//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAGISel.h" #include "ScheduleDAGSDNodes.h" #include "SelectionDAGBuilder.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/LazyBlockFrequencyInfo.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachinePassRegistry.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/SwiftErrorValueTracking.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "isel" STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); STATISTIC(NumFastIselFailLowerArguments, "Number of entry blocks where fast isel failed to lower arguments"); static cl::opt EnableFastISelAbort( "fast-isel-abort", cl::Hidden, cl::desc("Enable abort calls when \"fast\" instruction selection " "fails to lower an instruction: 0 disable the abort, 1 will " "abort but for args, calls and terminators, 2 will also " "abort for argument lowering, and 3 will never fallback " "to SelectionDAG.")); static cl::opt EnableFastISelFallbackReport( "fast-isel-report-on-fallback", cl::Hidden, cl::desc("Emit a diagnostic when \"fast\" instruction selection " "falls back to SelectionDAG.")); static cl::opt UseMBPI("use-mbpi", cl::desc("use Machine Branch Probability Info"), cl::init(true), cl::Hidden); #ifndef NDEBUG static cl::opt FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, cl::desc("Only display the basic block whose name " "matches this for all view-*-dags options")); static cl::opt ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the first " "dag combine pass")); static cl::opt ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize types")); static cl::opt ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the post " "legalize types dag combine pass")); static cl::opt ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize")); static cl::opt ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the second " "dag combine pass")); static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); static cl::opt ViewSUnitDAGs("view-sunit-dags", cl::Hidden, cl::desc("Pop up a window to show SUnit dags after they are processed")); #else static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, ViewDAGCombineLT = false, ViewLegalizeDAGs = false, ViewDAGCombine2 = false, ViewISelDAGs = false, ViewSchedDAGs = false, ViewSUnitDAGs = false; #endif //===---------------------------------------------------------------------===// /// /// RegisterScheduler class - Track the registration of instruction schedulers. /// //===---------------------------------------------------------------------===// MachinePassRegistry RegisterScheduler::Registry; //===---------------------------------------------------------------------===// /// /// ISHeuristic command line option for instruction schedulers. /// //===---------------------------------------------------------------------===// static cl::opt> ISHeuristic("pre-RA-sched", cl::init(&createDefaultScheduler), cl::Hidden, cl::desc("Instruction schedulers available (before register" " allocation):")); static RegisterScheduler defaultListDAGScheduler("default", "Best scheduler for the target", createDefaultScheduler); namespace llvm { //===--------------------------------------------------------------------===// /// This class is used by SelectionDAGISel to temporarily override /// the optimization level on a per-function basis. class OptLevelChanger { SelectionDAGISel &IS; CodeGenOpt::Level SavedOptLevel; bool SavedFastISel; public: OptLevelChanger(SelectionDAGISel &ISel, CodeGenOpt::Level NewOptLevel) : IS(ISel) { SavedOptLevel = IS.OptLevel; SavedFastISel = IS.TM.Options.EnableFastISel; if (NewOptLevel == SavedOptLevel) return; IS.OptLevel = NewOptLevel; IS.TM.setOptLevel(NewOptLevel); LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " << IS.MF->getFunction().getName() << "\n"); LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" << NewOptLevel << "\n"); if (NewOptLevel == CodeGenOpt::None) { IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); LLVM_DEBUG( dbgs() << "\tFastISel is " << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") << "\n"); } } ~OptLevelChanger() { if (IS.OptLevel == SavedOptLevel) return; LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " << IS.MF->getFunction().getName() << "\n"); LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" << SavedOptLevel << "\n"); IS.OptLevel = SavedOptLevel; IS.TM.setOptLevel(SavedOptLevel); IS.TM.setFastISel(SavedFastISel); } }; //===--------------------------------------------------------------------===// /// createDefaultScheduler - This creates an instruction scheduler appropriate /// for the target. ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel) { const TargetLowering *TLI = IS->TLI; const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); // Try first to see if the Target has its own way of selecting a scheduler if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { return SchedulerCtor(IS, OptLevel); } if (OptLevel == CodeGenOpt::None || (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || TLI->getSchedulingPreference() == Sched::Source) return createSourceListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::RegPressure) return createBURRListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::Hybrid) return createHybridListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::VLIW) return createVLIWDAGScheduler(IS, OptLevel); assert(TLI->getSchedulingPreference() == Sched::ILP && "Unknown sched type!"); return createILPListDAGScheduler(IS, OptLevel); } } // end namespace llvm // EmitInstrWithCustomInserter - This method should be implemented by targets // that mark instructions with the 'usesCustomInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and this method is called to expand it into a sequence of // instructions, potentially also creating new basic blocks and control flow. // When new basic blocks are inserted and the edges from MBB to its successors // are modified, the method should insert pairs of into the // DenseMap. MachineBasicBlock * TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const { #ifndef NDEBUG dbgs() << "If a target marks an instruction with " "'usesCustomInserter', it must implement " "TargetLowering::EmitInstrWithCustomInserter!"; #endif llvm_unreachable(nullptr); } void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { assert(!MI.hasPostISelHook() && "If a target marks an instruction with 'hasPostISelHook', " "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), SwiftError(new SwiftErrorValueTracking()), CurDAG(new SelectionDAG(tm, OL)), SDB(std::make_unique(*CurDAG, *FuncInfo, *SwiftError, OL)), AA(), GFI(), OptLevel(OL), DAGSize(0) { initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); initializeBranchProbabilityInfoWrapperPassPass( *PassRegistry::getPassRegistry()); initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } SelectionDAGISel::~SelectionDAGISel() { delete CurDAG; delete SwiftError; } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { if (OptLevel != CodeGenOpt::None) AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); if (UseMBPI && OptLevel != CodeGenOpt::None) AU.addRequired(); AU.addRequired(); if (OptLevel != CodeGenOpt::None) LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that /// may trap on it. In this case we have to split the edge so that the path /// through the predecessor block that doesn't go to the phi block doesn't /// execute the possibly trapping instruction. If available, we pass domtree /// and loop info to be updated when we split critical edges. This is because /// SelectionDAGISel preserves these analyses. /// This is required for correctness, so it must be done at -O0. /// static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, LoopInfo *LI) { // Loop for blocks with phi nodes. for (BasicBlock &BB : Fn) { PHINode *PN = dyn_cast(BB.begin()); if (!PN) continue; ReprocessBlock: // For each block with a PHI node, check to see if any of the input values // are potentially trapping constant expressions. Constant expressions are // the only potentially trapping value that can occur as the argument to a // PHI. for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I)); ++I) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { ConstantExpr *CE = dyn_cast(PN->getIncomingValue(i)); if (!CE || !CE->canTrap()) continue; // The only case we have to worry about is when the edge is critical. // Since this block has a PHI Node, we assume it has multiple input // edges: check to see if the pred has multiple successors. BasicBlock *Pred = PN->getIncomingBlock(i); if (Pred->getTerminator()->getNumSuccessors() == 1) continue; // Okay, we have to split this edge. SplitCriticalEdge( Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); goto ReprocessBlock; } } } static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, MachineModuleInfo &MMI) { // Only needed for MSVC if (!TT.isWindowsMSVCEnvironment()) return; // If it's already set, nothing to do. if (MMI.usesMSVCFloatingPoint()) return; for (const Instruction &I : instructions(F)) { if (I.getType()->isFPOrFPVectorTy()) { MMI.setUsesMSVCFloatingPoint(true); return; } for (const auto &Op : I.operands()) { if (Op->getType()->isFPOrFPVectorTy()) { MMI.setUsesMSVCFloatingPoint(true); return; } } } } bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { // If we already selected that function, we do not need to run SDISel. if (mf.getProperties().hasProperty( MachineFunctionProperties::Property::Selected)) return false; // Do some sanity-checking on the command-line options. assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && "-fast-isel-abort > 0 requires -fast-isel"); const Function &Fn = mf.getFunction(); MF = &mf; // Reset the target options before resetting the optimization // level below. // FIXME: This is a horrible hack and should be processed via // codegen looking at the optimization level explicitly when // it wants to look at it. TM.resetTargetOptions(Fn); // Reset OptLevel to None for optnone functions. CodeGenOpt::Level NewOptLevel = OptLevel; if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) NewOptLevel = CodeGenOpt::None; OptLevelChanger OLC(*this, NewOptLevel); TII = MF->getSubtarget().getInstrInfo(); TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); LibInfo = &getAnalysis().getTLI(Fn); GFI = Fn.hasGC() ? &getAnalysis().getFunctionInfo(Fn) : nullptr; ORE = std::make_unique(&Fn); auto *DTWP = getAnalysisIfAvailable(); DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = getAnalysisIfAvailable(); LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; auto *PSI = &getAnalysis().getPSI(); BlockFrequencyInfo *BFI = nullptr; if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) BFI = &getAnalysis().getBFI(); LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); SplitCriticalSideEffectEdges(const_cast(Fn), DT, LI); CurDAG->init(*MF, *ORE, this, LibInfo, getAnalysisIfAvailable(), PSI, BFI); FuncInfo->set(Fn, *MF, CurDAG); SwiftError->setFunction(*MF); // Now get the optional analyzes if we want to. // This is based on the possibly changed OptLevel (after optnone is taken // into account). That's unfortunate but OK because it just means we won't // ask for passes that have been required anyway. if (UseMBPI && OptLevel != CodeGenOpt::None) FuncInfo->BPI = &getAnalysis().getBPI(); else FuncInfo->BPI = nullptr; if (OptLevel != CodeGenOpt::None) AA = &getAnalysis().getAAResults(); else AA = nullptr; SDB->init(GFI, AA, LibInfo); MF->setHasInlineAsm(false); FuncInfo->SplitCSR = false; // We split CSR if the target supports it for the given function // and the function has only return exits. if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { FuncInfo->SplitCSR = true; // Collect all the return blocks. for (const BasicBlock &BB : Fn) { if (!succ_empty(&BB)) continue; const Instruction *Term = BB.getTerminator(); if (isa(Term) || isa(Term)) continue; // Bail out if the exit block is not Return nor Unreachable. FuncInfo->SplitCSR = false; break; } } MachineBasicBlock *EntryMBB = &MF->front(); if (FuncInfo->SplitCSR) // This performs initialization so lowering for SplitCSR will be correct. TLI->initializeSplitCSR(EntryMBB); SelectAllBasicBlocks(Fn); if (FastISelFailed && EnableFastISelFallbackReport) { DiagnosticInfoISelFallback DiagFallback(Fn); Fn.getContext().diagnose(DiagFallback); } // Replace forward-declared registers with the registers containing // the desired value. // Note: it is important that this happens **before** the call to // EmitLiveInCopies, since implementations can skip copies of unused // registers. If we don't apply the reg fixups before, some registers may // appear as unused and will be skipped, resulting in bad MI. MachineRegisterInfo &MRI = MF->getRegInfo(); for (DenseMap::iterator I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); I != E; ++I) { Register From = I->first; Register To = I->second; // If To is also scheduled to be replaced, find what its ultimate // replacement is. while (true) { DenseMap::iterator J = FuncInfo->RegFixups.find(To); if (J == E) break; To = J->second; } // Make sure the new register has a sufficiently constrained register class. if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) MRI.constrainRegClass(To, MRI.getRegClass(From)); // Replace it. // Replacing one register with another won't touch the kill flags. // We need to conservatively clear the kill flags as a kill on the old // register might dominate existing uses of the new register. if (!MRI.use_empty(To)) MRI.clearKillFlags(From); MRI.replaceRegWith(From, To); } // If the first basic block in the function has live ins that need to be // copied into vregs, emit the copies into the top of the block before // emitting the code for the block. const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); // Insert copies in the entry block and the return blocks. if (FuncInfo->SplitCSR) { SmallVector Returns; // Collect all the return blocks. for (MachineBasicBlock &MBB : mf) { if (!MBB.succ_empty()) continue; MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); if (Term != MBB.end() && Term->isReturn()) { Returns.push_back(&MBB); continue; } } TLI->insertCopiesSplitCSR(EntryMBB, Returns); } DenseMap LiveInMap; if (!FuncInfo->ArgDbgValues.empty()) for (std::pair LI : RegInfo->liveins()) if (LI.second) LiveInMap.insert(LI); // Insert DBG_VALUE instructions for function arguments to the entry block. for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; bool hasFI = MI->getOperand(0).isFI(); Register Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); if (Register::isPhysicalRegister(Reg)) EntryMBB->insert(EntryMBB->begin(), MI); else { MachineInstr *Def = RegInfo->getVRegDef(Reg); if (Def) { MachineBasicBlock::iterator InsertPos = Def; // FIXME: VR def may not be in entry block. Def->getParent()->insert(std::next(InsertPos), MI); } else LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" << Register::virtReg2Index(Reg) << "\n"); } // If Reg is live-in then update debug info to track its copy in a vreg. DenseMap::iterator LDI = LiveInMap.find(Reg); if (LDI != LiveInMap.end()) { assert(!hasFI && "There's no handling of frame pointer updating here yet " "- add if needed"); MachineInstr *Def = RegInfo->getVRegDef(LDI->second); MachineBasicBlock::iterator InsertPos = Def; const MDNode *Variable = MI->getDebugVariable(); const MDNode *Expr = MI->getDebugExpression(); DebugLoc DL = MI->getDebugLoc(); bool IsIndirect = MI->isIndirectDebugValue(); if (IsIndirect) assert(MI->getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); assert(cast(Variable)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); // Def is never a terminator here, so it is ok to increment InsertPos. BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, LDI->second, Variable, Expr); // If this vreg is directly copied into an exported register then // that COPY instructions also need DBG_VALUE, if it is the only // user of LDI->second. MachineInstr *CopyUseMI = nullptr; for (MachineRegisterInfo::use_instr_iterator UI = RegInfo->use_instr_begin(LDI->second), E = RegInfo->use_instr_end(); UI != E; ) { MachineInstr *UseMI = &*(UI++); if (UseMI->isDebugValue()) continue; if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { CopyUseMI = UseMI; continue; } // Otherwise this is another use or second copy use. CopyUseMI = nullptr; break; } if (CopyUseMI && TRI.getRegSizeInBits(LDI->second, MRI) == TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { // Use MI's debug location, which describes where Variable was // declared, rather than whatever is attached to CopyUseMI. MachineInstr *NewMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, CopyUseMI->getOperand(0).getReg(), Variable, Expr); MachineBasicBlock::iterator Pos = CopyUseMI; EntryMBB->insertAfter(Pos, NewMI); } } } // Determine if there are any calls in this machine function. MachineFrameInfo &MFI = MF->getFrameInfo(); for (const auto &MBB : *MF) { if (MFI.hasCalls() && MF->hasInlineAsm()) break; for (const auto &MI : MBB) { const MCInstrDesc &MCID = TII->get(MI.getOpcode()); if ((MCID.isCall() && !MCID.isReturn()) || MI.isStackAligningInlineAsm()) { MFI.setHasCalls(true); } if (MI.isInlineAsm()) { MF->setHasInlineAsm(true); } } } // Determine if there is a call to setjmp in the machine function. MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); // Determine if floating point is used for msvc computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); // Release function-specific state. SDB and CurDAG are already cleared // at this point. FuncInfo->clear(); LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); LLVM_DEBUG(MF->print(dbgs())); return true; } static void reportFastISelFailure(MachineFunction &MF, OptimizationRemarkEmitter &ORE, OptimizationRemarkMissed &R, bool ShouldAbort) { // Print the function name explicitly if we don't have a debug location (which // makes the diagnostic less useful) or if we're going to emit a raw error. if (!R.getLocation().isValid() || ShouldAbort) R << (" (in function: " + MF.getName() + ")").str(); if (ShouldAbort) report_fatal_error(R.getMsg()); ORE.emit(R); } void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, bool &HadTailCall) { // Allow creating illegal types during DAG building for the basic block. CurDAG->NewNodesMustHaveLegalTypes = false; // Lower the instructions. If a call is emitted as a tail call, cease emitting // nodes for this block. for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { if (!ElidedArgCopyInstrs.count(&*I)) SDB->visit(*I); } // Make sure the root of the DAG is up-to-date. CurDAG->setRoot(SDB->getControlRoot()); HadTailCall = SDB->HasTailCall; SDB->resolveOrClearDbgInfo(); SDB->clear(); // Final step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(); } void SelectionDAGISel::ComputeLiveOutVRegInfo() { SmallPtrSet Added; SmallVector Worklist; Worklist.push_back(CurDAG->getRoot().getNode()); Added.insert(CurDAG->getRoot().getNode()); KnownBits Known; do { SDNode *N = Worklist.pop_back_val(); // Otherwise, add all chain operands to the worklist. for (const SDValue &Op : N->op_values()) if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) Worklist.push_back(Op.getNode()); // If this is a CopyToReg with a vreg dest, process it. if (N->getOpcode() != ISD::CopyToReg) continue; unsigned DestReg = cast(N->getOperand(1))->getReg(); if (!Register::isVirtualRegister(DestReg)) continue; // Ignore non-integer values. SDValue Src = N->getOperand(2); EVT SrcVT = Src.getValueType(); if (!SrcVT.isInteger()) continue; unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); Known = CurDAG->computeKnownBits(Src); FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); } while (!Worklist.empty()); } void SelectionDAGISel::CodeGenAndEmitDAG() { StringRef GroupName = "sdag"; StringRef GroupDescription = "Instruction Selection and Scheduling"; std::string BlockName; bool MatchFilterBB = false; (void)MatchFilterBB; #ifndef NDEBUG TargetTransformInfo &TTI = getAnalysis().getTTI(*FuncInfo->Fn); #endif // Pre-type legalization allow creation of any node types. CurDAG->NewNodesMustHaveLegalTypes = false; #ifndef NDEBUG MatchFilterBB = (FilterDAGBasicBlockName.empty() || FilterDAGBasicBlockName == FuncInfo->MBB->getBasicBlock()->getName()); #endif #ifdef NDEBUG if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs) #endif { BlockName = (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); } LLVM_DEBUG(dbgs() << "Initial selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif if (ViewDAGCombine1 && MatchFilterBB) CurDAG->viewGraph("dag-combine1 input for " + BlockName); // Run the DAG combiner in pre-legalize mode. { NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); } LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif // Second step, hack on the DAG until it only uses operations and types that // the target supports. if (ViewLegalizeTypesDAGs && MatchFilterBB) CurDAG->viewGraph("legalize-types input for " + BlockName); bool Changed; { NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, GroupDescription, TimePassesIsEnabled); Changed = CurDAG->LegalizeTypes(); } LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif // Only allow creation of legal node types. CurDAG->NewNodesMustHaveLegalTypes = true; if (Changed) { if (ViewDAGCombineLT && MatchFilterBB) CurDAG->viewGraph("dag-combine-lt input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); } LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif } { NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, GroupDescription, TimePassesIsEnabled); Changed = CurDAG->LegalizeVectors(); } if (Changed) { LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif { NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->LegalizeTypes(); } LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif if (ViewDAGCombineLT && MatchFilterBB) CurDAG->viewGraph("dag-combine-lv input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); } LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif } if (ViewLegalizeDAGs && MatchFilterBB) CurDAG->viewGraph("legalize input for " + BlockName); { NamedRegionTimer T("legalize", "DAG Legalization", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->Legalize(); } LLVM_DEBUG(dbgs() << "Legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif if (ViewDAGCombine2 && MatchFilterBB) CurDAG->viewGraph("dag-combine2 input for " + BlockName); // Run the DAG combiner in post-legalize mode. { NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, GroupDescription, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); } LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); #ifndef NDEBUG if (TTI.hasBranchDivergence()) CurDAG->VerifyDAGDiverence(); #endif if (OptLevel != CodeGenOpt::None) ComputeLiveOutVRegInfo(); if (ViewISelDAGs && MatchFilterBB) CurDAG->viewGraph("isel input for " + BlockName); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. { NamedRegionTimer T("isel", "Instruction Selection", GroupName, GroupDescription, TimePassesIsEnabled); DoInstructionSelection(); } LLVM_DEBUG(dbgs() << "Selected selection DAG: " << printMBBReference(*FuncInfo->MBB) << " '" << BlockName << "'\n"; CurDAG->dump()); if (ViewSchedDAGs && MatchFilterBB) CurDAG->viewGraph("scheduler input for " + BlockName); // Schedule machine code. ScheduleDAGSDNodes *Scheduler = CreateScheduler(); { NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, GroupDescription, TimePassesIsEnabled); Scheduler->Run(CurDAG, FuncInfo->MBB); } if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph(); // Emit machine code to BB. This can change 'BB' to the last block being // inserted into. MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; { NamedRegionTimer T("emit", "Instruction Creation", GroupName, GroupDescription, TimePassesIsEnabled); // FuncInfo->InsertPt is passed by reference and set to the end of the // scheduled instructions. LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); } // If the block was split, make sure we update any references that are used to // update PHI nodes later on. if (FirstMBB != LastMBB) SDB->UpdateSplitBlock(FirstMBB, LastMBB); // Free the scheduler state. { NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, GroupDescription, TimePassesIsEnabled); delete Scheduler; } // Free the SelectionDAG state, now that we're finished with it. CurDAG->clear(); } namespace { /// ISelUpdater - helper class to handle updates of the instruction selection /// graph. class ISelUpdater : public SelectionDAG::DAGUpdateListener { SelectionDAG::allnodes_iterator &ISelPosition; public: ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} /// NodeDeleted - Handle nodes deleted from the graph. If the node being /// deleted is the current ISelPosition node, update ISelPosition. /// void NodeDeleted(SDNode *N, SDNode *E) override { if (ISelPosition == SelectionDAG::allnodes_iterator(N)) ++ISelPosition; } }; } // end anonymous namespace // This function is used to enforce the topological node id property // property leveraged during Instruction selection. Before selection all // nodes are given a non-negative id such that all nodes have a larger id than // their operands. As this holds transitively we can prune checks that a node N // is a predecessor of M another by not recursively checking through M's // operands if N's ID is larger than M's ID. This is significantly improves // performance of for various legality checks (e.g. IsLegalToFold / // UpdateChains). // However, when we fuse multiple nodes into a single node // during selection we may induce a predecessor relationship between inputs and // outputs of distinct nodes being merged violating the topological property. // Should a fused node have a successor which has yet to be selected, our // legality checks would be incorrect. To avoid this we mark all unselected // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. // We use bit-negation to more clearly enforce that node id -1 can only be // achieved by selected nodes). As the conversion is reversable the original Id, // topological pruning can still be leveraged when looking for unselected nodes. // This method is call internally in all ISel replacement calls. void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { SmallVector Nodes; Nodes.push_back(Node); while (!Nodes.empty()) { SDNode *N = Nodes.pop_back_val(); for (auto *U : N->uses()) { auto UId = U->getNodeId(); if (UId > 0) { InvalidateNodeId(U); Nodes.push_back(U); } } } } // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a // NodeId with the equivalent node id which is invalid for topological // pruning. void SelectionDAGISel::InvalidateNodeId(SDNode *N) { int InvalidId = -(N->getNodeId() + 1); N->setNodeId(InvalidId); } // getUninvalidatedNodeId - get original uninvalidated node id. int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { int Id = N->getNodeId(); if (Id < -1) return -(Id + 1); return Id; } void SelectionDAGISel::DoInstructionSelection() { LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " << printMBBReference(*FuncInfo->MBB) << " '" << FuncInfo->MBB->getName() << "'\n"); PreprocessISelDAG(); // Select target instructions for the DAG. { // Number all nodes with a topological order and set DAGSize. DAGSize = CurDAG->AssignTopologicalOrder(); // Create a dummy node (which is not added to allnodes), that adds // a reference to the root node, preventing it from being deleted, // and tracking any changes of the root. HandleSDNode Dummy(CurDAG->getRoot()); SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); ++ISelPosition; // Make sure that ISelPosition gets properly updated when nodes are deleted // in calls made from this function. ISelUpdater ISU(*CurDAG, ISelPosition); // The AllNodes list is now topological-sorted. Visit the // nodes by starting at the end of the list (the root of the // graph) and preceding back toward the beginning (the entry // node). while (ISelPosition != CurDAG->allnodes_begin()) { SDNode *Node = &*--ISelPosition; // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, // but there are currently some corner cases that it misses. Also, this // makes it theoretically possible to disable the DAGCombiner. if (Node->use_empty()) continue; #ifndef NDEBUG SmallVector Nodes; Nodes.push_back(Node); while (!Nodes.empty()) { auto N = Nodes.pop_back_val(); if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) continue; for (const SDValue &Op : N->op_values()) { if (Op->getOpcode() == ISD::TokenFactor) Nodes.push_back(Op.getNode()); else { // We rely on topological ordering of node ids for checking for // cycles when fusing nodes during selection. All unselected nodes // successors of an already selected node should have a negative id. // This assertion will catch such cases. If this assertion triggers // it is likely you using DAG-level Value/Node replacement functions // (versus equivalent ISEL replacement) in backend-specific // selections. See comment in EnforceNodeIdInvariant for more // details. assert(Op->getNodeId() != -1 && "Node has already selected predecessor node"); } } } #endif // When we are using non-default rounding modes or FP exception behavior // FP operations are represented by StrictFP pseudo-operations. For // targets that do not (yet) understand strict FP operations directly, // we convert them to normal FP opcodes instead at this point. This // will allow them to be handled by existing target-specific instruction // selectors. if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { // For some opcodes, we need to call TLI->getOperationAction using // the first operand type instead of the result type. Note that this // must match what SelectionDAGLegalize::LegalizeOp is doing. EVT ActionVT; switch (Node->getOpcode()) { case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: case ISD::STRICT_LRINT: case ISD::STRICT_LLRINT: case ISD::STRICT_LROUND: case ISD::STRICT_LLROUND: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: ActionVT = Node->getOperand(1).getValueType(); break; default: ActionVT = Node->getValueType(0); break; } if (TLI->getOperationAction(Node->getOpcode(), ActionVT) == TargetLowering::Expand) Node = CurDAG->mutateStrictFPToFP(Node); } LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; Node->dump(CurDAG)); Select(Node); } CurDAG->setRoot(Dummy.getValue()); } LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); PostprocessISelDAG(); } static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { for (const User *U : CPI->users()) { if (const IntrinsicInst *EHPtrCall = dyn_cast(U)) { Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); if (IID == Intrinsic::eh_exceptionpointer || IID == Intrinsic::eh_exceptioncode) return true; } } return false; } // wasm.landingpad.index intrinsic is for associating a landing pad index number // with a catchpad instruction. Retrieve the landing pad index in the intrinsic // and store the mapping in the function. static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, const CatchPadInst *CPI) { MachineFunction *MF = MBB->getParent(); // In case of single catch (...), we don't emit LSDA, so we don't need // this information. bool IsSingleCatchAllClause = CPI->getNumArgOperands() == 1 && cast(CPI->getArgOperand(0))->isNullValue(); if (!IsSingleCatchAllClause) { // Create a mapping from landing pad label to landing pad index. bool IntrFound = false; for (const User *U : CPI->users()) { if (const auto *Call = dyn_cast(U)) { Intrinsic::ID IID = Call->getIntrinsicID(); if (IID == Intrinsic::wasm_landingpad_index) { Value *IndexArg = Call->getArgOperand(1); int Index = cast(IndexArg)->getZExtValue(); MF->setWasmLandingPadIndex(MBB, Index); IntrFound = true; break; } } } assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); (void)IntrFound; } } /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and /// do other setup for EH landing-pad blocks. bool SelectionDAGISel::PrepareEHLandingPad() { MachineBasicBlock *MBB = FuncInfo->MBB; const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); const BasicBlock *LLVMBB = MBB->getBasicBlock(); const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); auto Pers = classifyEHPersonality(PersonalityFn); // Catchpads have one live-in register, which typically holds the exception // pointer or code. if (isFuncletEHPersonality(Pers)) { if (const auto *CPI = dyn_cast(LLVMBB->getFirstNonPHI())) { if (hasExceptionPointerOrCodeUser(CPI)) { // Get or create the virtual register to hold the pointer or code. Mark // the live in physreg and copy into the vreg. MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); assert(EHPhysReg && "target lacks exception pointer register"); MBB->addLiveIn(EHPhysReg); unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), TII->get(TargetOpcode::COPY), VReg) .addReg(EHPhysReg, RegState::Kill); } } return true; } // Add a label to mark the beginning of the landing pad. Deletion of the // landing pad can thus be detected via the MachineModuleInfo. MCSymbol *Label = MF->addLandingPad(MBB); const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) .addSym(Label); // If the unwinder does not preserve all registers, ensure that the // function marks the clobbered registers as used. const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); if (Pers == EHPersonality::Wasm_CXX) { if (const auto *CPI = dyn_cast(LLVMBB->getFirstNonPHI())) mapWasmLandingPadIndex(MBB, CPI); } else { // Assign the call site to the landing pad's begin label. MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); // Mark exception register as live in. if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); // Mark exception selector register as live in. if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); } return true; } /// isFoldedOrDeadInstruction - Return true if the specified instruction is /// side-effect free and is either dead or folded into a generated instruction. /// Return false if it needs to be emitted. static bool isFoldedOrDeadInstruction(const Instruction *I, const FunctionLoweringInfo &FuncInfo) { return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. !I->isTerminator() && // Terminators aren't folded. !isa(I) && // Debug instructions aren't folded. !I->isEHPad() && // EH pad instructions aren't folded. !FuncInfo.isExportedInst(I); // Exported instrs must be computed. } /// Collect llvm.dbg.declare information. This is done after argument lowering /// in case the declarations refer to arguments. static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { MachineFunction *MF = FuncInfo.MF; const DataLayout &DL = MF->getDataLayout(); for (const BasicBlock &BB : *FuncInfo.Fn) { for (const Instruction &I : BB) { const DbgDeclareInst *DI = dyn_cast(&I); if (!DI) continue; assert(DI->getVariable() && "Missing variable"); assert(DI->getDebugLoc() && "Missing location"); const Value *Address = DI->getAddress(); if (!Address) { LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI << " (bad address)\n"); continue; } // Look through casts and constant offset GEPs. These mostly come from // inalloca. APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); // Check if the variable is a static alloca or a byval or inalloca // argument passed in memory. If it is not, then we will ignore this // intrinsic and handle this during isel like dbg.value. int FI = std::numeric_limits::max(); if (const auto *AI = dyn_cast(Address)) { auto SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) FI = SI->second; } else if (const auto *Arg = dyn_cast(Address)) FI = FuncInfo.getArgumentFrameIndex(Arg); if (FI == std::numeric_limits::max()) continue; DIExpression *Expr = DI->getExpression(); if (Offset.getBoolValue()) Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset.getZExtValue()); LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI << ", " << *DI << "\n"); MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); } } } void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { FastISelFailed = false; // Initialize the Fast-ISel state, if needed. FastISel *FastIS = nullptr; if (TM.Options.EnableFastISel) { LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); FastIS = TLI->createFastISel(*FuncInfo, LibInfo); } ReversePostOrderTraversal RPOT(&Fn); // Lower arguments up front. An RPO iteration always visits the entry block // first. assert(*RPOT.begin() == &Fn.getEntryBlock()); ++NumEntryBlocks; // Set up FuncInfo for ISel. Entry blocks never have PHIs. FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; FuncInfo->InsertPt = FuncInfo->MBB->begin(); CurDAG->setFunctionLoweringInfo(FuncInfo.get()); if (!FastIS) { LowerArguments(Fn); } else { // See if fast isel can lower the arguments. FastIS->startNewBlock(); if (!FastIS->lowerArguments()) { FastISelFailed = true; // Fast isel failed to lower these arguments ++NumFastIselFailLowerArguments; OptimizationRemarkMissed R("sdagisel", "FastISelFailure", Fn.getSubprogram(), &Fn.getEntryBlock()); R << "FastISel didn't lower all arguments: " << ore::NV("Prototype", Fn.getType()); reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); // Use SelectionDAG argument lowering LowerArguments(Fn); CurDAG->setRoot(SDB->getControlRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // If we inserted any instructions at the beginning, make a note of // where they are, so we can be sure to emit subsequent instructions // after them. if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); else FastIS->setLastLocalValue(nullptr); } bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); if (FastIS && Inserted) FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); processDbgDeclares(*FuncInfo); // Iterate over all basic blocks in the function. StackProtector &SP = getAnalysis(); for (const BasicBlock *LLVMBB : RPOT) { if (OptLevel != CodeGenOpt::None) { bool AllPredsVisited = true; for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); PI != PE; ++PI) { if (!FuncInfo->VisitedBBs.count(*PI)) { AllPredsVisited = false; break; } } if (AllPredsVisited) { for (const PHINode &PN : LLVMBB->phis()) FuncInfo->ComputePHILiveOutRegInfo(&PN); } else { for (const PHINode &PN : LLVMBB->phis()) FuncInfo->InvalidatePHILiveOutRegInfo(&PN); } FuncInfo->VisitedBBs.insert(LLVMBB); } BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI()->getIterator(); BasicBlock::const_iterator const End = LLVMBB->end(); BasicBlock::const_iterator BI = End; FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; if (!FuncInfo->MBB) continue; // Some blocks like catchpads have no code or MBB. // Insert new instructions after any phi or argument setup code. FuncInfo->InsertPt = FuncInfo->MBB->end(); // Setup an EH landing-pad block. FuncInfo->ExceptionPointerVirtReg = 0; FuncInfo->ExceptionSelectorVirtReg = 0; if (LLVMBB->isEHPad()) if (!PrepareEHLandingPad()) continue; // Before doing SelectionDAG ISel, see if FastISel has been requested. if (FastIS) { if (LLVMBB != &Fn.getEntryBlock()) FastIS->startNewBlock(); unsigned NumFastIselRemaining = std::distance(Begin, End); // Pre-assign swifterror vregs. SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); // Do FastISel on as many instructions as possible. for (; BI != Begin; --BI) { const Instruction *Inst = &*std::prev(BI); // If we no longer require this instruction, skip it. if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || ElidedArgCopyInstrs.count(Inst)) { --NumFastIselRemaining; continue; } // Bottom-up: reset the insert pos at the top, after any local-value // instructions. FastIS->recomputeInsertPt(); // Try to select the instruction with FastISel. if (FastIS->selectInstruction(Inst)) { --NumFastIselRemaining; ++NumFastIselSuccess; // If fast isel succeeded, skip over all the folded instructions, and // then see if there is a load right before the selected instructions. // Try to fold the load if so. const Instruction *BeforeInst = Inst; while (BeforeInst != &*Begin) { BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) break; } if (BeforeInst != Inst && isa(BeforeInst) && BeforeInst->hasOneUse() && FastIS->tryToFoldLoad(cast(BeforeInst), Inst)) { // If we succeeded, don't re-select the load. BI = std::next(BasicBlock::const_iterator(BeforeInst)); --NumFastIselRemaining; ++NumFastIselSuccess; } continue; } FastISelFailed = true; // Then handle certain instructions as single-LLVM-Instruction blocks. // We cannot separate out GCrelocates to their own blocks since we need // to keep track of gc-relocates for a particular gc-statepoint. This is // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before // visitGCRelocate. if (isa(Inst) && !isa(Inst) && !isa(Inst) && !isa(Inst)) { OptimizationRemarkMissed R("sdagisel", "FastISelFailure", Inst->getDebugLoc(), LLVMBB); R << "FastISel missed call"; if (R.isEnabled() || EnableFastISelAbort) { std::string InstStrStorage; raw_string_ostream InstStr(InstStrStorage); InstStr << *Inst; R << ": " << InstStr.str(); } reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && !Inst->use_empty()) { Register &R = FuncInfo->ValueMap[Inst]; if (!R) R = FuncInfo->CreateRegs(Inst); } bool HadTailCall = false; MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); // If the call was emitted as a tail call, we're done with the block. // We also need to delete any previously emitted instructions. if (HadTailCall) { FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); --BI; break; } // Recompute NumFastIselRemaining as Selection DAG instruction // selection may have handled the call, input args, etc. unsigned RemainingNow = std::distance(Begin, BI); NumFastIselFailures += NumFastIselRemaining - RemainingNow; NumFastIselRemaining = RemainingNow; continue; } OptimizationRemarkMissed R("sdagisel", "FastISelFailure", Inst->getDebugLoc(), LLVMBB); bool ShouldAbort = EnableFastISelAbort; if (Inst->isTerminator()) { // Use a different message for terminator misses. R << "FastISel missed terminator"; // Don't abort for terminator unless the level is really high ShouldAbort = (EnableFastISelAbort > 2); } else { R << "FastISel missed"; } if (R.isEnabled() || EnableFastISelAbort) { std::string InstStrStorage; raw_string_ostream InstStr(InstStrStorage); InstStr << *Inst; R << ": " << InstStr.str(); } reportFastISelFailure(*MF, *ORE, R, ShouldAbort); NumFastIselFailures += NumFastIselRemaining; break; } FastIS->recomputeInsertPt(); } if (SP.shouldEmitSDCheck(*LLVMBB)) { bool FunctionBasedInstrumentation = TLI->getSSPStackGuardCheck(*Fn.getParent()); SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], FunctionBasedInstrumentation); } if (Begin != BI) ++NumDAGBlocks; else ++NumFastIselBlocks; if (Begin != BI) { // Run SelectionDAG instruction selection on the remainder of the block // not handled by FastISel. If FastISel is not run, this is the entire // block. bool HadTailCall; SelectBasicBlock(Begin, BI, HadTailCall); // But if FastISel was run, we already selected some of the block. // If we emitted a tail-call, we need to delete any previously emitted // instruction that follows it. if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); } if (FastIS) FastIS->finishBasicBlock(); FinishBasicBlock(); FuncInfo->PHINodesToUpdate.clear(); ElidedArgCopyInstrs.clear(); } SP.copyToMachineFrameInfo(MF->getFrameInfo()); SwiftError->propagateVRegs(); delete FastIS; SDB->clearDanglingDebugInfo(); SDB->SPDescriptor.resetPerFunctionState(); } /// Given that the input MI is before a partial terminator sequence TSeq, return /// true if M + TSeq also a partial terminator sequence. /// /// A Terminator sequence is a sequence of MachineInstrs which at this point in /// lowering copy vregs into physical registers, which are then passed into /// terminator instructors so we can satisfy ABI constraints. A partial /// terminator sequence is an improper subset of a terminator sequence (i.e. it /// may be the whole terminator sequence). static bool MIIsInTerminatorSequence(const MachineInstr &MI) { // If we do not have a copy or an implicit def, we return true if and only if // MI is a debug value. if (!MI.isCopy() && !MI.isImplicitDef()) // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the // physical registers if there is debug info associated with the terminator // of our mbb. We want to include said debug info in our terminator // sequence, so we return true in that case. return MI.isDebugValue(); // We have left the terminator sequence if we are not doing one of the // following: // // 1. Copying a vreg into a physical register. // 2. Copying a vreg into a vreg. // 3. Defining a register via an implicit def. // OPI should always be a register definition... MachineInstr::const_mop_iterator OPI = MI.operands_begin(); if (!OPI->isReg() || !OPI->isDef()) return false; // Defining any register via an implicit def is always ok. if (MI.isImplicitDef()) return true; // Grab the copy source... MachineInstr::const_mop_iterator OPI2 = OPI; ++OPI2; assert(OPI2 != MI.operands_end() && "Should have a copy implying we should have 2 arguments."); // Make sure that the copy dest is not a vreg when the copy source is a // physical register. if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && Register::isPhysicalRegister(OPI2->getReg()))) return false; return true; } /// Find the split point at which to splice the end of BB into its success stack /// protector check machine basic block. /// /// On many platforms, due to ABI constraints, terminators, even before register /// allocation, use physical registers. This creates an issue for us since /// physical registers at this point can not travel across basic /// blocks. Luckily, selectiondag always moves physical registers into vregs /// when they enter functions and moves them through a sequence of copies back /// into the physical registers right before the terminator creating a /// ``Terminator Sequence''. This function is searching for the beginning of the /// terminator sequence so that we can ensure that we splice off not just the /// terminator, but additionally the copies that move the vregs into the /// physical registers. static MachineBasicBlock::iterator FindSplitPointForStackProtector(MachineBasicBlock *BB) { MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); // if (SplitPoint == BB->begin()) return SplitPoint; MachineBasicBlock::iterator Start = BB->begin(); MachineBasicBlock::iterator Previous = SplitPoint; --Previous; while (MIIsInTerminatorSequence(*Previous)) { SplitPoint = Previous; if (Previous == Start) break; --Previous; } return SplitPoint; } void SelectionDAGISel::FinishBasicBlock() { LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " << FuncInfo->PHINodesToUpdate.size() << "\n"; for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) dbgs() << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) continue; PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); } // Handle stack protector. if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { // The target provides a guard check function. There is no need to // generate error handling code or to split current basic block. MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); // Add load and check to the basicblock. FuncInfo->MBB = ParentMBB; FuncInfo->InsertPt = FindSplitPointForStackProtector(ParentMBB); SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Clear the Per-BB State. SDB->SPDescriptor.resetPerBBState(); } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); // Find the split point to split the parent mbb. At the same time copy all // physical registers used in the tail of parent mbb into virtual registers // before the split point and back into physical registers after the split // point. This prevents us needing to deal with Live-ins and many other // register allocation issues caused by us splitting the parent mbb. The // register allocator will clean up said virtual copies later on. MachineBasicBlock::iterator SplitPoint = FindSplitPointForStackProtector(ParentMBB); // Splice the terminator of ParentMBB into SuccessMBB. SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, ParentMBB->end()); // Add compare/jump on neq/jump to the parent BB. FuncInfo->MBB = ParentMBB; FuncInfo->InsertPt = ParentMBB->end(); SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // CodeGen Failure MBB if we have not codegened it yet. MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); if (FailureMBB->empty()) { FuncInfo->MBB = FailureMBB; FuncInfo->InsertPt = FailureMBB->end(); SDB->visitSPDescriptorFailure(SDB->SPDescriptor); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Clear the Per-BB State. SDB->SPDescriptor.resetPerBBState(); } // Lower each BitTestBlock. for (auto &BTB : SDB->SL->BitTestCases) { // Lower header first, if it wasn't already lowered if (!BTB.Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = BTB.Parent; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitBitTestHeader(BTB, FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } BranchProbability UnhandledProb = BTB.Prob; for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { UnhandledProb -= BTB.Cases[j].ExtraProb; // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = BTB.Cases[j].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code // If all cases cover a contiguous range, it is not necessary to jump to // the default block after the last bit test fails. This is because the // range check during bit test header creation has guaranteed that every // case here doesn't go outside the range. In this case, there is no need // to perform the last bit test, as it will always be true. Instead, make // the second-to-last bit-test fall through to the target of the last bit // test, and delete the last bit test. MachineBasicBlock *NextMBB; if (BTB.ContiguousRange && j + 2 == ej) { // Second-to-last bit-test with contiguous range: fall through to the // target of the final bit test. NextMBB = BTB.Cases[j + 1].TargetBB; } else if (j + 1 == ej) { // For the last bit test, fall through to Default. NextMBB = BTB.Default; } else { // Otherwise, fall through to the next bit test. NextMBB = BTB.Cases[j + 1].ThisBB; } SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); if (BTB.ContiguousRange && j + 2 == ej) { // Since we're not going to use the final bit test, remove it. BTB.Cases.pop_back(); break; } } // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // This is "default" BB. We have two jumps to it. From "header" BB and // from last "case" BB, unless the latter was skipped. if (PHIBB == BTB.Default) { PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); if (!BTB.ContiguousRange) { PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) .addMBB(BTB.Cases.back().ThisBB); } } // One of "cases" BB. for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; if (cBB->isSuccessor(PHIBB)) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); } } } SDB->SL->BitTestCases.clear(); // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!SDB->SL->JTCases[i].first.Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, SDB->SL->JTCases[i].first, FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTable(SDB->SL->JTCases[i].second); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // "default" BB. We can go there only from header BB. if (PHIBB == SDB->SL->JTCases[i].second.Default) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) .addMBB(SDB->SL->JTCases[i].first.HeaderBB); // JT BB. Just iterate over successors here if (FuncInfo->MBB->isSuccessor(PHIBB)) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); } } SDB->SL->JTCases.clear(); // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Determine the unique successors. SmallVector Succs; Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); // Emit the code. Note that this could result in FuncInfo->MBB being split. SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Remember the last block, now that any splitting is done, for use in // populating PHI nodes in successors. MachineBasicBlock *ThisBB = FuncInfo->MBB; // Handle any PHI nodes in successors of this chunk, as if we were coming // from the original BB before switch expansion. Note that PHI nodes can // occur multiple times in PHINodesToUpdate. We have to be very careful to // handle them the right number of times. for (unsigned i = 0, e = Succs.size(); i != e; ++i) { FuncInfo->MBB = Succs[i]; FuncInfo->InsertPt = FuncInfo->MBB->end(); // FuncInfo->MBB may have been removed from the CFG if a branch was // constant folded. if (ThisBB->isSuccessor(FuncInfo->MBB)) { for (MachineBasicBlock::iterator MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); MBBI != MBBE && MBBI->isPHI(); ++MBBI) { MachineInstrBuilder PHI(*MF, MBBI); // This value for this PHI node is recorded in PHINodesToUpdate. for (unsigned pn = 0; ; ++pn) { assert(pn != FuncInfo->PHINodesToUpdate.size() && "Didn't find PHI entry!"); if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); break; } } } } } } SDB->SL->SwitchCases.clear(); } /// Create the scheduler. If a specific scheduler was specified /// via the SchedulerRegistry, use it, otherwise select the /// one preferred by the target. /// ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { return ISHeuristic(this, OptLevel); } //===----------------------------------------------------------------------===// // Helper functions used by the generated instruction selector. //===----------------------------------------------------------------------===// // Calls to these methods are generated by tblgen. /// CheckAndMask - The isel is trying to match something like (and X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (!ActualMask.isSubsetOf(DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// CheckOrMask - The isel is trying to match something like (or X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (!ActualMask.isSubsetOf(DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; KnownBits Known = CurDAG->computeKnownBits(LHS); // If all the missing bits in the or are already known to be set, match! if (NeededMask.isSubsetOf(Known.One)) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated /// by tblgen. Others should not call it. void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector &Ops, const SDLoc &DL) { std::vector InOps; std::swap(InOps, Ops); Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); if (InOps[e-1].getValueType() == MVT::Glue) --e; // Don't process a glue operand if it is here. while (i != e) { unsigned Flags = cast(InOps[i])->getZExtValue(); if (!InlineAsm::isMemKind(Flags)) { // Just skip over this operand, copying the operands verbatim. Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); i += InlineAsm::getNumOperandRegisters(Flags) + 1; } else { assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && "Memory operand with multiple values?"); unsigned TiedToOperand; if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { // We need the constraint ID from the operand this is tied to. unsigned CurOp = InlineAsm::Op_FirstOperand; Flags = cast(InOps[CurOp])->getZExtValue(); for (; TiedToOperand; --TiedToOperand) { CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; Flags = cast(InOps[CurOp])->getZExtValue(); } } // Otherwise, this is a memory operand. Ask the target to select it. std::vector SelOps; unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) report_fatal_error("Could not match memory address. Inline asm" " failure!"); // Add this to the output node. unsigned NewFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); i += 2; } } // Add the glue input back if present. if (e != InOps.size()) Ops.push_back(InOps.back()); } /// findGlueUse - Return use of MVT::Glue value produced by the specified /// SDNode. /// static SDNode *findGlueUse(SDNode *N) { unsigned FlagResNo = N->getNumValues()-1; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDUse &Use = I.getUse(); if (Use.getResNo() == FlagResNo) return Use.getUser(); } return nullptr; } /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path /// beyond "ImmedUse". We may ignore chains as they are checked separately. static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, bool IgnoreChains) { SmallPtrSet Visited; SmallVector WorkList; // Only check if we have non-immediate uses of Def. if (ImmedUse->isOnlyUserOf(Def)) return false; // We don't care about paths to Def that go through ImmedUse so mark it // visited and mark non-def operands as used. Visited.insert(ImmedUse); for (const SDValue &Op : ImmedUse->op_values()) { SDNode *N = Op.getNode(); // Ignore chain deps (they are validated by // HandleMergeInputChains) and immediate uses if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) continue; if (!Visited.insert(N).second) continue; WorkList.push_back(N); } // Initialize worklist to operands of Root. if (Root != ImmedUse) { for (const SDValue &Op : Root->op_values()) { SDNode *N = Op.getNode(); // Ignore chains (they are validated by HandleMergeInputChains) if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) continue; if (!Visited.insert(N).second) continue; WorkList.push_back(N); } } return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); } /// IsProfitableToFold - Returns true if it's profitable to fold the specific /// operand node N of U during instruction selection that starts at Root. bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; return N.hasOneUse(); } /// IsLegalToFold - Returns true if the specific operand node N of /// U can be folded during instruction selection that starts at Root. bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, CodeGenOpt::Level OptLevel, bool IgnoreChains) { if (OptLevel == CodeGenOpt::None) return false; // If Root use can somehow reach N through a path that that doesn't contain // U then folding N would create a cycle. e.g. In the following // diagram, Root can reach N through X. If N is folded into Root, then // X is both a predecessor and a successor of U. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ / // // \ / // // [Root*] // // // * indicates nodes to be folded together. // // If Root produces glue, then it gets (even more) interesting. Since it // will be "glued" together with its glue use in the scheduler, we need to // check if it might reach N. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ \ // // \ | // // [Root*] | // // ^ | // // f | // // | / // // [Y] / // // ^ / // // f / // // | / // // [GU] // // // If GU (glue use) indirectly reaches N (the load), and Root folds N // (call it Fold), then X is a predecessor of GU and a successor of // Fold. But since Fold and GU are glued together, this will create // a cycle in the scheduling graph. // If the node has glue, walk down the graph to the "lowest" node in the // glueged set. EVT VT = Root->getValueType(Root->getNumValues()-1); while (VT == MVT::Glue) { SDNode *GU = findGlueUse(Root); if (!GU) break; Root = GU; VT = Root->getValueType(Root->getNumValues()-1); // If our query node has a glue result with a use, we've walked up it. If // the user (which has already been selected) has a chain or indirectly uses // the chain, HandleMergeInputChains will not consider it. Because of // this, we cannot ignore chains in this predicate. IgnoreChains = false; } return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); } void SelectionDAGISel::Select_INLINEASM(SDNode *N) { SDLoc DL(N); std::vector Ops(N->op_begin(), N->op_end()); SelectInlineAsmMemoryOperands(Ops, DL); const EVT VTs[] = {MVT::Other, MVT::Glue}; SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); New->setNodeId(-1); ReplaceUses(N, New.getNode()); CurDAG->RemoveDeadNode(N); } void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { SDLoc dl(Op); MDNodeSDNode *MD = cast(Op->getOperand(1)); const MDString *RegStr = cast(MD->getMD()->getOperand(0)); EVT VT = Op->getValueType(0); LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, CurDAG->getMachineFunction()); SDValue New = CurDAG->getCopyFromReg( Op->getOperand(0), dl, Reg, Op->getValueType(0)); New->setNodeId(-1); ReplaceUses(Op, New.getNode()); CurDAG->RemoveDeadNode(Op); } void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { SDLoc dl(Op); MDNodeSDNode *MD = cast(Op->getOperand(1)); const MDString *RegStr = cast(MD->getMD()->getOperand(0)); EVT VT = Op->getOperand(2).getValueType(); LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, CurDAG->getMachineFunction()); SDValue New = CurDAG->getCopyToReg( Op->getOperand(0), dl, Reg, Op->getOperand(2)); New->setNodeId(-1); ReplaceUses(Op, New.getNode()); CurDAG->RemoveDeadNode(Op); } void SelectionDAGISel::Select_UNDEF(SDNode *N) { CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); } void SelectionDAGISel::Select_FREEZE(SDNode *N) { // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. // If FREEZE instruction is added later, the code below must be changed as // well. CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), N->getOperand(0)); } /// GetVBR - decode a vbr encoding whose top bit is set. LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { assert(Val >= 128 && "Not a VBR"); Val &= 127; // Remove first vbr bit. unsigned Shift = 7; uint64_t NextBits; do { NextBits = MatcherTable[Idx++]; Val |= (NextBits&127) << Shift; Shift += 7; } while (NextBits & 128); return Val; } /// When a match is complete, this method updates uses of interior chain results /// to use the new results. void SelectionDAGISel::UpdateChains( SDNode *NodeToMatch, SDValue InputChain, SmallVectorImpl &ChainNodesMatched, bool isMorphNodeTo) { SmallVector NowDeadNodes; // Now that all the normal results are replaced, we replace the chain and // glue results if present. if (!ChainNodesMatched.empty()) { assert(InputChain.getNode() && "Matched input chains but didn't produce a chain"); // Loop over all of the nodes we matched that produced a chain result. // Replace all the chain results with the final chain we ended up with. for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { SDNode *ChainNode = ChainNodesMatched[i]; // If ChainNode is null, it's because we replaced it on a previous // iteration and we cleared it out of the map. Just skip it. if (!ChainNode) continue; assert(ChainNode->getOpcode() != ISD::DELETED_NODE && "Deleted node left in chain"); // Don't replace the results of the root node if we're doing a // MorphNodeTo. if (ChainNode == NodeToMatch && isMorphNodeTo) continue; SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); if (ChainVal.getValueType() == MVT::Glue) ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); SelectionDAG::DAGNodeDeletedListener NDL( *CurDAG, [&](SDNode *N, SDNode *E) { std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, static_cast(nullptr)); }); if (ChainNode->getOpcode() != ISD::TokenFactor) ReplaceUses(ChainVal, InputChain); // If the node became dead and we haven't already seen it, delete it. if (ChainNode != NodeToMatch && ChainNode->use_empty() && !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) NowDeadNodes.push_back(ChainNode); } } if (!NowDeadNodes.empty()) CurDAG->RemoveDeadNodes(NowDeadNodes); LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); } /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains /// operation for when the pattern matched at least one node with a chains. The /// input vector contains a list of all of the chained nodes that we match. We /// must determine if this is a valid thing to cover (i.e. matching it won't /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will /// be used as the input node chain for the generated nodes. static SDValue HandleMergeInputChains(SmallVectorImpl &ChainNodesMatched, SelectionDAG *CurDAG) { SmallPtrSet Visited; SmallVector Worklist; SmallVector InputChains; unsigned int Max = 8192; // Quick exit on trivial merge. if (ChainNodesMatched.size() == 1) return ChainNodesMatched[0]->getOperand(0); // Add chains that aren't already added (internal). Peek through // token factors. std::function AddChains = [&](const SDValue V) { if (V.getValueType() != MVT::Other) return; if (V->getOpcode() == ISD::EntryToken) return; if (!Visited.insert(V.getNode()).second) return; if (V->getOpcode() == ISD::TokenFactor) { for (const SDValue &Op : V->op_values()) AddChains(Op); } else InputChains.push_back(V); }; for (auto *N : ChainNodesMatched) { Worklist.push_back(N); Visited.insert(N); } while (!Worklist.empty()) AddChains(Worklist.pop_back_val()->getOperand(0)); // Skip the search if there are no chain dependencies. if (InputChains.size() == 0) return CurDAG->getEntryNode(); // If one of these chains is a successor of input, we must have a // node that is both the predecessor and successor of the // to-be-merged nodes. Fail. Visited.clear(); for (SDValue V : InputChains) Worklist.push_back(V.getNode()); for (auto *N : ChainNodesMatched) if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) return SDValue(); // Return merged chain. if (InputChains.size() == 1) return InputChains[0]; return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), MVT::Other, InputChains); } /// MorphNode - Handle morphing a node in place for the selector. SDNode *SelectionDAGISel:: MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, ArrayRef Ops, unsigned EmitNodeInfo) { // It is possible we're using MorphNodeTo to replace a node with no // normal results with one that has a normal result (or we could be // adding a chain) and the input could have glue and chains as well. // In this case we need to shift the operands down. // FIXME: This is a horrible hack and broken in obscure cases, no worse // than the old isel though. int OldGlueResultNo = -1, OldChainResultNo = -1; unsigned NTMNumResults = Node->getNumValues(); if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { OldGlueResultNo = NTMNumResults-1; if (NTMNumResults != 1 && Node->getValueType(NTMNumResults-2) == MVT::Other) OldChainResultNo = NTMNumResults-2; } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) OldChainResultNo = NTMNumResults-1; // Call the underlying SelectionDAG routine to do the transmogrification. Note // that this deletes operands of the old node that become dead. SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); // MorphNodeTo can operate in two ways: if an existing node with the // specified operands exists, it can just return it. Otherwise, it // updates the node in place to have the requested operands. if (Res == Node) { // If we updated the node in place, reset the node ID. To the isel, // this should be just like a newly allocated machine node. Res->setNodeId(-1); } unsigned ResNumResults = Res->getNumValues(); // Move the glue if needed. if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && (unsigned)OldGlueResultNo != ResNumResults-1) ReplaceUses(SDValue(Node, OldGlueResultNo), SDValue(Res, ResNumResults - 1)); if ((EmitNodeInfo & OPFL_GlueOutput) != 0) --ResNumResults; // Move the chain reference if needed. if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && (unsigned)OldChainResultNo != ResNumResults-1) ReplaceUses(SDValue(Node, OldChainResultNo), SDValue(Res, ResNumResults - 1)); // Otherwise, no replacement happened because the node already exists. Replace // Uses of the old node with the new one. if (Res != Node) { ReplaceNode(Node, Res); } else { EnforceNodeIdInvariant(Res); } return Res; } /// CheckSame - Implements OP_CheckSame. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl> &RecordedNodes) { // Accept if it is exactly the same as a previously recorded node. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); return N == RecordedNodes[RecNo].first; } /// CheckChildSame - Implements OP_CheckChildXSame. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl> &RecordedNodes, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), RecordedNodes); } /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel) { return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); } /// CheckNodePredicate - Implements OP_CheckNodePredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel, SDNode *N) { return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDNode *N) { uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; return N->getOpcode() == Opc; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (N.getValueType() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { return cast(N)->get() == (ISD::CondCode)MatcherTable[MatcherIndex++]; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { if (2 >= N.getNumOperands()) return false; return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (cast(N)->getVT() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && cast(N)->getVT() == TLI->getPointerTy(DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); ConstantSDNode *C = dyn_cast(N); return C && C->getSExtValue() == Val; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::AND) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::OR) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); } /// IsPredicateKnownToFail - If we know how and can do so without pushing a /// scope, evaluate the current node. If the current predicate is known to /// fail, set Result=true and return anything. If the current predicate is /// known to pass, set Result=false and return the MatcherIndex to continue /// with. If the current predicate is unknown, set Result=false and return the /// MatcherIndex to continue with. static unsigned IsPredicateKnownToFail(const unsigned char *Table, unsigned Index, SDValue N, bool &Result, const SelectionDAGISel &SDISel, SmallVectorImpl> &RecordedNodes) { switch (Table[Index++]) { default: Result = false; return Index-1; // Could not evaluate this predicate. case SelectionDAGISel::OPC_CheckSame: Result = !::CheckSame(Table, Index, N, RecordedNodes); return Index; case SelectionDAGISel::OPC_CheckChild0Same: case SelectionDAGISel::OPC_CheckChild1Same: case SelectionDAGISel::OPC_CheckChild2Same: case SelectionDAGISel::OPC_CheckChild3Same: Result = !::CheckChildSame(Table, Index, N, RecordedNodes, Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); return Index; case SelectionDAGISel::OPC_CheckPatternPredicate: Result = !::CheckPatternPredicate(Table, Index, SDISel); return Index; case SelectionDAGISel::OPC_CheckPredicate: Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckOpcode: Result = !::CheckOpcode(Table, Index, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckType: Result = !::CheckType(Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout()); return Index; case SelectionDAGISel::OPC_CheckTypeRes: { unsigned Res = Table[Index++]; Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, SDISel.CurDAG->getDataLayout()); return Index; } case SelectionDAGISel::OPC_CheckChild0Type: case SelectionDAGISel::OPC_CheckChild1Type: case SelectionDAGISel::OPC_CheckChild2Type: case SelectionDAGISel::OPC_CheckChild3Type: case SelectionDAGISel::OPC_CheckChild4Type: case SelectionDAGISel::OPC_CheckChild5Type: case SelectionDAGISel::OPC_CheckChild6Type: case SelectionDAGISel::OPC_CheckChild7Type: Result = !::CheckChildType( Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); return Index; case SelectionDAGISel::OPC_CheckCondCode: Result = !::CheckCondCode(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckChild2CondCode: Result = !::CheckChild2CondCode(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckValueType: Result = !::CheckValueType(Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout()); return Index; case SelectionDAGISel::OPC_CheckInteger: Result = !::CheckInteger(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckChild0Integer: case SelectionDAGISel::OPC_CheckChild1Integer: case SelectionDAGISel::OPC_CheckChild2Integer: case SelectionDAGISel::OPC_CheckChild3Integer: case SelectionDAGISel::OPC_CheckChild4Integer: Result = !::CheckChildInteger(Table, Index, N, Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); return Index; case SelectionDAGISel::OPC_CheckAndImm: Result = !::CheckAndImm(Table, Index, N, SDISel); return Index; case SelectionDAGISel::OPC_CheckOrImm: Result = !::CheckOrImm(Table, Index, N, SDISel); return Index; } } namespace { struct MatchScope { /// FailIndex - If this match fails, this is the index to continue with. unsigned FailIndex; /// NodeStack - The node stack when the scope was formed. SmallVector NodeStack; /// NumRecordedNodes - The number of recorded nodes when the scope was formed. unsigned NumRecordedNodes; /// NumMatchedMemRefs - The number of matched memref entries. unsigned NumMatchedMemRefs; /// InputChain/InputGlue - The current chain/glue SDValue InputChain, InputGlue; /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. bool HasChainNodesMatched; }; /// \A DAG update listener to keep the matching state /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to /// change the DAG while matching. X86 addressing mode matcher is an example /// for this. class MatchStateUpdater : public SelectionDAG::DAGUpdateListener { SDNode **NodeToMatch; SmallVectorImpl> &RecordedNodes; SmallVectorImpl &MatchScopes; public: MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, SmallVectorImpl> &RN, SmallVectorImpl &MS) : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), RecordedNodes(RN), MatchScopes(MS) {} void NodeDeleted(SDNode *N, SDNode *E) override { // Some early-returns here to avoid the search if we deleted the node or // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we // do, so it's unnecessary to update matching state at that point). // Neither of these can occur currently because we only install this // update listener during matching a complex patterns. if (!E || E->isMachineOpcode()) return; // Check if NodeToMatch was updated. if (N == *NodeToMatch) *NodeToMatch = E; // Performing linear search here does not matter because we almost never // run this code. You'd have to have a CSE during complex pattern // matching. for (auto &I : RecordedNodes) if (I.first.getNode() == N) I.first.setNode(E); for (auto &I : MatchScopes) for (auto &J : I.NodeStack) if (J.getNode() == N) J.setNode(E); } }; } // end anonymous namespace void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, unsigned TableSize) { // FIXME: Should these even be selected? Handle these cases in the caller? switch (NodeToMatch->getOpcode()) { default: break; case ISD::EntryToken: // These nodes remain the same. case ISD::BasicBlock: case ISD::Register: case ISD::RegisterMask: case ISD::HANDLENODE: case ISD::MDNODE_SDNODE: case ISD::TargetConstant: case ISD::TargetConstantFP: case ISD::TargetConstantPool: case ISD::TargetFrameIndex: case ISD::TargetExternalSymbol: case ISD::MCSymbol: case ISD::TargetBlockAddress: case ISD::TargetJumpTable: case ISD::TargetGlobalTLSAddress: case ISD::TargetGlobalAddress: case ISD::TokenFactor: case ISD::CopyFromReg: case ISD::CopyToReg: case ISD::EH_LABEL: case ISD::ANNOTATION_LABEL: case ISD::LIFETIME_START: case ISD::LIFETIME_END: case ISD::PSEUDO_PROBE: NodeToMatch->setNodeId(-1); // Mark selected. return; case ISD::AssertSext: case ISD::AssertZext: case ISD::AssertAlign: ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); CurDAG->RemoveDeadNode(NodeToMatch); return; case ISD::INLINEASM: case ISD::INLINEASM_BR: Select_INLINEASM(NodeToMatch); return; case ISD::READ_REGISTER: Select_READ_REGISTER(NodeToMatch); return; case ISD::WRITE_REGISTER: Select_WRITE_REGISTER(NodeToMatch); return; case ISD::UNDEF: Select_UNDEF(NodeToMatch); return; case ISD::FREEZE: Select_FREEZE(NodeToMatch); return; } assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); // Set up the node stack with NodeToMatch as the only node on the stack. SmallVector NodeStack; SDValue N = SDValue(NodeToMatch, 0); NodeStack.push_back(N); // MatchScopes - Scopes used when matching, if a match failure happens, this // indicates where to continue checking. SmallVector MatchScopes; // RecordedNodes - This is the set of nodes that have been recorded by the // state machine. The second value is the parent of the node, or null if the // root is recorded. SmallVector, 8> RecordedNodes; // MatchedMemRefs - This is the set of MemRef's we've seen in the input // pattern. SmallVector MatchedMemRefs; // These are the current input chain and glue for use when generating nodes. // Various Emit operations change these. For example, emitting a copytoreg // uses and updates these. SDValue InputChain, InputGlue; // ChainNodesMatched - If a pattern matches nodes that have input/output // chains, the OPC_EmitMergeInputChains operation is emitted which indicates // which ones they are. The result is captured into this list so that we can // update the chain results when the pattern is complete. SmallVector ChainNodesMatched; LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); // Determine where to start the interpreter. Normally we start at opcode #0, // but if the state machine starts with an OPC_SwitchOpcode, then we // accelerate the first lookup (which is guaranteed to be hot) with the // OpcodeOffset table. unsigned MatcherIndex = 0; if (!OpcodeOffset.empty()) { // Already computed the OpcodeOffset table, just index into it. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); } else if (MatcherTable[0] == OPC_SwitchOpcode) { // Otherwise, the table isn't computed, but the state machine does start // with an OPC_SwitchOpcode instruction. Populate the table now, since this // is the first time we're selecting an instruction. unsigned Idx = 1; while (true) { // Get the size of this case. unsigned CaseSize = MatcherTable[Idx++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, Idx); if (CaseSize == 0) break; // Get the opcode, add the index to the table. uint16_t Opc = MatcherTable[Idx++]; Opc |= (unsigned short)MatcherTable[Idx++] << 8; if (Opc >= OpcodeOffset.size()) OpcodeOffset.resize((Opc+1)*2); OpcodeOffset[Opc] = Idx; Idx += CaseSize; } // Okay, do the lookup for the first opcode. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; } while (true) { assert(MatcherIndex < TableSize && "Invalid index"); #ifndef NDEBUG unsigned CurrentOpcodeIndex = MatcherIndex; #endif BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; switch (Opcode) { case OPC_Scope: { // Okay, the semantics of this operation are that we should push a scope // then evaluate the first child. However, pushing a scope only to have // the first check fail (which then pops it) is inefficient. If we can // determine immediately that the first check (or first several) will // immediately fail, don't even bother pushing a scope for them. unsigned FailIndex; while (true) { unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // Found the end of the scope with no match. if (NumToSkip == 0) { FailIndex = 0; break; } FailIndex = MatcherIndex+NumToSkip; unsigned MatcherIndexOfPredicate = MatcherIndex; (void)MatcherIndexOfPredicate; // silence warning. // If we can't evaluate this predicate without pushing a scope (e.g. if // it is a 'MoveParent') or if the predicate succeeds on this node, we // push the scope and evaluate the full predicate chain. bool Result; MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, Result, *this, RecordedNodes); if (!Result) break; LLVM_DEBUG( dbgs() << " Skipped scope entry (due to false predicate) at " << "index " << MatcherIndexOfPredicate << ", continuing at " << FailIndex << "\n"); ++NumDAGIselRetries; // Otherwise, we know that this case of the Scope is guaranteed to fail, // move to the next case. MatcherIndex = FailIndex; } // If the whole scope failed to match, bail. if (FailIndex == 0) break; // Push a MatchScope which indicates where to go if the first child fails // to match. MatchScope NewEntry; NewEntry.FailIndex = FailIndex; NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); NewEntry.NumRecordedNodes = RecordedNodes.size(); NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); NewEntry.InputChain = InputChain; NewEntry.InputGlue = InputGlue; NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); MatchScopes.push_back(NewEntry); continue; } case OPC_RecordNode: { // Remember this node, it may end up being an operand in the pattern. SDNode *Parent = nullptr; if (NodeStack.size() > 1) Parent = NodeStack[NodeStack.size()-2].getNode(); RecordedNodes.push_back(std::make_pair(N, Parent)); continue; } case OPC_RecordChild0: case OPC_RecordChild1: case OPC_RecordChild2: case OPC_RecordChild3: case OPC_RecordChild4: case OPC_RecordChild5: case OPC_RecordChild6: case OPC_RecordChild7: { unsigned ChildNo = Opcode-OPC_RecordChild0; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), N.getNode())); continue; } case OPC_RecordMemRef: if (auto *MN = dyn_cast(N)) MatchedMemRefs.push_back(MN->getMemOperand()); else { LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); dbgs() << '\n'); } continue; case OPC_CaptureGlueInput: // If the current node has an input glue, capture it in InputGlue. if (N->getNumOperands() != 0 && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) InputGlue = N->getOperand(N->getNumOperands()-1); continue; case OPC_MoveChild: { unsigned ChildNo = MatcherTable[MatcherIndex++]; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. N = N.getOperand(ChildNo); NodeStack.push_back(N); continue; } case OPC_MoveChild0: case OPC_MoveChild1: case OPC_MoveChild2: case OPC_MoveChild3: case OPC_MoveChild4: case OPC_MoveChild5: case OPC_MoveChild6: case OPC_MoveChild7: { unsigned ChildNo = Opcode-OPC_MoveChild0; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. N = N.getOperand(ChildNo); NodeStack.push_back(N); continue; } case OPC_MoveParent: // Pop the current node off the NodeStack. NodeStack.pop_back(); assert(!NodeStack.empty() && "Node stack imbalance!"); N = NodeStack.back(); continue; case OPC_CheckSame: if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; continue; case OPC_CheckChild0Same: case OPC_CheckChild1Same: case OPC_CheckChild2Same: case OPC_CheckChild3Same: if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, Opcode-OPC_CheckChild0Same)) break; continue; case OPC_CheckPatternPredicate: if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; continue; case OPC_CheckPredicate: if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, N.getNode())) break; continue; case OPC_CheckPredicateWithOperands: { unsigned OpNum = MatcherTable[MatcherIndex++]; SmallVector Operands; for (unsigned i = 0; i < OpNum; ++i) Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); unsigned PredNo = MatcherTable[MatcherIndex++]; if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) break; continue; } case OPC_CheckComplexPat: { unsigned CPNum = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); // If target can modify DAG during matching, keep the matching state // consistent. std::unique_ptr MSU; if (ComplexPatternFuncMutatesDAG()) MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, MatchScopes)); if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, RecordedNodes[RecNo].first, CPNum, RecordedNodes)) break; continue; } case OPC_CheckOpcode: if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; continue; case OPC_CheckType: if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout())) break; continue; case OPC_CheckTypeRes: { unsigned Res = MatcherTable[MatcherIndex++]; if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, CurDAG->getDataLayout())) break; continue; } case OPC_SwitchOpcode: { unsigned CurNodeOpcode = N.getOpcode(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (true) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; // If the opcode matches, then we will execute this case. if (CurNodeOpcode == Opc) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " << MatcherIndex << "\n"); continue; } case OPC_SwitchType: { MVT CurNodeVT = N.getSimpleValueType(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (true) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (CaseVT == MVT::iPTR) CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); // If the VT matches, then we will execute this case. if (CurNodeVT == CaseVT) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() << "] from " << SwitchStart << " to " << MatcherIndex << '\n'); continue; } case OPC_CheckChild0Type: case OPC_CheckChild1Type: case OPC_CheckChild2Type: case OPC_CheckChild3Type: case OPC_CheckChild4Type: case OPC_CheckChild5Type: case OPC_CheckChild6Type: case OPC_CheckChild7Type: if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout(), Opcode - OPC_CheckChild0Type)) break; continue; case OPC_CheckCondCode: if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckChild2CondCode: if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckValueType: if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout())) break; continue; case OPC_CheckInteger: if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: case OPC_CheckChild4Integer: if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, Opcode-OPC_CheckChild0Integer)) break; continue; case OPC_CheckAndImm: if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckOrImm: if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckImmAllOnesV: if (!ISD::isBuildVectorAllOnes(N.getNode())) break; continue; case OPC_CheckImmAllZerosV: if (!ISD::isBuildVectorAllZeros(N.getNode())) break; continue; case OPC_CheckFoldableChainNode: { assert(NodeStack.size() != 1 && "No parent node"); // Verify that all intermediate nodes between the root and this one have // a single use (ignoring chains, which are handled in UpdateChains). bool HasMultipleUses = false; for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { unsigned NNonChainUses = 0; SDNode *NS = NodeStack[i].getNode(); for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) if (UI.getUse().getValueType() != MVT::Other) if (++NNonChainUses > 1) { HasMultipleUses = true; break; } if (HasMultipleUses) break; } if (HasMultipleUses) break; // Check to see that the target thinks this is profitable to fold and that // we can fold it without inducing cycles in the graph. if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch) || !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch, OptLevel, true/*We validate our own chains*/)) break; continue; } case OPC_EmitInteger: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); RecordedNodes.push_back(std::pair( CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), VT), nullptr)); continue; } case OPC_EmitRegister: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), nullptr)); continue; } case OPC_EmitRegister2: { // For targets w/ more than 256 register names, the register enum // values are stored in two bytes in the matcher table (just like // opcodes). MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RegNo |= MatcherTable[MatcherIndex++] << 8; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), nullptr)); continue; } case OPC_EmitConvertToTarget: { // Convert from IMM/FPIMM to target version. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); SDValue Imm = RecordedNodes[RecNo].first; if (Imm->getOpcode() == ISD::Constant) { const ConstantInt *Val=cast(Imm)->getConstantIntValue(); Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType()); } else if (Imm->getOpcode() == ISD::ConstantFP) { const ConstantFP *Val=cast(Imm)->getConstantFPValue(); Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), Imm.getValueType()); } RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); continue; } case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 // These are space-optimized forms of OPC_EmitMergeInputChains. assert(!InputChain.getNode() && "EmitMergeInputChains should be the first chain producing node"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (!InputChain.getNode()) break; // Failed to merge. continue; } case OPC_EmitMergeInputChains: { assert(!InputChain.getNode() && "EmitMergeInputChains should be the first chain producing node"); // This node gets a list of nodes we matched in the input that have // chains. We want to token factor all of the input chains to these nodes // together. However, if any of the input chains is actually one of the // nodes matched in this pattern, then we have an intra-match reference. // Ignore these because the newly token factored chain should not refer to // the old nodes. unsigned NumChains = MatcherTable[MatcherIndex++]; assert(NumChains != 0 && "Can't TF zero chains"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. for (unsigned i = 0; i != NumChains; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } } // If the inner loop broke out, the match fails. if (ChainNodesMatched.empty()) break; // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (!InputChain.getNode()) break; // Failed to merge. continue; } case OPC_EmitCopyToReg: case OPC_EmitCopyToReg2: { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); unsigned DestPhysReg = MatcherTable[MatcherIndex++]; if (Opcode == OPC_EmitCopyToReg2) DestPhysReg |= MatcherTable[MatcherIndex++] << 8; if (!InputChain.getNode()) InputChain = CurDAG->getEntryNode(); InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), DestPhysReg, RecordedNodes[RecNo].first, InputGlue); InputGlue = InputChain.getValue(1); continue; } case OPC_EmitNodeXForm: { unsigned XFormNo = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); RecordedNodes.push_back(std::pair(Res, nullptr)); continue; } case OPC_Coverage: { // This is emitted right before MorphNode/EmitNode. // So it should be safe to assume that this node has been selected unsigned index = MatcherTable[MatcherIndex++]; index |= (MatcherTable[MatcherIndex++] << 8); dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; continue; } case OPC_EmitNode: case OPC_MorphNodeTo: case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { uint16_t TargetOpc = MatcherTable[MatcherIndex++]; TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; // Get the result VT list. unsigned NumVTs; // If this is one of the compressed forms, get the number of VTs based // on the Opcode. Otherwise read the next byte from the table. if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) NumVTs = Opcode - OPC_MorphNodeTo0; else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) NumVTs = Opcode - OPC_EmitNode0; else NumVTs = MatcherTable[MatcherIndex++]; SmallVector VTs; for (unsigned i = 0; i != NumVTs; ++i) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (VT == MVT::iPTR) VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; VTs.push_back(VT); } if (EmitNodeInfo & OPFL_Chain) VTs.push_back(MVT::Other); if (EmitNodeInfo & OPFL_GlueOutput) VTs.push_back(MVT::Glue); // This is hot code, so optimize the two most common cases of 1 and 2 // results. SDVTList VTList; if (VTs.size() == 1) VTList = CurDAG->getVTList(VTs[0]); else if (VTs.size() == 2) VTList = CurDAG->getVTList(VTs[0], VTs[1]); else VTList = CurDAG->getVTList(VTs); // Get the operand list. unsigned NumOps = MatcherTable[MatcherIndex++]; SmallVector Ops; for (unsigned i = 0; i != NumOps; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; if (RecNo & 128) RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); Ops.push_back(RecordedNodes[RecNo].first); } // If there are variadic operands to add, handle them now. if (EmitNodeInfo & OPFL_VariadicInfo) { // Determine the start index to copy from. unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && "Invalid variadic node"); // Copy all of the variadic operands, not including a potential glue // input. for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); i != e; ++i) { SDValue V = NodeToMatch->getOperand(i); if (V.getValueType() == MVT::Glue) break; Ops.push_back(V); } } // If this has chain/glue inputs, add them. if (EmitNodeInfo & OPFL_Chain) Ops.push_back(InputChain); if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) Ops.push_back(InputGlue); // Check whether any matched node could raise an FP exception. Since all // such nodes must have a chain, it suffices to check ChainNodesMatched. // We need to perform this check before potentially modifying one of the // nodes via MorphNode. bool MayRaiseFPException = false; for (auto *N : ChainNodesMatched) if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { MayRaiseFPException = true; break; } // Create the node. MachineSDNode *Res = nullptr; bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); if (!IsMorphNodeTo) { // If this is a normal EmitNode command, just create the new node and // add the results to the RecordedNodes list. Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), VTList, Ops); // Add all the non-glue/non-chain results to the RecordedNodes list. for (unsigned i = 0, e = VTs.size(); i != e; ++i) { if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; RecordedNodes.push_back(std::pair(SDValue(Res, i), nullptr)); } } else { assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && "NodeToMatch was removed partway through selection"); SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, SDNode *E) { CurDAG->salvageDebugInfo(*N); auto &Chain = ChainNodesMatched; assert((!E || !is_contained(Chain, N)) && "Chain node replaced during MorphNode"); Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); }); Res = cast(MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo)); } // Set the NoFPExcept flag when no original matched node could // raise an FP exception, but the new node potentially might. if (!MayRaiseFPException && mayRaiseFPException(Res)) { SDNodeFlags Flags = Res->getFlags(); Flags.setNoFPExcept(true); Res->setFlags(Flags); } // If the node had chain/glue results, update our notion of the current // chain and glue. if (EmitNodeInfo & OPFL_GlueOutput) { InputGlue = SDValue(Res, VTs.size()-1); if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-2); } else if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-1); // If the OPFL_MemRefs glue is set on this node, slap all of the // accumulated memrefs onto it. // // FIXME: This is vastly incorrect for patterns with multiple outputs // instructions that access memory and for ComplexPatterns that match // loads. if (EmitNodeInfo & OPFL_MemRefs) { // Only attach load or store memory operands if the generated // instruction may load or store. const MCInstrDesc &MCID = TII->get(TargetOpc); bool mayLoad = MCID.mayLoad(); bool mayStore = MCID.mayStore(); // We expect to have relatively few of these so just filter them into a // temporary buffer so that we can easily add them to the instruction. SmallVector FilteredMemRefs; for (MachineMemOperand *MMO : MatchedMemRefs) { if (MMO->isLoad()) { if (mayLoad) FilteredMemRefs.push_back(MMO); } else if (MMO->isStore()) { if (mayStore) FilteredMemRefs.push_back(MMO); } else { FilteredMemRefs.push_back(MMO); } } CurDAG->setNodeMemRefs(Res, FilteredMemRefs); } LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() << " Dropping mem operands\n"; dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") << " node: "; Res->dump(CurDAG);); // If this was a MorphNodeTo then we're completely done! if (IsMorphNodeTo) { // Update chain uses. UpdateChains(Res, InputChain, ChainNodesMatched, true); return; } continue; } case OPC_CompleteMatch: { // The match has been completed, and any new nodes (if any) have been // created. Patch up references to the matched dag to use the newly // created nodes. unsigned NumResults = MatcherTable[MatcherIndex++]; for (unsigned i = 0; i != NumResults; ++i) { unsigned ResSlot = MatcherTable[MatcherIndex++]; if (ResSlot & 128) ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); SDValue Res = RecordedNodes[ResSlot].first; assert(i < NodeToMatch->getNumValues() && NodeToMatch->getValueType(i) != MVT::Other && NodeToMatch->getValueType(i) != MVT::Glue && "Invalid number of results to complete!"); assert((NodeToMatch->getValueType(i) == Res.getValueType() || NodeToMatch->getValueType(i) == MVT::iPTR || Res.getValueType() == MVT::iPTR || NodeToMatch->getValueType(i).getSizeInBits() == Res.getValueSizeInBits()) && "invalid replacement"); ReplaceUses(SDValue(NodeToMatch, i), Res); } // Update chain uses. UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); // If the root node defines glue, we need to update it to the glue result. // TODO: This never happens in our tests and I think it can be removed / // replaced with an assert, but if we do it this the way the change is // NFC. if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == MVT::Glue && InputGlue.getNode()) ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue); assert(NodeToMatch->use_empty() && "Didn't replace all uses of the node?"); CurDAG->RemoveDeadNode(NodeToMatch); return; } } // If the code reached this point, then the match failed. See if there is // another child to try in the current 'Scope', otherwise pop it until we // find a case to check. LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); ++NumDAGIselRetries; while (true) { if (MatchScopes.empty()) { CannotYetSelect(NodeToMatch); return; } // Restore the interpreter state back to the point where the scope was // formed. MatchScope &LastScope = MatchScopes.back(); RecordedNodes.resize(LastScope.NumRecordedNodes); NodeStack.clear(); NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); N = NodeStack.back(); if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); MatcherIndex = LastScope.FailIndex; LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); InputChain = LastScope.InputChain; InputGlue = LastScope.InputGlue; if (!LastScope.HasChainNodesMatched) ChainNodesMatched.clear(); // Check to see what the offset is at the new MatcherIndex. If it is zero // we have reached the end of this scope, otherwise we have another child // in the current scope to try. unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // If we have another child in this scope to match, update FailIndex and // try it. if (NumToSkip != 0) { LastScope.FailIndex = MatcherIndex+NumToSkip; break; } // End of this scope, pop it and try the next child in the containing // scope. MatchScopes.pop_back(); } } } /// Return whether the node may raise an FP exception. bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { // For machine opcodes, consult the MCID flag. if (N->isMachineOpcode()) { const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); return MCID.mayRaiseFPException(); } // For ISD opcodes, only StrictFP opcodes may raise an FP // exception. if (N->isTargetOpcode()) return N->isTargetStrictFPOpcode(); return N->isStrictFPOpcode(); } bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); auto *C = dyn_cast(N->getOperand(1)); if (!C) return false; // Detect when "or" is used to add an offset to a stack object. if (auto *FN = dyn_cast(N->getOperand(0))) { MachineFrameInfo &MFI = MF->getFrameInfo(); Align A = MFI.getObjectAlign(FN->getIndex()); int32_t Off = C->getSExtValue(); // If the alleged offset fits in the zero bits guaranteed by // the alignment, then this or is really an add. return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); } return false; } void SelectionDAGISel::CannotYetSelect(SDNode *N) { std::string msg; raw_string_ostream Msg(msg); Msg << "Cannot select: "; if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && N->getOpcode() != ISD::INTRINSIC_VOID) { N->printrFull(Msg, CurDAG); Msg << "\nIn function: " << MF->getName(); } else { bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; unsigned iid = cast(N->getOperand(HasInputChain))->getZExtValue(); if (iid < Intrinsic::num_intrinsics) Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) Msg << "target intrinsic %" << TII->getName(iid); else Msg << "unknown intrinsic #" << iid; } report_fatal_error(Msg.str()); } char SelectionDAGISel::ID = 0;