//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of the TargetRegisterInfo // class. // //===----------------------------------------------------------------------===// #include "AArch64RegisterInfo.h" #include "AArch64FrameLowering.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define GET_REGINFO_TARGET_DESC #include "AArch64GenRegisterInfo.inc" AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT) : AArch64GenRegisterInfo(AArch64::LR), TT(TT) { AArch64_MC::initLLVMToCVRegMapping(this); } /// Return whether the register needs a CFI entry. Not all unwinders may know /// about SVE registers, so we assume the lowest common denominator, i.e. the /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is /// returned in \p RegToUseForCFI. bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg, unsigned &RegToUseForCFI) const { if (AArch64::PPRRegClass.contains(Reg)) return false; if (AArch64::ZPRRegClass.contains(Reg)) { RegToUseForCFI = getSubReg(Reg, AArch64::dsub); for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) { if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI) return true; } return false; } RegToUseForCFI = Reg; return true; } bool AArch64RegisterInfo::hasSVEArgsOrReturn(const MachineFunction *MF) { const Function &F = MF->getFunction(); return isa(F.getReturnType()) || any_of(F.args(), [](const Argument &Arg) { return isa(Arg.getType()); }); } const MCPhysReg * AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { assert(MF && "Invalid MachineFunction pointer."); if (MF->getFunction().getCallingConv() == CallingConv::GHC) // GHC set of callee saved regs is empty as all those regs are // used for passing STG regs around return CSR_AArch64_NoRegs_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) return CSR_AArch64_AllRegs_SaveList; // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save // lists depending on that will need to have their Darwin variant as well. if (MF->getSubtarget().isTargetDarwin()) return getDarwinCalleeSavedRegs(MF); if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) return CSR_Win_AArch64_CFGuard_Check_SaveList; if (MF->getSubtarget().isTargetWindows()) return CSR_Win_AArch64_AAPCS_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) return CSR_AArch64_AAVPCS_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) return CSR_AArch64_SVE_AAPCS_SaveList; if (MF->getSubtarget().getTargetLowering() ->supportSwiftError() && MF->getFunction().getAttributes().hasAttrSomewhere( Attribute::SwiftError)) return CSR_AArch64_AAPCS_SwiftError_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) return CSR_AArch64_RT_MostRegs_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::Win64) // This is for OSes other than Windows; Windows is a separate case further // above. return CSR_AArch64_AAPCS_X18_SaveList; if (hasSVEArgsOrReturn(MF)) return CSR_AArch64_SVE_AAPCS_SaveList; return CSR_AArch64_AAPCS_SaveList; } const MCPhysReg * AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const { assert(MF && "Invalid MachineFunction pointer."); assert(MF->getSubtarget().isTargetDarwin() && "Invalid subtarget for getDarwinCalleeSavedRegs"); if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) report_fatal_error( "Calling convention CFGuard_Check is unsupported on Darwin."); if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) return CSR_Darwin_AArch64_AAVPCS_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) report_fatal_error( "Calling convention SVE_VectorCall is unsupported on Darwin."); if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS) return MF->getInfo()->isSplitCSR() ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList : CSR_Darwin_AArch64_CXX_TLS_SaveList; if (MF->getSubtarget().getTargetLowering() ->supportSwiftError() && MF->getFunction().getAttributes().hasAttrSomewhere( Attribute::SwiftError)) return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList; if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) return CSR_Darwin_AArch64_RT_MostRegs_SaveList; return CSR_Darwin_AArch64_AAPCS_SaveList; } const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy( const MachineFunction *MF) const { assert(MF && "Invalid MachineFunction pointer."); if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && MF->getInfo()->isSplitCSR()) return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList; return nullptr; } void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs( MachineFunction &MF) const { const MCPhysReg *CSRs = getCalleeSavedRegs(&MF); SmallVector UpdatedCSRs; for (const MCPhysReg *I = CSRs; *I; ++I) UpdatedCSRs.push_back(*I); for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { if (MF.getSubtarget().isXRegCustomCalleeSaved(i)) { UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i)); } } // Register lists are zero-terminated. UpdatedCSRs.push_back(0); MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs); } const TargetRegisterClass * AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { // edge case for GPR/FPR register classes if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub) return &AArch64::FPR32RegClass; else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub) return &AArch64::FPR64RegClass; // Forward to TableGen's default version. return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx); } const uint32_t * AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { assert(MF.getSubtarget().isTargetDarwin() && "Invalid subtarget for getDarwinCallPreservedMask"); if (CC == CallingConv::CXX_FAST_TLS) return CSR_Darwin_AArch64_CXX_TLS_RegMask; if (CC == CallingConv::AArch64_VectorCall) return CSR_Darwin_AArch64_AAVPCS_RegMask; if (CC == CallingConv::AArch64_SVE_VectorCall) report_fatal_error( "Calling convention SVE_VectorCall is unsupported on Darwin."); if (CC == CallingConv::CFGuard_Check) report_fatal_error( "Calling convention CFGuard_Check is unsupported on Darwin."); if (MF.getSubtarget() .getTargetLowering() ->supportSwiftError() && MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask; if (CC == CallingConv::PreserveMost) return CSR_Darwin_AArch64_RT_MostRegs_RegMask; return CSR_Darwin_AArch64_AAPCS_RegMask; } const uint32_t * AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack); if (CC == CallingConv::GHC) // This is academic because all GHC calls are (supposed to be) tail calls return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask; if (CC == CallingConv::AnyReg) return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask; // All the following calling conventions are handled differently on Darwin. if (MF.getSubtarget().isTargetDarwin()) { if (SCS) report_fatal_error("ShadowCallStack attribute not supported on Darwin."); return getDarwinCallPreservedMask(MF, CC); } if (CC == CallingConv::AArch64_VectorCall) return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask; if (CC == CallingConv::AArch64_SVE_VectorCall) return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask : CSR_AArch64_SVE_AAPCS_RegMask; if (CC == CallingConv::CFGuard_Check) return CSR_Win_AArch64_CFGuard_Check_RegMask; if (MF.getSubtarget().getTargetLowering() ->supportSwiftError() && MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask : CSR_AArch64_AAPCS_SwiftError_RegMask; if (CC == CallingConv::PreserveMost) return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask : CSR_AArch64_RT_MostRegs_RegMask; else return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask; } const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask( const MachineFunction &MF) const { if (MF.getSubtarget().isTargetLinux()) return CSR_AArch64_AAPCS_RegMask; return nullptr; } const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const { if (TT.isOSDarwin()) return CSR_Darwin_AArch64_TLS_RegMask; assert(TT.isOSBinFormatELF() && "Invalid target"); return CSR_AArch64_TLS_ELF_RegMask; } void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF, const uint32_t **Mask) const { uint32_t *UpdatedMask = MF.allocateRegMask(); unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs()); memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize); for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { if (MF.getSubtarget().isXRegCustomCalleeSaved(i)) { for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i), this, true); SubReg.isValid(); ++SubReg) { // See TargetRegisterInfo::getCallPreservedMask for how to interpret the // register mask. UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32); } } } *Mask = UpdatedMask; } const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const { return CSR_AArch64_NoRegs_RegMask; } const uint32_t * AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { // This should return a register mask that is the same as that returned by // getCallPreservedMask but that additionally preserves the register used for // the first i64 argument (which must also be the register used to return a // single i64 return value) // // In case that the calling convention does not use the same register for // both, the function should return NULL (does not currently apply) assert(CC != CallingConv::GHC && "should not be GHC calling convention."); if (MF.getSubtarget().isTargetDarwin()) return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask; return CSR_AArch64_AAPCS_ThisReturn_RegMask; } const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const { return CSR_AArch64_StackProbe_Windows_RegMask; } BitVector AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const { const AArch64FrameLowering *TFI = getFrameLowering(MF); // FIXME: avoid re-calculating this every time. BitVector Reserved(getNumRegs()); markSuperRegs(Reserved, AArch64::WSP); markSuperRegs(Reserved, AArch64::WZR); if (TFI->hasFP(MF) || TT.isOSDarwin()) markSuperRegs(Reserved, AArch64::W29); for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) { if (MF.getSubtarget().isXRegisterReserved(i)) markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i)); } if (hasBasePointer(MF)) markSuperRegs(Reserved, AArch64::W19); // SLH uses register W16/X16 as the taint register. if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) markSuperRegs(Reserved, AArch64::W16); assert(checkAllSuperRegsMarked(Reserved)); return Reserved; } bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF, MCRegister Reg) const { return getReservedRegs(MF)[Reg]; } bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const { return std::any_of(std::begin(*AArch64::GPR64argRegClass.MC), std::end(*AArch64::GPR64argRegClass.MC), [this, &MF](MCPhysReg r){return isReservedReg(MF, r);}); } void AArch64RegisterInfo::emitReservedArgRegCallError( const MachineFunction &MF) const { const Function &F = MF.getFunction(); F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support" " function calls if any of the argument registers is reserved.")}); } bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const { return !isReservedReg(MF, PhysReg); } bool AArch64RegisterInfo::isConstantPhysReg(MCRegister PhysReg) const { return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR; } const TargetRegisterClass * AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { return &AArch64::GPR64spRegClass; } const TargetRegisterClass * AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { if (RC == &AArch64::CCRRegClass) return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV. return RC; } unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; } bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); // In the presence of variable sized objects or funclets, if the fixed stack // size is large enough that referencing from the FP won't result in things // being in range relatively often, we can use a base pointer to allow access // from the other direction like the SP normally works. // // Furthermore, if both variable sized objects are present, and the // stack needs to be dynamically re-aligned, the base pointer is the only // reliable way to reference the locals. if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) { if (needsStackRealignment(MF)) return true; if (MF.getSubtarget().hasSVE()) { const AArch64FunctionInfo *AFI = MF.getInfo(); // Frames that have variable sized objects and scalable SVE objects, // should always use a basepointer. if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE()) return true; } // Conservatively estimate whether the negative offset from the frame // pointer will be sufficient to reach. If a function has a smallish // frame, it's less likely to have lots of spills and callee saved // space, so it's all more likely to be within range of the frame pointer. // If it's wrong, we'll materialize the constant and still get to the // object; it's just suboptimal. Negative offsets use the unscaled // load/store instructions, which have a 9-bit signed immediate. return MFI.getLocalFrameSize() >= 256; } return false; } Register AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const { const AArch64FrameLowering *TFI = getFrameLowering(MF); return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP; } bool AArch64RegisterInfo::requiresRegisterScavenging( const MachineFunction &MF) const { return true; } bool AArch64RegisterInfo::requiresVirtualBaseRegisters( const MachineFunction &MF) const { return true; } bool AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const { // This function indicates whether the emergency spillslot should be placed // close to the beginning of the stackframe (closer to FP) or the end // (closer to SP). // // The beginning works most reliably if we have a frame pointer. // In the presence of any non-constant space between FP and locals, // (e.g. in case of stack realignment or a scalable SVE area), it is // better to use SP or BP. const AArch64FrameLowering &TFI = *getFrameLowering(MF); const AArch64FunctionInfo *AFI = MF.getInfo(); assert((!MF.getSubtarget().hasSVE() || AFI->hasCalculatedStackSizeSVE()) && "Expected SVE area to be calculated by this point"); return TFI.hasFP(MF) && !needsStackRealignment(MF) && !AFI->getStackSizeSVE(); } bool AArch64RegisterInfo::requiresFrameIndexScavenging( const MachineFunction &MF) const { return true; } bool AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack()) return true; return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken(); } /// needsFrameBaseReg - Returns true if the instruction's frame index /// reference would be better served by a base register other than FP /// or SP. Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) assert(i < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!"); // It's the load/store FI references that cause issues, as it can be difficult // to materialize the offset if it won't fit in the literal field. Estimate // based on the size of the local frame and some conservative assumptions // about the rest of the stack frame (note, this is pre-regalloc, so // we don't know everything for certain yet) whether this offset is likely // to be out of range of the immediate. Return true if so. // We only generate virtual base registers for loads and stores, so // return false for everything else. if (!MI->mayLoad() && !MI->mayStore()) return false; // Without a virtual base register, if the function has variable sized // objects, all fixed-size local references will be via the frame pointer, // Approximate the offset and see if it's legal for the instruction. // Note that the incoming offset is based on the SP value at function entry, // so it'll be negative. MachineFunction &MF = *MI->getParent()->getParent(); const AArch64FrameLowering *TFI = getFrameLowering(MF); MachineFrameInfo &MFI = MF.getFrameInfo(); // Estimate an offset from the frame pointer. // Conservatively assume all GPR callee-saved registers get pushed. // FP, LR, X19-X28, D8-D15. 64-bits each. int64_t FPOffset = Offset - 16 * 20; // Estimate an offset from the stack pointer. // The incoming offset is relating to the SP at the start of the function, // but when we access the local it'll be relative to the SP after local // allocation, so adjust our SP-relative offset by that allocation size. Offset += MFI.getLocalFrameSize(); // Assume that we'll have at least some spill slots allocated. // FIXME: This is a total SWAG number. We should run some statistics // and pick a real one. Offset += 128; // 128 bytes of spill slots // If there is a frame pointer, try using it. // The FP is only available if there is no dynamic realignment. We // don't know for sure yet whether we'll need that, so we guess based // on whether there are any local variables that would trigger it. if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset)) return false; // If we can reference via the stack pointer or base pointer, try that. // FIXME: This (and the code that resolves the references) can be improved // to only disallow SP relative references in the live range of // the VLA(s). In practice, it's unclear how much difference that // would make, but it may be worth doing. if (isFrameOffsetLegal(MI, AArch64::SP, Offset)) return false; // If even offset 0 is illegal, we don't want a virtual base register. if (!isFrameOffsetLegal(MI, AArch64::SP, 0)) return false; // The offset likely isn't legal; we want to allocate a virtual base register. return true; } bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const { assert(MI && "Unable to get the legal offset for nil instruction."); StackOffset SaveOffset = StackOffset::getFixed(Offset); return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal; } /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx /// at the beginning of the basic block. void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, Register BaseReg, int FrameIdx, int64_t Offset) const { MachineBasicBlock::iterator Ins = MBB->begin(); DebugLoc DL; // Defaults to "unknown" if (Ins != MBB->end()) DL = Ins->getDebugLoc(); const MachineFunction &MF = *MBB->getParent(); const AArch64InstrInfo *TII = MF.getSubtarget().getInstrInfo(); const MCInstrDesc &MCID = TII->get(AArch64::ADDXri); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF)); unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); BuildMI(*MBB, Ins, DL, MCID, BaseReg) .addFrameIndex(FrameIdx) .addImm(Offset) .addImm(Shifter); } void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const { // ARM doesn't need the general 64-bit offsets StackOffset Off = StackOffset::getFixed(Offset); unsigned i = 0; while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } const MachineFunction *MF = MI.getParent()->getParent(); const AArch64InstrInfo *TII = MF->getSubtarget().getInstrInfo(); bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII); assert(Done && "Unable to resolve frame index!"); (void)Done; } // Create a scratch register for the frame index elimination in an instruction. // This function has special handling of stack tagging loop pseudos, in which // case it can also change the instruction opcode (but not the operands). static Register createScratchRegisterForInstruction(MachineInstr &MI, const AArch64InstrInfo *TII) { // ST*Gloop have a reserved scratch register in operand 1. Use it, and also // replace the instruction with the writeback variant because it will now // satisfy the operand constraints for it. if (MI.getOpcode() == AArch64::STGloop) { MI.setDesc(TII->get(AArch64::STGloop_wback)); return MI.getOperand(1).getReg(); } else if (MI.getOpcode() == AArch64::STZGloop) { MI.setDesc(TII->get(AArch64::STZGloop_wback)); return MI.getOperand(1).getReg(); } else { return MI.getMF()->getRegInfo().createVirtualRegister( &AArch64::GPR64RegClass); } } void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const AArch64InstrInfo *TII = MF.getSubtarget().getInstrInfo(); const AArch64FrameLowering *TFI = getFrameLowering(MF); int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); bool Tagged = MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED; Register FrameReg; // Special handling of dbg_value, stackmap patchpoint statepoint instructions. if (MI.isDebugValue() || MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT || MI.getOpcode() == TargetOpcode::STATEPOINT) { StackOffset Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg, /*PreferFP=*/true, /*ForSimm=*/false); Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm()); MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/); MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed()); return; } if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) { MachineOperand &FI = MI.getOperand(FIOperandNum); StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex); assert(!Offset.getScalable() && "Frame offsets with a scalable component are not supported"); FI.ChangeToImmediate(Offset.getFixed()); return; } StackOffset Offset; if (MI.getOpcode() == AArch64::TAGPstack) { // TAGPstack must use the virtual frame register in its 3rd operand. const AArch64FunctionInfo *AFI = MF.getInfo(); FrameReg = MI.getOperand(3).getReg(); Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + AFI->getTaggedBasePointerOffset()); } else if (Tagged) { StackOffset SPOffset = StackOffset::getFixed( MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize()); if (MFI.hasVarSizedObjects() || isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) != (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) { // Can't update to SP + offset in place. Precalculate the tagged pointer // in a scratch register. Offset = TFI->resolveFrameIndexReference( MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); Register ScratchReg = MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII); BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg) .addReg(ScratchReg) .addReg(ScratchReg) .addImm(0); MI.getOperand(FIOperandNum) .ChangeToRegister(ScratchReg, false, false, true); return; } FrameReg = AArch64::SP; Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize()); } else { Offset = TFI->resolveFrameIndexReference( MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); } // Modify MI as necessary to handle as much of 'Offset' as possible if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII)) return; assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) && "Emergency spill slot is out of reach"); // If we get here, the immediate doesn't fit into the instruction. We folded // as much as possible above. Handle the rest, providing a register that is // SP+LargeImm. Register ScratchReg = createScratchRegisterForInstruction(MI, TII); emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII); MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true); } unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { const AArch64FrameLowering *TFI = getFrameLowering(MF); switch (RC->getID()) { default: return 0; case AArch64::GPR32RegClassID: case AArch64::GPR32spRegClassID: case AArch64::GPR32allRegClassID: case AArch64::GPR64spRegClassID: case AArch64::GPR64allRegClassID: case AArch64::GPR64RegClassID: case AArch64::GPR32commonRegClassID: case AArch64::GPR64commonRegClassID: return 32 - 1 // XZR/SP - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP - MF.getSubtarget().getNumXRegisterReserved() - hasBasePointer(MF); // X19 case AArch64::FPR8RegClassID: case AArch64::FPR16RegClassID: case AArch64::FPR32RegClassID: case AArch64::FPR64RegClassID: case AArch64::FPR128RegClassID: return 32; case AArch64::DDRegClassID: case AArch64::DDDRegClassID: case AArch64::DDDDRegClassID: case AArch64::QQRegClassID: case AArch64::QQQRegClassID: case AArch64::QQQQRegClassID: return 32; case AArch64::FPR128_loRegClassID: case AArch64::FPR64_loRegClassID: case AArch64::FPR16_loRegClassID: return 16; } } unsigned AArch64RegisterInfo::getLocalAddressRegister( const MachineFunction &MF) const { const auto &MFI = MF.getFrameInfo(); if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects()) return AArch64::SP; else if (needsStackRealignment(MF)) return getBaseRegister(); return getFrameRegister(MF); } /// SrcRC and DstRC will be morphed into NewRC if this returns true bool AArch64RegisterInfo::shouldCoalesce( MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const { if (MI->isCopy() && ((DstRC->getID() == AArch64::GPR64RegClassID) || (DstRC->getID() == AArch64::GPR64commonRegClassID)) && MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg()) // Do not coalesce in the case of a 32-bit subregister copy // which implements a 32 to 64 bit zero extension // which relies on the upper 32 bits being zeroed. return false; return true; }