0 <= reg && reg <= sve_p15); } bool RegisterInfoPOSIX_arm64::IsSVERegVG(unsigned reg) const { return sve_vg == reg; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEZ0() const { return sve_z0; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEFFR() const { return sve_ffr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPCR() const { return fpu_fpcr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPSR() const { return fpu_fpsr; } uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEVG() const { return sve_vg; }