//===-- BasicBlockSections.cpp ---=========--------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // BasicBlockSections implementation. // // The purpose of this pass is to assign sections to basic blocks when // -fbasic-block-sections= option is used. Further, with profile information // only the subset of basic blocks with profiles are placed in separate sections // and the rest are grouped in a cold section. The exception handling blocks are // treated specially to ensure they are all in one seciton. // // Basic Block Sections // ==================== // // With option, -fbasic-block-sections=list, every function may be split into // clusters of basic blocks. Every cluster will be emitted into a separate // section with its basic blocks sequenced in the given order. To get the // optimized performance, the clusters must form an optimal BB layout for the // function. Every cluster's section is labeled with a symbol to allow the // linker to reorder the sections in any arbitrary sequence. A global order of // these sections would encapsulate the function layout. // // There are a couple of challenges to be addressed: // // 1. The last basic block of every cluster should not have any implicit // fallthrough to its next basic block, as it can be reordered by the linker. // The compiler should make these fallthroughs explicit by adding // unconditional jumps.. // // 2. All inter-cluster branch targets would now need to be resolved by the // linker as they cannot be calculated during compile time. This is done // using static relocations. Further, the compiler tries to use short branch // instructions on some ISAs for small branch offsets. This is not possible // for inter-cluster branches as the offset is not determined at compile // time, and therefore, long branch instructions have to be used for those. // // 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission // needs special handling with basic block sections. DebugInfo needs to be // emitted with more relocations as basic block sections can break a // function into potentially several disjoint pieces, and CFI needs to be // emitted per cluster. This also bloats the object file and binary sizes. // // Basic Block Labels // ================== // // With -fbasic-block-sections=labels, we emit the offsets of BB addresses of // every function into the .llvm_bb_addr_map section. Along with the function // symbols, this allows for mapping of virtual addresses in PMU profiles back to // the corresponding basic blocks. This logic is implemented in AsmPrinter. This // pass only assigns the BBSectionType of every function to ``labels``. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/BasicBlockSectionUtils.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Error.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Target/TargetMachine.h" using llvm::SmallSet; using llvm::SmallVector; using llvm::StringMap; using llvm::StringRef; using namespace llvm; // Placing the cold clusters in a separate section mitigates against poor // profiles and allows optimizations such as hugepage mapping to be applied at a // section granularity. Defaults to ".text.split." which is recognized by lld // via the `-z keep-text-section-prefix` flag. cl::opt llvm::BBSectionsColdTextPrefix( "bbsections-cold-text-prefix", cl::desc("The text prefix to use for cold basic block clusters"), cl::init(".text.split."), cl::Hidden); namespace { // This struct represents the cluster information for a machine basic block. struct BBClusterInfo { // MachineBasicBlock ID. unsigned MBBNumber; // Cluster ID this basic block belongs to. unsigned ClusterID; // Position of basic block within the cluster. unsigned PositionInCluster; }; using ProgramBBClusterInfoMapTy = StringMap>; class BasicBlockSections : public MachineFunctionPass { public: static char ID; // This contains the basic-block-sections profile. const MemoryBuffer *MBuf = nullptr; // This encapsulates the BB cluster information for the whole program. // // For every function name, it contains the cluster information for (all or // some of) its basic blocks. The cluster information for every basic block // includes its cluster ID along with the position of the basic block in that // cluster. ProgramBBClusterInfoMapTy ProgramBBClusterInfo; // Some functions have alias names. We use this map to find the main alias // name for which we have mapping in ProgramBBClusterInfo. StringMap FuncAliasMap; BasicBlockSections(const MemoryBuffer *Buf) : MachineFunctionPass(ID), MBuf(Buf) { initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); }; BasicBlockSections() : MachineFunctionPass(ID) { initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Basic Block Sections Analysis"; } void getAnalysisUsage(AnalysisUsage &AU) const override; /// Read profiles of basic blocks if available here. bool doInitialization(Module &M) override; /// Identify basic blocks that need separate sections and prepare to emit them /// accordingly. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char BasicBlockSections::ID = 0; INITIALIZE_PASS(BasicBlockSections, "bbsections-prepare", "Prepares for basic block sections, by splitting functions " "into clusters of basic blocks.", false, false) // This function updates and optimizes the branching instructions of every basic // block in a given function to account for changes in the layout. static void updateBranches( MachineFunction &MF, const SmallVector &PreLayoutFallThroughs) { const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); SmallVector Cond; for (auto &MBB : MF) { auto NextMBBI = std::next(MBB.getIterator()); auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()]; // If this block had a fallthrough before we need an explicit unconditional // branch to that block if either // 1- the block ends a section, which means its next block may be // reorderd by the linker, or // 2- the fallthrough block is not adjacent to the block in the new // order. if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB)) TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); // We do not optimize branches for machine basic blocks ending sections, as // their adjacent block might be reordered by the linker. if (MBB.isEndSection()) continue; // It might be possible to optimize branches by flipping the branch // condition. Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) continue; MBB.updateTerminator(FTMBB); } } // This function provides the BBCluster information associated with a function. // Returns true if a valid association exists and false otherwise. static bool getBBClusterInfoForFunction( const MachineFunction &MF, const StringMap FuncAliasMap, const ProgramBBClusterInfoMapTy &ProgramBBClusterInfo, std::vector> &V) { // Get the main alias name for the function. auto FuncName = MF.getName(); auto R = FuncAliasMap.find(FuncName); StringRef AliasName = R == FuncAliasMap.end() ? FuncName : R->second; // Find the assoicated cluster information. auto P = ProgramBBClusterInfo.find(AliasName); if (P == ProgramBBClusterInfo.end()) return false; if (P->second.empty()) { // This indicates that sections are desired for all basic blocks of this // function. We clear the BBClusterInfo vector to denote this. V.clear(); return true; } V.resize(MF.getNumBlockIDs()); for (auto bbClusterInfo : P->second) { // Bail out if the cluster information contains invalid MBB numbers. if (bbClusterInfo.MBBNumber >= MF.getNumBlockIDs()) return false; V[bbClusterInfo.MBBNumber] = bbClusterInfo; } return true; } // This function sorts basic blocks according to the cluster's information. // All explicitly specified clusters of basic blocks will be ordered // accordingly. All non-specified BBs go into a separate "Cold" section. // Additionally, if exception handling landing pads end up in more than one // clusters, they are moved into a single "Exception" section. Eventually, // clusters are ordered in increasing order of their IDs, with the "Exception" // and "Cold" succeeding all other clusters. // FuncBBClusterInfo represent the cluster information for basic blocks. If this // is empty, it means unique sections for all basic blocks in the function. static void assignSections(MachineFunction &MF, const std::vector> &FuncBBClusterInfo) { assert(MF.hasBBSections() && "BB Sections is not set for function."); // This variable stores the section ID of the cluster containing eh_pads (if // all eh_pads are one cluster). If more than one cluster contain eh_pads, we // set it equal to ExceptionSectionID. Optional EHPadsSectionID; for (auto &MBB : MF) { // With the 'all' option, every basic block is placed in a unique section. // With the 'list' option, every basic block is placed in a section // associated with its cluster, unless we want individual unique sections // for every basic block in this function (if FuncBBClusterInfo is empty). if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All || FuncBBClusterInfo.empty()) { // If unique sections are desired for all basic blocks of the function, we // set every basic block's section ID equal to its number (basic block // id). This further ensures that basic blocks are ordered canonically. MBB.setSectionID({static_cast(MBB.getNumber())}); } else if (FuncBBClusterInfo[MBB.getNumber()].hasValue()) MBB.setSectionID(FuncBBClusterInfo[MBB.getNumber()]->ClusterID); else { // BB goes into the special cold section if it is not specified in the // cluster info map. MBB.setSectionID(MBBSectionID::ColdSectionID); } if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() && EHPadsSectionID != MBBSectionID::ExceptionSectionID) { // If we already have one cluster containing eh_pads, this must be updated // to ExceptionSectionID. Otherwise, we set it equal to the current // section ID. EHPadsSectionID = EHPadsSectionID.hasValue() ? MBBSectionID::ExceptionSectionID : MBB.getSectionID(); } } // If EHPads are in more than one section, this places all of them in the // special exception section. if (EHPadsSectionID == MBBSectionID::ExceptionSectionID) for (auto &MBB : MF) if (MBB.isEHPad()) MBB.setSectionID(EHPadsSectionID.getValue()); } void llvm::sortBasicBlocksAndUpdateBranches( MachineFunction &MF, MachineBasicBlockComparator MBBCmp) { SmallVector PreLayoutFallThroughs( MF.getNumBlockIDs()); for (auto &MBB : MF) PreLayoutFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); MF.sort(MBBCmp); // Set IsBeginSection and IsEndSection according to the assigned section IDs. MF.assignBeginEndSections(); // After reordering basic blocks, we must update basic block branches to // insert explicit fallthrough branches when required and optimize branches // when possible. updateBranches(MF, PreLayoutFallThroughs); } // If the exception section begins with a landing pad, that landing pad will // assume a zero offset (relative to @LPStart) in the LSDA. However, a value of // zero implies "no landing pad." This function inserts a NOP just before the EH // pad label to ensure a nonzero offset. Returns true if padding is not needed. static bool avoidZeroOffsetLandingPad(MachineFunction &MF) { for (auto &MBB : MF) { if (MBB.isBeginSection() && MBB.isEHPad()) { MachineBasicBlock::iterator MI = MBB.begin(); while (!MI->isEHLabel()) ++MI; MCInst Noop; MF.getSubtarget().getInstrInfo()->getNoop(Noop); BuildMI(MBB, MI, DebugLoc(), MF.getSubtarget().getInstrInfo()->get(Noop.getOpcode())); return false; } } return true; } bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) { auto BBSectionsType = MF.getTarget().getBBSectionsType(); assert(BBSectionsType != BasicBlockSection::None && "BB Sections not enabled!"); // Renumber blocks before sorting them for basic block sections. This is // useful during sorting, basic blocks in the same section will retain the // default order. This renumbering should also be done for basic block // labels to match the profiles with the correct blocks. MF.RenumberBlocks(); if (BBSectionsType == BasicBlockSection::Labels) { MF.setBBSectionsType(BBSectionsType); return true; } std::vector> FuncBBClusterInfo; if (BBSectionsType == BasicBlockSection::List && !getBBClusterInfoForFunction(MF, FuncAliasMap, ProgramBBClusterInfo, FuncBBClusterInfo)) return true; MF.setBBSectionsType(BBSectionsType); assignSections(MF, FuncBBClusterInfo); // We make sure that the cluster including the entry basic block precedes all // other clusters. auto EntryBBSectionID = MF.front().getSectionID(); // Helper function for ordering BB sections as follows: // * Entry section (section including the entry block). // * Regular sections (in increasing order of their Number). // ... // * Exception section // * Cold section auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS, const MBBSectionID &RHS) { // We make sure that the section containing the entry block precedes all the // other sections. if (LHS == EntryBBSectionID || RHS == EntryBBSectionID) return LHS == EntryBBSectionID; return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type; }; // We sort all basic blocks to make sure the basic blocks of every cluster are // contiguous and ordered accordingly. Furthermore, clusters are ordered in // increasing order of their section IDs, with the exception and the // cold section placed at the end of the function. auto Comparator = [&](const MachineBasicBlock &X, const MachineBasicBlock &Y) { auto XSectionID = X.getSectionID(); auto YSectionID = Y.getSectionID(); if (XSectionID != YSectionID) return MBBSectionOrder(XSectionID, YSectionID); // If the two basic block are in the same section, the order is decided by // their position within the section. if (XSectionID.Type == MBBSectionID::SectionType::Default) return FuncBBClusterInfo[X.getNumber()]->PositionInCluster < FuncBBClusterInfo[Y.getNumber()]->PositionInCluster; return X.getNumber() < Y.getNumber(); }; sortBasicBlocksAndUpdateBranches(MF, Comparator); avoidZeroOffsetLandingPad(MF); return true; } // Basic Block Sections can be enabled for a subset of machine basic blocks. // This is done by passing a file containing names of functions for which basic // block sections are desired. Additionally, machine basic block ids of the // functions can also be specified for a finer granularity. Moreover, a cluster // of basic blocks could be assigned to the same section. // A file with basic block sections for all of function main and three blocks // for function foo (of which 1 and 2 are placed in a cluster) looks like this: // ---------------------------- // list.txt: // !main // !foo // !!1 2 // !!4 static Error getBBClusterInfo(const MemoryBuffer *MBuf, ProgramBBClusterInfoMapTy &ProgramBBClusterInfo, StringMap &FuncAliasMap) { assert(MBuf); line_iterator LineIt(*MBuf, /*SkipBlanks=*/true, /*CommentMarker=*/'#'); auto invalidProfileError = [&](auto Message) { return make_error( Twine("Invalid profile " + MBuf->getBufferIdentifier() + " at line " + Twine(LineIt.line_number()) + ": " + Message), inconvertibleErrorCode()); }; auto FI = ProgramBBClusterInfo.end(); // Current cluster ID corresponding to this function. unsigned CurrentCluster = 0; // Current position in the current cluster. unsigned CurrentPosition = 0; // Temporary set to ensure every basic block ID appears once in the clusters // of a function. SmallSet FuncBBIDs; for (; !LineIt.is_at_eof(); ++LineIt) { StringRef S(*LineIt); if (S[0] == '@') continue; // Check for the leading "!" if (!S.consume_front("!") || S.empty()) break; // Check for second "!" which indicates a cluster of basic blocks. if (S.consume_front("!")) { if (FI == ProgramBBClusterInfo.end()) return invalidProfileError( "Cluster list does not follow a function name specifier."); SmallVector BBIndexes; S.split(BBIndexes, ' '); // Reset current cluster position. CurrentPosition = 0; for (auto BBIndexStr : BBIndexes) { unsigned long long BBIndex; if (getAsUnsignedInteger(BBIndexStr, 10, BBIndex)) return invalidProfileError(Twine("Unsigned integer expected: '") + BBIndexStr + "'."); if (!FuncBBIDs.insert(BBIndex).second) return invalidProfileError(Twine("Duplicate basic block id found '") + BBIndexStr + "'."); if (!BBIndex && CurrentPosition) return invalidProfileError("Entry BB (0) does not begin a cluster."); FI->second.emplace_back(BBClusterInfo{ ((unsigned)BBIndex), CurrentCluster, CurrentPosition++}); } CurrentCluster++; } else { // This is a function name specifier. // Function aliases are separated using '/'. We use the first function // name for the cluster info mapping and delegate all other aliases to // this one. SmallVector Aliases; S.split(Aliases, '/'); for (size_t i = 1; i < Aliases.size(); ++i) FuncAliasMap.try_emplace(Aliases[i], Aliases.front()); // Prepare for parsing clusters of this function name. // Start a new cluster map for this function name. FI = ProgramBBClusterInfo.try_emplace(Aliases.front()).first; CurrentCluster = 0; FuncBBIDs.clear(); } } return Error::success(); } bool BasicBlockSections::doInitialization(Module &M) { if (!MBuf) return false; if (auto Err = getBBClusterInfo(MBuf, ProgramBBClusterInfo, FuncAliasMap)) report_fatal_error(std::move(Err)); return false; } void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionPass * llvm::createBasicBlockSectionsPass(const MemoryBuffer *Buf) { return new BasicBlockSections(Buf); }