//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the base ARM implementation of TargetRegisterInfo class. // //===----------------------------------------------------------------------===// #include "ARMBaseRegisterInfo.h" #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMFrameLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #define DEBUG_TYPE "arm-register-info" #define GET_REGINFO_TARGET_DESC #include "ARMGenRegisterInfo.inc" using namespace llvm; ARMBaseRegisterInfo::ARMBaseRegisterInfo() : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC) { ARM_MC::initLLVMToCVRegMapping(this); } static unsigned getFramePointerReg(const ARMSubtarget &STI) { return STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; } const MCPhysReg* ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { const ARMSubtarget &STI = MF->getSubtarget(); bool UseSplitPush = STI.splitFramePushPop(*MF); const MCPhysReg *RegList = STI.isTargetDarwin() ? CSR_iOS_SaveList : (UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList); const Function &F = MF->getFunction(); if (F.getCallingConv() == CallingConv::GHC) { // GHC set of callee saved regs is empty as all those regs are // used for passing STG regs around return CSR_NoRegs_SaveList; } else if (F.getCallingConv() == CallingConv::CFGuard_Check) { return CSR_Win_AAPCS_CFGuard_Check_SaveList; } else if (F.hasFnAttribute("interrupt")) { if (STI.isMClass()) { // M-class CPUs have hardware which saves the registers needed to allow a // function conforming to the AAPCS to function as a handler. return UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList; } else if (F.getFnAttribute("interrupt").getValueAsString() == "FIQ") { // Fast interrupt mode gives the handler a private copy of R8-R14, so less // need to be saved to restore user-mode state. return CSR_FIQ_SaveList; } else { // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by // exception handling. return CSR_GenericInt_SaveList; } } if (STI.getTargetLowering()->supportSwiftError() && F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { if (STI.isTargetDarwin()) return CSR_iOS_SwiftError_SaveList; return UseSplitPush ? CSR_AAPCS_SplitPush_SwiftError_SaveList : CSR_AAPCS_SwiftError_SaveList; } if (STI.isTargetDarwin() && F.getCallingConv() == CallingConv::CXX_FAST_TLS) return MF->getInfo()->isSplitCSR() ? CSR_iOS_CXX_TLS_PE_SaveList : CSR_iOS_CXX_TLS_SaveList; return RegList; } const MCPhysReg *ARMBaseRegisterInfo::getCalleeSavedRegsViaCopy( const MachineFunction *MF) const { assert(MF && "Invalid MachineFunction pointer."); if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && MF->getInfo()->isSplitCSR()) return CSR_iOS_CXX_TLS_ViaCopy_SaveList; return nullptr; } const uint32_t * ARMBaseRegisterInfo::getCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { const ARMSubtarget &STI = MF.getSubtarget(); if (CC == CallingConv::GHC) // This is academic because all GHC calls are (supposed to be) tail calls return CSR_NoRegs_RegMask; if (CC == CallingConv::CFGuard_Check) return CSR_Win_AAPCS_CFGuard_Check_RegMask; if (STI.getTargetLowering()->supportSwiftError() && MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) return STI.isTargetDarwin() ? CSR_iOS_SwiftError_RegMask : CSR_AAPCS_SwiftError_RegMask; if (STI.isTargetDarwin() && CC == CallingConv::CXX_FAST_TLS) return CSR_iOS_CXX_TLS_RegMask; return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask; } const uint32_t* ARMBaseRegisterInfo::getNoPreservedMask() const { return CSR_NoRegs_RegMask; } const uint32_t * ARMBaseRegisterInfo::getTLSCallPreservedMask(const MachineFunction &MF) const { assert(MF.getSubtarget().isTargetDarwin() && "only know about special TLS call on Darwin"); return CSR_iOS_TLSCall_RegMask; } const uint32_t * ARMBaseRegisterInfo::getSjLjDispatchPreservedMask(const MachineFunction &MF) const { const ARMSubtarget &STI = MF.getSubtarget(); if (!STI.useSoftFloat() && STI.hasVFP2Base() && !STI.isThumb1Only()) return CSR_NoRegs_RegMask; else return CSR_FPRegs_RegMask; } const uint32_t * ARMBaseRegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { const ARMSubtarget &STI = MF.getSubtarget(); // This should return a register mask that is the same as that returned by // getCallPreservedMask but that additionally preserves the register used for // the first i32 argument (which must also be the register used to return a // single i32 return value) // // In case that the calling convention does not use the same register for // both or otherwise does not want to enable this optimization, the function // should return NULL if (CC == CallingConv::GHC) // This is academic because all GHC calls are (supposed to be) tail calls return nullptr; return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask : CSR_AAPCS_ThisReturn_RegMask; } ArrayRef ARMBaseRegisterInfo::getIntraCallClobberedRegs( const MachineFunction *MF) const { static const MCPhysReg IntraCallClobberedRegs[] = {ARM::R12}; return ArrayRef(IntraCallClobberedRegs); } BitVector ARMBaseRegisterInfo:: getReservedRegs(const MachineFunction &MF) const { const ARMSubtarget &STI = MF.getSubtarget(); const ARMFrameLowering *TFI = getFrameLowering(MF); // FIXME: avoid re-calculating this every time. BitVector Reserved(getNumRegs()); markSuperRegs(Reserved, ARM::SP); markSuperRegs(Reserved, ARM::PC); markSuperRegs(Reserved, ARM::FPSCR); markSuperRegs(Reserved, ARM::APSR_NZCV); if (TFI->hasFP(MF)) markSuperRegs(Reserved, getFramePointerReg(STI)); if (hasBasePointer(MF)) markSuperRegs(Reserved, BasePtr); // Some targets reserve R9. if (STI.isR9Reserved()) markSuperRegs(Reserved, ARM::R9); // Reserve D16-D31 if the subtarget doesn't support them. if (!STI.hasD32()) { static_assert(ARM::D31 == ARM::D16 + 15, "Register list not consecutive!"); for (unsigned R = 0; R < 16; ++R) markSuperRegs(Reserved, ARM::D16 + R); } const TargetRegisterClass &RC = ARM::GPRPairRegClass; for (unsigned Reg : RC) for (MCSubRegIterator SI(Reg, this); SI.isValid(); ++SI) if (Reserved.test(*SI)) markSuperRegs(Reserved, Reg); // For v8.1m architecture markSuperRegs(Reserved, ARM::ZR); assert(checkAllSuperRegsMarked(Reserved)); return Reserved; } bool ARMBaseRegisterInfo:: isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const { return !getReservedRegs(MF).test(PhysReg); } bool ARMBaseRegisterInfo::isInlineAsmReadOnlyReg(const MachineFunction &MF, unsigned PhysReg) const { const ARMSubtarget &STI = MF.getSubtarget(); const ARMFrameLowering *TFI = getFrameLowering(MF); BitVector Reserved(getNumRegs()); markSuperRegs(Reserved, ARM::PC); if (TFI->hasFP(MF)) markSuperRegs(Reserved, getFramePointerReg(STI)); if (hasBasePointer(MF)) markSuperRegs(Reserved, BasePtr); assert(checkAllSuperRegsMarked(Reserved)); return Reserved.test(PhysReg); } const TargetRegisterClass * ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const { const TargetRegisterClass *Super = RC; TargetRegisterClass::sc_iterator I = RC->getSuperClasses(); do { switch (Super->getID()) { case ARM::GPRRegClassID: case ARM::SPRRegClassID: case ARM::DPRRegClassID: case ARM::GPRPairRegClassID: return Super; case ARM::QPRRegClassID: case ARM::QQPRRegClassID: case ARM::QQQQPRRegClassID: if (MF.getSubtarget().hasNEON()) return Super; } Super = *I++; } while (Super); return RC; } const TargetRegisterClass * ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { return &ARM::GPRRegClass; } const TargetRegisterClass * ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { if (RC == &ARM::CCRRegClass) return &ARM::rGPRRegClass; // Can't copy CCR registers. return RC; } unsigned ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { const ARMSubtarget &STI = MF.getSubtarget(); const ARMFrameLowering *TFI = getFrameLowering(MF); switch (RC->getID()) { default: return 0; case ARM::tGPRRegClassID: { // hasFP ends up calling getMaxCallFrameComputed() which may not be // available when getPressureLimit() is called as part of // ScheduleDAGRRList. bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed() ? TFI->hasFP(MF) : true; return 5 - HasFP; } case ARM::GPRRegClassID: { bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed() ? TFI->hasFP(MF) : true; return 10 - HasFP - (STI.isR9Reserved() ? 1 : 0); } case ARM::SPRRegClassID: // Currently not used as 'rep' register class. case ARM::DPRRegClassID: return 32 - 10; } } // Get the other register in a GPRPair. static MCPhysReg getPairedGPR(MCPhysReg Reg, bool Odd, const MCRegisterInfo *RI) { for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers) if (ARM::GPRPairRegClass.contains(*Supers)) return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0); return 0; } // Resolve the RegPairEven / RegPairOdd register allocator hints. bool ARMBaseRegisterInfo::getRegAllocationHints( Register VirtReg, ArrayRef Order, SmallVectorImpl &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { const MachineRegisterInfo &MRI = MF.getRegInfo(); std::pair Hint = MRI.getRegAllocationHint(VirtReg); unsigned Odd; switch (Hint.first) { case ARMRI::RegPairEven: Odd = 0; break; case ARMRI::RegPairOdd: Odd = 1; break; case ARMRI::RegLR: TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM); if (MRI.getRegClass(VirtReg)->contains(ARM::LR)) Hints.push_back(ARM::LR); return false; default: return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM); } // This register should preferably be even (Odd == 0) or odd (Odd == 1). // Check if the other part of the pair has already been assigned, and provide // the paired register as the first hint. Register Paired = Hint.second; if (!Paired) return false; Register PairedPhys; if (Paired.isPhysical()) { PairedPhys = Paired; } else if (VRM && VRM->hasPhys(Paired)) { PairedPhys = getPairedGPR(VRM->getPhys(Paired), Odd, this); } // First prefer the paired physreg. if (PairedPhys && is_contained(Order, PairedPhys)) Hints.push_back(PairedPhys); // Then prefer even or odd registers. for (MCPhysReg Reg : Order) { if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd) continue; // Don't provide hints that are paired to a reserved register. MCPhysReg Paired = getPairedGPR(Reg, !Odd, this); if (!Paired || MRI.isReserved(Paired)) continue; Hints.push_back(Reg); } return false; } void ARMBaseRegisterInfo::updateRegAllocHint(Register Reg, Register NewReg, MachineFunction &MF) const { MachineRegisterInfo *MRI = &MF.getRegInfo(); std::pair Hint = MRI->getRegAllocationHint(Reg); if ((Hint.first == ARMRI::RegPairOdd || Hint.first == ARMRI::RegPairEven) && Hint.second.isVirtual()) { // If 'Reg' is one of the even / odd register pair and it's now changed // (e.g. coalesced) into a different register. The other register of the // pair allocation hint must be updated to reflect the relationship // change. Register OtherReg = Hint.second; Hint = MRI->getRegAllocationHint(OtherReg); // Make sure the pair has not already divorced. if (Hint.second == Reg) { MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg); if (Register::isVirtualRegister(NewReg)) MRI->setRegAllocationHint(NewReg, Hint.first == ARMRI::RegPairOdd ? ARMRI::RegPairEven : ARMRI::RegPairOdd, OtherReg); } } } bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const ARMFunctionInfo *AFI = MF.getInfo(); const ARMFrameLowering *TFI = getFrameLowering(MF); // If we have stack realignment and VLAs, we have no pointer to use to // access the stack. If we have stack realignment, and a large call frame, // we have no place to allocate the emergency spill slot. if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF)) return true; // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited // negative range for ldr/str (255), and Thumb1 is positive offsets only. // // It's going to be better to use the SP or Base Pointer instead. When there // are variable sized objects, we can't reference off of the SP, so we // reserve a Base Pointer. // // For Thumb2, estimate whether a negative offset from the frame pointer // will be sufficient to reach the whole stack frame. If a function has a // smallish frame, it's less likely to have lots of spills and callee saved // space, so it's all more likely to be within range of the frame pointer. // If it's wrong, the scavenger will still enable access to work, it just // won't be optimal. (We should always be able to reach the emergency // spill slot from the frame pointer.) if (AFI->isThumb2Function() && MFI.hasVarSizedObjects() && MFI.getLocalFrameSize() >= 128) return true; // For Thumb1, if sp moves, nothing is in range, so force a base pointer. // This is necessary for correctness in cases where we need an emergency // spill slot. (In Thumb1, we can't use a negative offset from the frame // pointer.) if (AFI->isThumb1OnlyFunction() && !TFI->hasReservedCallFrame(MF)) return true; return false; } bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const { const MachineRegisterInfo *MRI = &MF.getRegInfo(); const ARMFrameLowering *TFI = getFrameLowering(MF); // We can't realign the stack if: // 1. Dynamic stack realignment is explicitly disabled, // 2. There are VLAs in the function and the base pointer is disabled. if (!TargetRegisterInfo::canRealignStack(MF)) return false; // Stack realignment requires a frame pointer. If we already started // register allocation with frame pointer elimination, it is too late now. if (!MRI->canReserveReg(getFramePointerReg(MF.getSubtarget()))) return false; // We may also need a base pointer if there are dynamic allocas or stack // pointer adjustments around calls. if (TFI->hasReservedCallFrame(MF)) return true; // A base pointer is required and allowed. Check that it isn't too late to // reserve it. return MRI->canReserveReg(BasePtr); } bool ARMBaseRegisterInfo:: cannotEliminateFrame(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack()) return true; return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || needsStackRealignment(MF); } Register ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const { const ARMSubtarget &STI = MF.getSubtarget(); const ARMFrameLowering *TFI = getFrameLowering(MF); if (TFI->hasFP(MF)) return getFramePointerReg(STI); return ARM::SP; } /// emitLoadConstPool - Emits a load from constpool to materialize the /// specified immediate. void ARMBaseRegisterInfo::emitLoadConstPool( MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, Register DestReg, unsigned SubIdx, int Val, ARMCC::CondCodes Pred, Register PredReg, unsigned MIFlags) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); MachineConstantPool *ConstantPool = MF.getConstantPool(); const Constant *C = ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), Val); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align(4)); BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp)) .addReg(DestReg, getDefRegState(true), SubIdx) .addConstantPoolIndex(Idx) .addImm(0) .add(predOps(Pred, PredReg)) .setMIFlags(MIFlags); } bool ARMBaseRegisterInfo:: requiresRegisterScavenging(const MachineFunction &MF) const { return true; } bool ARMBaseRegisterInfo:: requiresFrameIndexScavenging(const MachineFunction &MF) const { return true; } bool ARMBaseRegisterInfo:: requiresVirtualBaseRegisters(const MachineFunction &MF) const { return true; } int64_t ARMBaseRegisterInfo:: getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const { const MCInstrDesc &Desc = MI->getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); int64_t InstrOffs = 0; int Scale = 1; unsigned ImmIdx = 0; switch (AddrMode) { case ARMII::AddrModeT2_i8: case ARMII::AddrModeT2_i12: case ARMII::AddrMode_i12: InstrOffs = MI->getOperand(Idx+1).getImm(); Scale = 1; break; case ARMII::AddrMode5: { // VFP address mode. const MachineOperand &OffOp = MI->getOperand(Idx+1); InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm()); if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub) InstrOffs = -InstrOffs; Scale = 4; break; } case ARMII::AddrMode2: ImmIdx = Idx+2; InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm()); if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs = -InstrOffs; break; case ARMII::AddrMode3: ImmIdx = Idx+2; InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm()); if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs = -InstrOffs; break; case ARMII::AddrModeT1_s: ImmIdx = Idx+1; InstrOffs = MI->getOperand(ImmIdx).getImm(); Scale = 4; break; default: llvm_unreachable("Unsupported addressing mode!"); } return InstrOffs * Scale; } /// needsFrameBaseReg - Returns true if the instruction's frame index /// reference would be better served by a base register other than FP /// or SP. Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. bool ARMBaseRegisterInfo:: needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) { assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!"); } // It's the load/store FI references that cause issues, as it can be difficult // to materialize the offset if it won't fit in the literal field. Estimate // based on the size of the local frame and some conservative assumptions // about the rest of the stack frame (note, this is pre-regalloc, so // we don't know everything for certain yet) whether this offset is likely // to be out of range of the immediate. Return true if so. // We only generate virtual base registers for loads and stores, so // return false for everything else. unsigned Opc = MI->getOpcode(); switch (Opc) { case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12: case ARM::STRi12: case ARM::STRH: case ARM::STRBi12: case ARM::t2LDRi12: case ARM::t2LDRi8: case ARM::t2STRi12: case ARM::t2STRi8: case ARM::VLDRS: case ARM::VLDRD: case ARM::VSTRS: case ARM::VSTRD: case ARM::tSTRspi: case ARM::tLDRspi: break; default: return false; } // Without a virtual base register, if the function has variable sized // objects, all fixed-size local references will be via the frame pointer, // Approximate the offset and see if it's legal for the instruction. // Note that the incoming offset is based on the SP value at function entry, // so it'll be negative. MachineFunction &MF = *MI->getParent()->getParent(); const ARMFrameLowering *TFI = getFrameLowering(MF); MachineFrameInfo &MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); // Estimate an offset from the frame pointer. // Conservatively assume all callee-saved registers get pushed. R4-R6 // will be earlier than the FP, so we ignore those. // R7, LR int64_t FPOffset = Offset - 8; // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15 if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction()) FPOffset -= 80; // Estimate an offset from the stack pointer. // The incoming offset is relating to the SP at the start of the function, // but when we access the local it'll be relative to the SP after local // allocation, so adjust our SP-relative offset by that allocation size. Offset += MFI.getLocalFrameSize(); // Assume that we'll have at least some spill slots allocated. // FIXME: This is a total SWAG number. We should run some statistics // and pick a real one. Offset += 128; // 128 bytes of spill slots // If there's a frame pointer and the addressing mode allows it, try using it. // The FP is only available if there is no dynamic realignment. We // don't know for sure yet whether we'll need that, so we guess based // on whether there are any local variables that would trigger it. if (TFI->hasFP(MF) && !((MFI.getLocalFrameMaxAlign() > TFI->getStackAlign()) && canRealignStack(MF))) { if (isFrameOffsetLegal(MI, getFrameRegister(MF), FPOffset)) return false; } // If we can reference via the stack pointer, try that. // FIXME: This (and the code that resolves the references) can be improved // to only disallow SP relative references in the live range of // the VLA(s). In practice, it's unclear how much difference that // would make, but it may be worth doing. if (!MFI.hasVarSizedObjects() && isFrameOffsetLegal(MI, ARM::SP, Offset)) return false; // The offset likely isn't legal, we want to allocate a virtual base register. return true; } /// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to /// be a pointer to FrameIdx at the beginning of the basic block. void ARMBaseRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, Register BaseReg, int FrameIdx, int64_t Offset) const { ARMFunctionInfo *AFI = MBB->getParent()->getInfo(); unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri : (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri); MachineBasicBlock::iterator Ins = MBB->begin(); DebugLoc DL; // Defaults to "unknown" if (Ins != MBB->end()) DL = Ins->getDebugLoc(); const MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const MCInstrDesc &MCID = TII.get(ADDriOpc); MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg) .addFrameIndex(FrameIdx).addImm(Offset); if (!AFI->isThumb1OnlyFunction()) MIB.add(predOps(ARMCC::AL)).add(condCodeOp()); } void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *AFI = MF.getInfo(); int Off = Offset; // ARM doesn't need the general 64-bit offsets unsigned i = 0; assert(!AFI->isThumb1OnlyFunction() && "This resolveFrameIndex does not support Thumb1!"); while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } bool Done = false; if (!AFI->isThumbFunction()) Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII); else { assert(AFI->isThumb2Function()); Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII, this); } assert(Done && "Unable to resolve frame index!"); (void)Done; } bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const { const MCInstrDesc &Desc = MI->getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); unsigned i = 0; for (; !MI->getOperand(i).isFI(); ++i) assert(i+1 < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!"); // AddrMode4 and AddrMode6 cannot handle any offset. if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6) return Offset == 0; unsigned NumBits = 0; unsigned Scale = 1; bool isSigned = true; switch (AddrMode) { case ARMII::AddrModeT2_i8: case ARMII::AddrModeT2_i12: // i8 supports only negative, and i12 supports only positive, so // based on Offset sign, consider the appropriate instruction Scale = 1; if (Offset < 0) { NumBits = 8; Offset = -Offset; } else { NumBits = 12; } break; case ARMII::AddrMode5: // VFP address mode. NumBits = 8; Scale = 4; break; case ARMII::AddrMode_i12: case ARMII::AddrMode2: NumBits = 12; break; case ARMII::AddrMode3: NumBits = 8; break; case ARMII::AddrModeT1_s: NumBits = (BaseReg == ARM::SP ? 8 : 5); Scale = 4; isSigned = false; break; default: llvm_unreachable("Unsupported addressing mode!"); } Offset += getFrameIndexInstrOffset(MI, i); // Make sure the offset is encodable for instructions that scale the // immediate. if ((Offset & (Scale-1)) != 0) return false; if (isSigned && Offset < 0) Offset = -Offset; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) return true; return false; } void ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); const ARMFrameLowering *TFI = getFrameLowering(MF); ARMFunctionInfo *AFI = MF.getInfo(); assert(!AFI->isThumb1OnlyFunction() && "This eliminateFrameIndex does not support Thumb1!"); int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); Register FrameReg; int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj); // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the // call frame setup/destroy instructions have already been eliminated. That // means the stack pointer cannot be used to access the emergency spill slot // when !hasReservedCallFrame(). #ifndef NDEBUG if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){ assert(TFI->hasReservedCallFrame(MF) && "Cannot use SP to access the emergency spill slot in " "functions without a reserved call frame"); assert(!MF.getFrameInfo().hasVarSizedObjects() && "Cannot use SP to access the emergency spill slot in " "functions with variable sized frame objects"); } #endif // NDEBUG assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code"); // Modify MI as necessary to handle as much of 'Offset' as possible bool Done = false; if (!AFI->isThumbFunction()) Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII); else { assert(AFI->isThumb2Function()); Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII, this); } if (Done) return; // If we get here, the immediate doesn't fit into the instruction. We folded // as much as possible above, handle the rest, providing a register that is // SP+LargeImm. assert( (Offset || (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 || (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6 || (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7 || (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7s2 || (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7s4) && "This code isn't needed if offset already handled!"); unsigned ScratchReg = 0; int PIdx = MI.findFirstPredOperandIdx(); ARMCC::CondCodes Pred = (PIdx == -1) ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); Register PredReg = (PIdx == -1) ? Register() : MI.getOperand(PIdx+1).getReg(); const MCInstrDesc &MCID = MI.getDesc(); const TargetRegisterClass *RegClass = TII.getRegClass(MCID, FIOperandNum, this, *MI.getParent()->getParent()); if (Offset == 0 && (Register::isVirtualRegister(FrameReg) || RegClass->contains(FrameReg))) // Must be addrmode4/6. MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false); else { ScratchReg = MF.getRegInfo().createVirtualRegister(RegClass); if (!AFI->isThumbFunction()) emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, Pred, PredReg, TII); else { assert(AFI->isThumb2Function()); emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, Pred, PredReg, TII); } // Update the original instruction to use the scratch register. MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true); } } bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const { auto MBB = MI->getParent(); auto MF = MBB->getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); // If not copying into a sub-register this should be ok because we shouldn't // need to split the reg. if (!DstSubReg) return true; // Small registers don't frequently cause a problem, so we can coalesce them. if (getRegSizeInBits(*NewRC) < 256 && getRegSizeInBits(*DstRC) < 256 && getRegSizeInBits(*SrcRC) < 256) return true; auto NewRCWeight = MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC); auto SrcRCWeight = MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC); auto DstRCWeight = MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC); // If the source register class is more expensive than the destination, the // coalescing is probably profitable. if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight) return true; if (DstRCWeight.RegWeight > NewRCWeight.RegWeight) return true; // If the register allocator isn't constrained, we can always allow coalescing // unfortunately we don't know yet if we will be constrained. // The goal of this heuristic is to restrict how many expensive registers // we allow to coalesce in a given basic block. auto AFI = MF->getInfo(); auto It = AFI->getCoalescedWeight(MBB); LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: " << It->second << "\n"); LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: " << NewRCWeight.RegWeight << "\n"); // This number is the largest round number that which meets the criteria: // (1) addresses PR18825 // (2) generates better code in some test cases (like vldm-shed-a9.ll) // (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC) // In practice the SizeMultiplier will only factor in for straight line code // that uses a lot of NEON vectors, which isn't terribly common. unsigned SizeMultiplier = MBB->size()/100; SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1; if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) { It->second += NewRCWeight.RegWeight; return true; } return false; }