//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Finalize v8.1-m low-overhead loops by converting the associated pseudo /// instructions into machine operations. /// The expectation is that the loop contains three pseudo instructions: /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop /// form should be in the preheader, whereas the while form should be in the /// preheaders only predecessor. /// - t2LoopDec - placed within in the loop body. /// - t2LoopEnd - the loop latch terminator. /// /// In addition to this, we also look for the presence of the VCTP instruction, /// which determines whether we can generated the tail-predicated low-overhead /// loop form. /// /// Assumptions and Dependencies: /// Low-overhead loops are constructed and executed using a setup instruction: /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range /// but fixed polarity: WLS can only branch forwards and LE can only branch /// backwards. These restrictions mean that this pass is dependent upon block /// layout and block sizes, which is why it's the last pass to run. The same is /// true for ConstantIslands, but this pass does not increase the size of the /// basic blocks, nor does it change the CFG. Instructions are mainly removed /// during the transform and pseudo instructions are replaced by real ones. In /// some cases, when we have to revert to a 'normal' loop, we have to introduce /// multiple instructions for a single pseudo (see RevertWhile and /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd /// are defined to be as large as this maximum sequence of replacement /// instructions. /// /// A note on VPR.P0 (the lane mask): /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a /// "VPT Active" context (which includes low-overhead loops and vpt blocks). /// They will simply "and" the result of their calculation with the current /// value of VPR.P0. You can think of it like this: /// \verbatim /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs /// VPR.P0 &= Value /// else /// VPR.P0 = Value /// \endverbatim /// When we're inside the low-overhead loop (between DLSTP and LETP), we always /// fall in the "VPT active" case, so we can consider that all VPR writes by /// one of those instruction is actually a "and". //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMBasicBlockInfo.h" #include "ARMSubtarget.h" #include "MVETailPredUtils.h" #include "Thumb2InstrInfo.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineLoopUtils.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ReachingDefAnalysis.h" #include "llvm/MC/MCInstrDesc.h" using namespace llvm; #define DEBUG_TYPE "arm-low-overhead-loops" #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" static cl::opt DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), cl::init(false)); static bool isVectorPredicated(MachineInstr *MI) { int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; } static bool isVectorPredicate(MachineInstr *MI) { return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; } static bool hasVPRUse(MachineInstr &MI) { return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; } static bool isDomainMVE(MachineInstr *MI) { uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; return Domain == ARMII::DomainMVE; } static bool shouldInspect(MachineInstr &MI) { return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); } static bool isDo(MachineInstr *MI) { return MI->getOpcode() != ARM::t2WhileLoopStart; } namespace { using InstSet = SmallPtrSetImpl; class PostOrderLoopTraversal { MachineLoop &ML; MachineLoopInfo &MLI; SmallPtrSet Visited; SmallVector Order; public: PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) : ML(ML), MLI(MLI) { } const SmallVectorImpl &getOrder() const { return Order; } // Visit all the blocks within the loop, as well as exit blocks and any // blocks properly dominating the header. void ProcessLoop() { std::function Search = [this, &Search] (MachineBasicBlock *MBB) -> void { if (Visited.count(MBB)) return; Visited.insert(MBB); for (auto *Succ : MBB->successors()) { if (!ML.contains(Succ)) continue; Search(Succ); } Order.push_back(MBB); }; // Insert exit blocks. SmallVector ExitBlocks; ML.getExitBlocks(ExitBlocks); for (auto *MBB : ExitBlocks) Order.push_back(MBB); // Then add the loop body. Search(ML.getHeader()); // Then try the preheader and its predecessors. std::function GetPredecessor = [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { Order.push_back(MBB); if (MBB->pred_size() == 1) GetPredecessor(*MBB->pred_begin()); }; if (auto *Preheader = ML.getLoopPreheader()) GetPredecessor(Preheader); else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) GetPredecessor(Preheader); } }; struct PredicatedMI { MachineInstr *MI = nullptr; SetVector Predicates; public: PredicatedMI(MachineInstr *I, SetVector &Preds) : MI(I) { assert(I && "Instruction must not be null!"); Predicates.insert(Preds.begin(), Preds.end()); } }; // Represent the current state of the VPR and hold all instances which // represent a VPT block, which is a list of instructions that begins with a // VPT/VPST and has a maximum of four proceeding instructions. All // instructions within the block are predicated upon the vpr and we allow // instructions to define the vpr within in the block too. class VPTState { friend struct LowOverheadLoop; SmallVector Insts; static SmallVector Blocks; static SetVector CurrentPredicates; static std::map> PredicatedInsts; static void CreateVPTBlock(MachineInstr *MI) { assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) && "Can't begin VPT without predicate"); Blocks.emplace_back(MI); // The execution of MI is predicated upon the current set of instructions // that are AND'ed together to form the VPR predicate value. In the case // that MI is a VPT, CurrentPredicates will also just be MI. PredicatedInsts.emplace( MI, std::make_unique(MI, CurrentPredicates)); } static void reset() { Blocks.clear(); PredicatedInsts.clear(); CurrentPredicates.clear(); } static void addInst(MachineInstr *MI) { Blocks.back().insert(MI); PredicatedInsts.emplace( MI, std::make_unique(MI, CurrentPredicates)); } static void addPredicate(MachineInstr *MI) { LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); CurrentPredicates.insert(MI); } static void resetPredicate(MachineInstr *MI) { LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); CurrentPredicates.clear(); CurrentPredicates.insert(MI); } public: // Have we found an instruction within the block which defines the vpr? If // so, not all the instructions in the block will have the same predicate. static bool hasUniformPredicate(VPTState &Block) { return getDivergent(Block) == nullptr; } // If it exists, return the first internal instruction which modifies the // VPR. static MachineInstr *getDivergent(VPTState &Block) { SmallVectorImpl &Insts = Block.getInsts(); for (unsigned i = 1; i < Insts.size(); ++i) { MachineInstr *Next = Insts[i]; if (isVectorPredicate(Next)) return Next; // Found an instruction altering the vpr. } return nullptr; } // Return whether the given instruction is predicated upon a VCTP. static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { SetVector &Predicates = PredicatedInsts[MI]->Predicates; if (Exclusive && Predicates.size() != 1) return false; for (auto *PredMI : Predicates) if (isVCTP(PredMI)) return true; return false; } // Is the VPST, controlling the block entry, predicated upon a VCTP. static bool isEntryPredicatedOnVCTP(VPTState &Block, bool Exclusive = false) { SmallVectorImpl &Insts = Block.getInsts(); return isPredicatedOnVCTP(Insts.front(), Exclusive); } // If this block begins with a VPT, we can check whether it's using // at least one predicated input(s), as well as possible loop invariant // which would result in it being implicitly predicated. static bool hasImplicitlyValidVPT(VPTState &Block, ReachingDefAnalysis &RDA) { SmallVectorImpl &Insts = Block.getInsts(); MachineInstr *VPT = Insts.front(); assert(isVPTOpcode(VPT->getOpcode()) && "Expected VPT block to begin with VPT/VPST"); if (VPT->getOpcode() == ARM::MVE_VPST) return false; auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); }; auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { MachineOperand &MO = MI->getOperand(Idx); if (!MO.isReg() || !MO.getReg()) return true; SmallPtrSet Defs; RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); if (Defs.empty()) return true; for (auto *Def : Defs) if (Def->getParent() == VPT->getParent()) return false; return true; }; // Check that at least one of the operands is directly predicated on a // vctp and allow an invariant value too. return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); } static bool isValid(ReachingDefAnalysis &RDA) { // All predication within the loop should be based on vctp. If the block // isn't predicated on entry, check whether the vctp is within the block // and that all other instructions are then predicated on it. for (auto &Block : Blocks) { if (isEntryPredicatedOnVCTP(Block, false) || hasImplicitlyValidVPT(Block, RDA)) continue; SmallVectorImpl &Insts = Block.getInsts(); for (auto *MI : Insts) { // Check that any internal VCTPs are 'Then' predicated. if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) return false; // Skip other instructions that build up the predicate. if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) continue; // Check that any other instructions are predicated upon a vctp. // TODO: We could infer when VPTs are implicitly predicated on the // vctp (when the operands are predicated). if (!isPredicatedOnVCTP(MI)) { LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); return false; } } } return true; } VPTState(MachineInstr *MI) { Insts.push_back(MI); } void insert(MachineInstr *MI) { Insts.push_back(MI); // VPT/VPST + 4 predicated instructions. assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); } bool containsVCTP() const { for (auto *MI : Insts) if (isVCTP(MI)) return true; return false; } unsigned size() const { return Insts.size(); } SmallVectorImpl &getInsts() { return Insts; } }; struct LowOverheadLoop { MachineLoop &ML; MachineBasicBlock *Preheader = nullptr; MachineLoopInfo &MLI; ReachingDefAnalysis &RDA; const TargetRegisterInfo &TRI; const ARMBaseInstrInfo &TII; MachineFunction *MF = nullptr; MachineBasicBlock::iterator StartInsertPt; MachineBasicBlock *StartInsertBB = nullptr; MachineInstr *Start = nullptr; MachineInstr *Dec = nullptr; MachineInstr *End = nullptr; MachineOperand TPNumElements; SmallVector VCTPs; SmallPtrSet ToRemove; SmallPtrSet BlockMasksToRecompute; bool Revert = false; bool CannotTailPredicate = false; LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, const ARMBaseInstrInfo &TII) : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), TPNumElements(MachineOperand::CreateImm(0)) { MF = ML.getHeader()->getParent(); if (auto *MBB = ML.getLoopPreheader()) Preheader = MBB; else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) Preheader = MBB; VPTState::reset(); } // If this is an MVE instruction, check that we know how to use tail // predication with it. Record VPT blocks and return whether the // instruction is valid for tail predication. bool ValidateMVEInst(MachineInstr *MI); void AnalyseMVEInst(MachineInstr *MI) { CannotTailPredicate = !ValidateMVEInst(MI); } bool IsTailPredicationLegal() const { // For now, let's keep things really simple and only support a single // block for tail predication. return !Revert && FoundAllComponents() && !VCTPs.empty() && !CannotTailPredicate && ML.getNumBlocks() == 1; } // Given that MI is a VCTP, check that is equivalent to any other VCTPs // found. bool AddVCTP(MachineInstr *MI); // Check that the predication in the loop will be equivalent once we // perform the conversion. Also ensure that we can provide the number // of elements to the loop start instruction. bool ValidateTailPredicate(); // Check that any values available outside of the loop will be the same // after tail predication conversion. bool ValidateLiveOuts(); // Is it safe to define LR with DLS/WLS? // LR can be defined if it is the operand to start, because it's the same // value, or if it's going to be equivalent to the operand to Start. MachineInstr *isSafeToDefineLR(); // Check the branch targets are within range and we satisfy our // restrictions. void Validate(ARMBasicBlockUtils *BBUtils); bool FoundAllComponents() const { return Start && Dec && End; } SmallVectorImpl &getVPTBlocks() { return VPTState::Blocks; } // Return the operand for the loop start instruction. This will be the loop // iteration count, or the number of elements if we're tail predicating. MachineOperand &getLoopStartOperand() { if (IsTailPredicationLegal()) return TPNumElements; return isDo(Start) ? Start->getOperand(1) : Start->getOperand(0); } unsigned getStartOpcode() const { bool IsDo = isDo(Start); if (!IsTailPredicationLegal()) return IsDo ? ARM::t2DLS : ARM::t2WLS; return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); } void dump() const { if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; if (!VCTPs.empty()) { dbgs() << "ARM Loops: Found VCTP(s):\n"; for (auto *MI : VCTPs) dbgs() << " - " << *MI; } if (!FoundAllComponents()) dbgs() << "ARM Loops: Not a low-overhead loop.\n"; else if (!(Start && Dec && End)) dbgs() << "ARM Loops: Failed to find all loop components.\n"; } }; class ARMLowOverheadLoops : public MachineFunctionPass { MachineFunction *MF = nullptr; MachineLoopInfo *MLI = nullptr; ReachingDefAnalysis *RDA = nullptr; const ARMBaseInstrInfo *TII = nullptr; MachineRegisterInfo *MRI = nullptr; const TargetRegisterInfo *TRI = nullptr; std::unique_ptr BBUtils = nullptr; public: static char ID; ARMLowOverheadLoops() : MachineFunctionPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs).set( MachineFunctionProperties::Property::TracksLiveness); } StringRef getPassName() const override { return ARM_LOW_OVERHEAD_LOOPS_NAME; } private: bool ProcessLoop(MachineLoop *ML); bool RevertNonLoops(); void RevertWhile(MachineInstr *MI) const; void RevertDo(MachineInstr *MI) const; bool RevertLoopDec(MachineInstr *MI) const; void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; void ConvertVPTBlocks(LowOverheadLoop &LoLoop); MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); void Expand(LowOverheadLoop &LoLoop); void IterationCountDCE(LowOverheadLoop &LoLoop); }; } char ARMLowOverheadLoops::ID = 0; SmallVector VPTState::Blocks; SetVector VPTState::CurrentPredicates; std::map> VPTState::PredicatedInsts; INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, false, false) static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, InstSet &ToRemove, InstSet &Ignore) { // Check that we can remove all of Killed without having to modify any IT // blocks. auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { // Collect the dead code and the MBBs in which they reside. SmallPtrSet BasicBlocks; for (auto *Dead : Killed) BasicBlocks.insert(Dead->getParent()); // Collect IT blocks in all affected basic blocks. std::map> ITBlocks; for (auto *MBB : BasicBlocks) { for (auto &IT : *MBB) { if (IT.getOpcode() != ARM::t2IT) continue; RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), ITBlocks[&IT]); } } // If we're removing all of the instructions within an IT block, then // also remove the IT instruction. SmallPtrSet ModifiedITs; SmallPtrSet RemoveITs; for (auto *Dead : Killed) { if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { MachineInstr *IT = RDA.getMIOperand(Dead, *MO); RemoveITs.insert(IT); auto &CurrentBlock = ITBlocks[IT]; CurrentBlock.erase(Dead); if (CurrentBlock.empty()) ModifiedITs.erase(IT); else ModifiedITs.insert(IT); } } if (!ModifiedITs.empty()) return false; Killed.insert(RemoveITs.begin(), RemoveITs.end()); return true; }; SmallPtrSet Uses; if (!RDA.isSafeToRemove(MI, Uses, Ignore)) return false; if (WontCorruptITs(Uses, RDA)) { ToRemove.insert(Uses.begin(), Uses.end()); LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI << " - can also remove:\n"; for (auto *Use : Uses) dbgs() << " - " << *Use); SmallPtrSet Killed; RDA.collectKilledOperands(MI, Killed); if (WontCorruptITs(Killed, RDA)) { ToRemove.insert(Killed.begin(), Killed.end()); LLVM_DEBUG(for (auto *Dead : Killed) dbgs() << " - " << *Dead); } return true; } return false; } bool LowOverheadLoop::ValidateTailPredicate() { if (!IsTailPredicationLegal()) { LLVM_DEBUG(if (VCTPs.empty()) dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; dbgs() << "ARM Loops: Tail-predication is not valid.\n"); return false; } assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); assert(ML.getBlocks().size() == 1 && "Shouldn't be processing a loop with more than one block"); if (DisableTailPredication) { LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); return false; } if (!VPTState::isValid(RDA)) { LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); return false; } if (!ValidateLiveOuts()) { LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); return false; } // Check that creating a [W|D]LSTP, which will define LR with an element // count instead of iteration count, won't affect any other instructions // than the LoopStart and LoopDec. // TODO: We should try to insert the [W|D]LSTP after any of the other uses. Register StartReg = isDo(Start) ? Start->getOperand(1).getReg() : Start->getOperand(0).getReg(); if (StartInsertPt == Start && StartReg == ARM::LR) { if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) { SmallPtrSet Uses; RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses); for (auto *Use : Uses) { if (Use != Start && Use != Dec) { LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use); return false; } } } } // For tail predication, we need to provide the number of elements, instead // of the iteration count, to the loop start instruction. The number of // elements is provided to the vctp instruction, so we need to check that // we can use this register at InsertPt. MachineInstr *VCTP = VCTPs.back(); if (Start->getOpcode() == ARM::t2DoLoopStartTP) { TPNumElements = Start->getOperand(2); StartInsertPt = Start; StartInsertBB = Start->getParent(); } else { TPNumElements = VCTP->getOperand(1); MCRegister NumElements = TPNumElements.getReg().asMCReg(); // If the register is defined within loop, then we can't perform TP. // TODO: Check whether this is just a mov of a register that would be // available. if (RDA.hasLocalDefBefore(VCTP, NumElements)) { LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); return false; } // The element count register maybe defined after InsertPt, in which case we // need to try to move either InsertPt or the def so that the [w|d]lstp can // use the value. if (StartInsertPt != StartInsertBB->end() && !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { ElemDef->removeFromParent(); StartInsertBB->insert(StartInsertPt, ElemDef); LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " << *ElemDef); } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { StartInsertPt->removeFromParent(); StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), &*StartInsertPt); LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); } else { // If we fail to move an instruction and the element count is provided // by a mov, use the mov operand if it will have the same value at the // insertion point MachineOperand Operand = ElemDef->getOperand(1); if (isMovRegOpcode(ElemDef->getOpcode()) && RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == RDA.getUniqueReachingMIDef(&*StartInsertPt, Operand.getReg().asMCReg())) { TPNumElements = Operand; NumElements = TPNumElements.getReg(); } else { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " << "start instruction.\n"); return false; } } } } // Especially in the case of while loops, InsertBB may not be the // preheader, so we need to check that the register isn't redefined // before entering the loop. auto CannotProvideElements = [this](MachineBasicBlock *MBB, MCRegister NumElements) { if (MBB->empty()) return false; // NumElements is redefined in this block. if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) return true; // Don't continue searching up through multiple predecessors. if (MBB->pred_size() > 1) return true; return false; }; // Search backwards for a def, until we get to InsertBB. MachineBasicBlock *MBB = Preheader; while (MBB && MBB != StartInsertBB) { if (CannotProvideElements(MBB, NumElements)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); return false; } MBB = *MBB->pred_begin(); } } // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect // world the [w|d]lstp instruction would be last instruction in the preheader // and so it would only affect instructions within the loop body. But due to // scheduling, and/or the logic in this pass (above), the insertion point can // be moved earlier. So if the Loop Start isn't the last instruction in the // preheader, and if the initial element count is smaller than the vector // width, the Loop Start instruction will immediately generate one or more // false lane mask which can, incorrectly, affect the proceeding MVE // instructions in the preheader. if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); return false; } // Check that the value change of the element count is what we expect and // that the predication will be equivalent. For this we need: // NumElements = NumElements - VectorWidth. The sub will be a sub immediate // and we can also allow register copies within the chain too. auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { return -getAddSubImmediate(*MI) == ExpectedVecWidth; }; MachineBasicBlock *MBB = VCTP->getParent(); // Remove modifications to the element count since they have no purpose in a // tail predicated loop. Explicitly refer to the vctp operand no matter which // register NumElements has been assigned to, since that is what the // modifications will be using if (auto *Def = RDA.getUniqueReachingMIDef( &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { SmallPtrSet ElementChain; SmallPtrSet Ignore; unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); Ignore.insert(VCTPs.begin(), VCTPs.end()); if (TryRemove(Def, RDA, ElementChain, Ignore)) { bool FoundSub = false; for (auto *MI : ElementChain) { if (isMovRegOpcode(MI->getOpcode())) continue; if (isSubImmOpcode(MI->getOpcode())) { if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" " count: " << *MI); return false; } FoundSub = true; } else { LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" " count: " << *MI); return false; } } ToRemove.insert(ElementChain.begin(), ElementChain.end()); } } return true; } static bool isRegInClass(const MachineOperand &MO, const TargetRegisterClass *Class) { return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); } // MVE 'narrowing' operate on half a lane, reading from half and writing // to half, which are referred to has the top and bottom half. The other // half retains its previous value. static bool retainsPreviousHalfElement(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); uint64_t Flags = MCID.TSFlags; return (Flags & ARMII::RetainsPreviousHalfElement) != 0; } // Some MVE instructions read from the top/bottom halves of their operand(s) // and generate a vector result with result elements that are double the // width of the input. static bool producesDoubleWidthResult(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); uint64_t Flags = MCID.TSFlags; return (Flags & ARMII::DoubleWidthResult) != 0; } static bool isHorizontalReduction(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); uint64_t Flags = MCID.TSFlags; return (Flags & ARMII::HorizontalReduction) != 0; } // Can this instruction generate a non-zero result when given only zeroed // operands? This allows us to know that, given operands with false bytes // zeroed by masked loads, that the result will also contain zeros in those // bytes. static bool canGenerateNonZeros(const MachineInstr &MI) { // Check for instructions which can write into a larger element size, // possibly writing into a previous zero'd lane. if (producesDoubleWidthResult(MI)) return true; switch (MI.getOpcode()) { default: break; // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow // fp16 -> fp32 vector conversions. // Instructions that perform a NOT will generate 1s from 0s. case ARM::MVE_VMVN: case ARM::MVE_VORN: // Count leading zeros will do just that! case ARM::MVE_VCLZs8: case ARM::MVE_VCLZs16: case ARM::MVE_VCLZs32: return true; } return false; } // Look at its register uses to see if it only can only receive zeros // into its false lanes which would then produce zeros. Also check that // the output register is also defined by an FalseLanesZero instruction // so that if tail-predication happens, the lanes that aren't updated will // still be zeros. static bool producesFalseLanesZero(MachineInstr &MI, const TargetRegisterClass *QPRs, const ReachingDefAnalysis &RDA, InstSet &FalseLanesZero) { if (canGenerateNonZeros(MI)) return false; bool isPredicated = isVectorPredicated(&MI); // Predicated loads will write zeros to the falsely predicated bytes of the // destination register. if (MI.mayLoad()) return isPredicated; auto IsZeroInit = [](MachineInstr *Def) { return !isVectorPredicated(Def) && Def->getOpcode() == ARM::MVE_VMOVimmi32 && Def->getOperand(1).getImm() == 0; }; bool AllowScalars = isHorizontalReduction(MI); for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.getReg()) continue; if (!isRegInClass(MO, QPRs) && AllowScalars) continue; // Check that this instruction will produce zeros in its false lanes: // - If it only consumes false lanes zero or constant 0 (vmov #0) // - If it's predicated, it only matters that it's def register already has // false lane zeros, so we can ignore the uses. SmallPtrSet Defs; RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); for (auto *Def : Defs) { if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) continue; if (MO.isUse() && isPredicated) continue; return false; } } LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); return true; } bool LowOverheadLoop::ValidateLiveOuts() { // We want to find out if the tail-predicated version of this loop will // produce the same values as the loop in its original form. For this to // be true, the newly inserted implicit predication must not change the // the (observable) results. // We're doing this because many instructions in the loop will not be // predicated and so the conversion from VPT predication to tail-predication // can result in different values being produced; due to the tail-predication // preventing many instructions from updating their falsely predicated // lanes. This analysis assumes that all the instructions perform lane-wise // operations and don't perform any exchanges. // A masked load, whether through VPT or tail predication, will write zeros // to any of the falsely predicated bytes. So, from the loads, we know that // the false lanes are zeroed and here we're trying to track that those false // lanes remain zero, or where they change, the differences are masked away // by their user(s). // All MVE stores have to be predicated, so we know that any predicate load // operands, or stored results are equivalent already. Other explicitly // predicated instructions will perform the same operation in the original // loop and the tail-predicated form too. Because of this, we can insert // loads, stores and other predicated instructions into our Predicated // set and build from there. const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); SetVector FalseLanesUnknown; SmallPtrSet FalseLanesZero; SmallPtrSet Predicated; MachineBasicBlock *Header = ML.getHeader(); for (auto &MI : *Header) { if (!shouldInspect(MI)) continue; if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) continue; bool isPredicated = isVectorPredicated(&MI); bool retainsOrReduces = retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); if (isPredicated) Predicated.insert(&MI); if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) FalseLanesZero.insert(&MI); else if (MI.getNumDefs() == 0) continue; else if (!isPredicated && retainsOrReduces) return false; else if (!isPredicated) FalseLanesUnknown.insert(&MI); } auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, SmallPtrSetImpl &Predicated) { SmallPtrSet Uses; RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); for (auto *Use : Uses) { if (Use != MI && !Predicated.count(Use)) return false; } return true; }; // Visit the unknowns in reverse so that we can start at the values being // stored and then we can work towards the leaves, hopefully adding more // instructions to Predicated. Successfully terminating the loop means that // all the unknown values have to found to be masked by predicated user(s). // For any unpredicated values, we store them in NonPredicated so that we // can later check whether these form a reduction. SmallPtrSet NonPredicated; for (auto *MI : reverse(FalseLanesUnknown)) { for (auto &MO : MI->operands()) { if (!isRegInClass(MO, QPRs) || !MO.isDef()) continue; if (!HasPredicatedUsers(MI, MO, Predicated)) { LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); NonPredicated.insert(MI); break; } } // Any unknown false lanes have been masked away by the user(s). if (!NonPredicated.contains(MI)) Predicated.insert(MI); } SmallPtrSet LiveOutMIs; SmallVector ExitBlocks; ML.getExitBlocks(ExitBlocks); assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); assert(ExitBlocks.size() == 1 && "Expected a single exit block"); MachineBasicBlock *ExitBB = ExitBlocks.front(); for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { // TODO: Instead of blocking predication, we could move the vctp to the exit // block and calculate it's operand there in or the preheader. if (RegMask.PhysReg == ARM::VPR) return false; // Check Q-regs that are live in the exit blocks. We don't collect scalars // because they won't be affected by lane predication. if (QPRs->contains(RegMask.PhysReg)) if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) LiveOutMIs.insert(MI); } // We've already validated that any VPT predication within the loop will be // equivalent when we perform the predication transformation; so we know that // any VPT predicated instruction is predicated upon VCTP. Any live-out // instruction needs to be predicated, so check this here. The instructions // in NonPredicated have been found to be a reduction that we can ensure its // legality. for (auto *MI : LiveOutMIs) { if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); return false; } } return true; } void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { if (Revert) return; // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] // can only jump back. auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { assert(End->getOperand(1).isMBB() && "Expected LoopEnd to target basic block!"); // TODO Maybe there's cases where the target doesn't have to be the header, // but for now be safe and revert. if (End->getOperand(1).getMBB() != ML.getHeader()) { LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); return false; } // The WLS and LE instructions have 12-bits for the label offset. WLS // requires a positive offset, while LE uses negative. if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); return false; } if (Start->getOpcode() == ARM::t2WhileLoopStart && (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); return false; } return true; }; // Find a suitable position to insert the loop start instruction. It needs to // be able to safely define LR. auto FindStartInsertionPoint = [](MachineInstr *Start, MachineInstr *Dec, MachineBasicBlock::iterator &InsertPt, MachineBasicBlock *&InsertBB, ReachingDefAnalysis &RDA, InstSet &ToRemove) { // For a t2DoLoopStart it is always valid to use the start insertion point. // For WLS we can define LR if LR already contains the same value. if (isDo(Start) || Start->getOperand(0).getReg() == ARM::LR) { InsertPt = MachineBasicBlock::iterator(Start); InsertBB = Start->getParent(); return true; } // We've found no suitable LR def and Start doesn't use LR directly. Can we // just define LR anyway? if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR))) return false; InsertPt = MachineBasicBlock::iterator(Start); InsertBB = Start->getParent(); return true; }; if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA, ToRemove)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); Revert = true; return; } LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end()) dbgs() << "ARM Loops: Will insert LoopStart at end of block\n"; else dbgs() << "ARM Loops: Will insert LoopStart at " << *StartInsertPt ); Revert = !ValidateRanges(Start, End, BBUtils, ML); CannotTailPredicate = !ValidateTailPredicate(); } bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); if (VCTPs.empty()) { VCTPs.push_back(MI); return true; } // If we find another VCTP, check whether it uses the same value as the main VCTP. // If it does, store it in the VCTPs set, else refuse it. MachineInstr *Prev = VCTPs.back(); if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " "definition from the main VCTP"); return false; } VCTPs.push_back(MI); return true; } bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { if (CannotTailPredicate) return false; if (!shouldInspect(*MI)) return true; if (MI->getOpcode() == ARM::MVE_VPSEL || MI->getOpcode() == ARM::MVE_VPNOT) { // TODO: Allow VPSEL and VPNOT, we currently cannot because: // 1) It will use the VPR as a predicate operand, but doesn't have to be // instead a VPT block, which means we can assert while building up // the VPT block because we don't find another VPT or VPST to being a new // one. // 2) VPSEL still requires a VPR operand even after tail predicating, // which means we can't remove it unless there is another // instruction, such as vcmp, that can provide the VPR def. return false; } // Record all VCTPs and check that they're equivalent to one another. if (isVCTP(MI) && !AddVCTP(MI)) return false; // Inspect uses first so that any instructions that alter the VPR don't // alter the predicate upon themselves. const MCInstrDesc &MCID = MI->getDesc(); bool IsUse = false; unsigned LastOpIdx = MI->getNumOperands() - 1; for (auto &Op : enumerate(reverse(MCID.operands()))) { const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) continue; if (ARM::isVpred(Op.value().OperandType)) { VPTState::addInst(MI); IsUse = true; } else if (MI->getOpcode() != ARM::MVE_VPST) { LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); return false; } } // If we find an instruction that has been marked as not valid for tail // predication, only allow the instruction if it's contained within a valid // VPT block. bool RequiresExplicitPredication = (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; if (isDomainMVE(MI) && RequiresExplicitPredication) { LLVM_DEBUG(if (!IsUse) dbgs() << "ARM Loops: Can't tail predicate: " << *MI); return IsUse; } // If the instruction is already explicitly predicated, then the conversion // will be fine, but ensure that all store operations are predicated. if (MI->mayStore()) return IsUse; // If this instruction defines the VPR, update the predicate for the // proceeding instructions. if (isVectorPredicate(MI)) { // Clear the existing predicate when we're not in VPT Active state, // otherwise we add to it. if (!isVectorPredicated(MI)) VPTState::resetPredicate(MI); else VPTState::addPredicate(MI); } // Finally once the predicate has been modified, we can start a new VPT // block if necessary. if (isVPTOpcode(MI->getOpcode())) VPTState::CreateVPTBlock(MI); return true; } bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { const ARMSubtarget &ST = static_cast(mf.getSubtarget()); if (!ST.hasLOB()) return false; MF = &mf; LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); MLI = &getAnalysis(); RDA = &getAnalysis(); MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); MRI = &MF->getRegInfo(); TII = static_cast(ST.getInstrInfo()); TRI = ST.getRegisterInfo(); BBUtils = std::unique_ptr(new ARMBasicBlockUtils(*MF)); BBUtils->computeAllBlockSizes(); BBUtils->adjustBBOffsetsAfter(&MF->front()); bool Changed = false; for (auto ML : *MLI) { if (ML->isOutermost()) Changed |= ProcessLoop(ML); } Changed |= RevertNonLoops(); return Changed; } bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { bool Changed = false; // Process inner loops first. for (auto I = ML->begin(), E = ML->end(); I != E; ++I) Changed |= ProcessLoop(*I); LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; if (auto *Preheader = ML->getLoopPreheader()) dbgs() << " - " << Preheader->getName() << "\n"; else if (auto *Preheader = MLI->findLoopPreheader(ML)) dbgs() << " - " << Preheader->getName() << "\n"; else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) dbgs() << " - " << Preheader->getName() << "\n"; for (auto *MBB : ML->getBlocks()) dbgs() << " - " << MBB->getName() << "\n"; ); // Search the given block for a loop start instruction. If one isn't found, // and there's only one predecessor block, search that one too. std::function SearchForStart = [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { for (auto &MI : *MBB) { if (isLoopStart(MI)) return &MI; } if (MBB->pred_size() == 1) return SearchForStart(*MBB->pred_begin()); return nullptr; }; LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); // Search the preheader for the start intrinsic. // FIXME: I don't see why we shouldn't be supporting multiple predecessors // with potentially multiple set.loop.iterations, so we need to enable this. if (LoLoop.Preheader) LoLoop.Start = SearchForStart(LoLoop.Preheader); else return false; // Find the low-overhead loop components and decide whether or not to fall // back to a normal loop. Also look for a vctp instructions and decide // whether we can convert that predicate using tail predication. for (auto *MBB : reverse(ML->getBlocks())) { for (auto &MI : *MBB) { if (MI.isDebugValue()) continue; else if (MI.getOpcode() == ARM::t2LoopDec) LoLoop.Dec = &MI; else if (MI.getOpcode() == ARM::t2LoopEnd) LoLoop.End = &MI; else if (isLoopStart(MI)) LoLoop.Start = &MI; else if (MI.getDesc().isCall()) { // TODO: Though the call will require LE to execute again, does this // mean we should revert? Always executing LE hopefully should be // faster than performing a sub,cmp,br or even subs,br. LoLoop.Revert = true; LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); } else { // Record VPR defs and build up their corresponding vpt blocks. // Check we know how to tail predicate any mve instructions. LoLoop.AnalyseMVEInst(&MI); } } } LLVM_DEBUG(LoLoop.dump()); if (!LoLoop.FoundAllComponents()) { LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); return false; } // Check that the only instruction using LoopDec is LoopEnd. // TODO: Check for copy chains that really have no effect. SmallPtrSet Uses; RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); LoLoop.Revert = true; } LoLoop.Validate(BBUtils.get()); Expand(LoLoop); return true; } // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a // beq that branches to the exit branch. // TODO: We could also try to generate a cbz if the value in LR is also in // another low register. void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; RevertWhileLoopStart(MI, TII, BrOpc); } void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); RevertDoLoopStart(MI, TII); } bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); MachineBasicBlock *MBB = MI->getParent(); SmallPtrSet Ignore; for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { if (I->getOpcode() == ARM::t2LoopEnd) { Ignore.insert(&*I); break; } } // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. bool SetFlags = RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); llvm::RevertLoopDec(MI, TII, SetFlags); return SetFlags; } // Generate a subs, or sub and cmp, and a branch instead of an LE. void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); } // Perform dead code elimation on the loop iteration count setup expression. // If we are tail-predicating, the number of elements to be processed is the // operand of the VCTP instruction in the vector body, see getCount(), which is // register $r3 in this example: // // $lr = big-itercount-expression // .. // $lr = t2DoLoopStart renamable $lr // vector.body: // .. // $vpr = MVE_VCTP32 renamable $r3 // renamable $lr = t2LoopDec killed renamable $lr, 1 // t2LoopEnd renamable $lr, %vector.body // tB %end // // What we would like achieve here is to replace the do-loop start pseudo // instruction t2DoLoopStart with: // // $lr = MVE_DLSTP_32 killed renamable $r3 // // Thus, $r3 which defines the number of elements, is written to $lr, // and then we want to delete the whole chain that used to define $lr, // see the comment below how this chain could look like. // void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { if (!LoLoop.IsTailPredicationLegal()) return; LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0); if (!Def) { LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); return; } // Collect and remove the users of iteration count. SmallPtrSet Killed = { LoLoop.Start, LoLoop.Dec, LoLoop.End }; if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); } MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); // When using tail-predication, try to delete the dead code that was used to // calculate the number of loop iterations. IterationCountDCE(LoLoop); MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; MachineInstr *Start = LoLoop.Start; MachineBasicBlock *MBB = LoLoop.StartInsertBB; unsigned Opc = LoLoop.getStartOpcode(); MachineOperand &Count = LoLoop.getLoopStartOperand(); MachineInstrBuilder MIB = BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); MIB.addDef(ARM::LR); MIB.add(Count); if (!isDo(Start)) MIB.add(Start->getOperand(1)); LoLoop.ToRemove.insert(Start); LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); return &*MIB; } void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { auto RemovePredicate = [](MachineInstr *MI) { LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && "Expected Then predicate!"); MI->getOperand(PIdx).setImm(ARMVCC::None); MI->getOperand(PIdx+1).setReg(0); } else llvm_unreachable("trying to unpredicate a non-predicated instruction"); }; for (auto &Block : LoLoop.getVPTBlocks()) { SmallVectorImpl &Insts = Block.getInsts(); auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { assert(TheVCMP && "Replacing a removed or non-existent VCMP"); // Replace the VCMP with a VPT MachineInstrBuilder MIB = BuildMI(*At->getParent(), At, At->getDebugLoc(), TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); MIB.addImm(ARMVCC::Then); // Register one MIB.add(TheVCMP->getOperand(1)); // Register two MIB.add(TheVCMP->getOperand(2)); // The comparison code, e.g. ge, eq, lt MIB.add(TheVCMP->getOperand(3)); LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); LoLoop.ToRemove.insert(TheVCMP); TheVCMP = nullptr; }; if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { MachineInstr *VPST = Insts.front(); if (VPTState::hasUniformPredicate(Block)) { // A vpt block starting with VPST, is only predicated upon vctp and has no // internal vpr defs: // - Remove vpst. // - Unpredicate the remaining instructions. LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); for (unsigned i = 1; i < Insts.size(); ++i) RemovePredicate(Insts[i]); } else { // The VPT block has a non-uniform predicate but it uses a vpst and its // entry is guarded only by a vctp, which means we: // - Need to remove the original vpst. // - Then need to unpredicate any following instructions, until // we come across the divergent vpr def. // - Insert a new vpst to predicate the instruction(s) that following // the divergent vpr def. MachineInstr *Divergent = VPTState::getDivergent(Block); auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); bool DivergentNextIsPredicated = getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; I != E; ++I) RemovePredicate(&*I); // Check if the instruction defining vpr is a vcmp so it can be combined // with the VPST This should be the divergent instruction MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; if (DivergentNextIsPredicated) { // Insert a VPST at the divergent only if the next instruction // would actually use it. A VCMP following a VPST can be // merged into a VPT so do that instead if the VCMP exists. if (!VCMP) { // Create a VPST (with a null mask for now, we'll recompute it // later) MachineInstrBuilder MIB = BuildMI(*Divergent->getParent(), Divergent, Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); MIB.addImm(0); LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); } else { // No RDA checks are necessary here since the VPST would have been // directly after the VCMP ReplaceVCMPWithVPT(VCMP, VCMP); } } } LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); LoLoop.ToRemove.insert(VPST); } else if (Block.containsVCTP()) { // The vctp will be removed, so the block mask of the vp(s)t will need // to be recomputed. LoLoop.BlockMasksToRecompute.insert(Insts.front()); } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { // If this block starts with a VPST then attempt to merge it with the // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT // block that no longer exists MachineInstr *VPST = Insts.front(); auto Next = ++MachineBasicBlock::iterator(VPST); assert(getVPTInstrPredicate(*Next) != ARMVCC::None && "The instruction after a VPST must be predicated"); (void)Next; MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && !LoLoop.ToRemove.contains(VprDef)) { MachineInstr *VCMP = VprDef; // The VCMP and VPST can only be merged if the VCMP's operands will have // the same values at the VPST. // If any of the instructions between the VCMP and VPST are predicated // then a different code path is expected to have merged the VCMP and // VPST already. if (!std::any_of(++MachineBasicBlock::iterator(VCMP), MachineBasicBlock::iterator(VPST), hasVPRUse) && RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { ReplaceVCMPWithVPT(VCMP, VPST); LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); LoLoop.ToRemove.insert(VPST); } } } } LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); } void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { // Combine the LoopDec and LoopEnd instructions into LE(TP). auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { MachineInstr *End = LoLoop.End; MachineBasicBlock *MBB = End->getParent(); unsigned Opc = LoLoop.IsTailPredicationLegal() ? ARM::MVE_LETP : ARM::t2LEUpdate; MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), TII->get(Opc)); MIB.addDef(ARM::LR); MIB.add(End->getOperand(0)); MIB.add(End->getOperand(1)); LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); LoLoop.ToRemove.insert(LoLoop.Dec); LoLoop.ToRemove.insert(End); return &*MIB; }; // TODO: We should be able to automatically remove these branches before we // get here - probably by teaching analyzeBranch about the pseudo // instructions. // If there is an unconditional branch, after I, that just branches to the // next block, remove it. auto RemoveDeadBranch = [](MachineInstr *I) { MachineBasicBlock *BB = I->getParent(); MachineInstr *Terminator = &BB->instr_back(); if (Terminator->isUnconditionalBranch() && I != Terminator) { MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); if (BB->isLayoutSuccessor(Succ)) { LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); Terminator->eraseFromParent(); } } }; if (LoLoop.Revert) { if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) RevertWhile(LoLoop.Start); else RevertDo(LoLoop.Start); bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); RevertLoopEnd(LoLoop.End, FlagsAlreadySet); } else { LoLoop.Start = ExpandLoopStart(LoLoop); RemoveDeadBranch(LoLoop.Start); LoLoop.End = ExpandLoopEnd(LoLoop); RemoveDeadBranch(LoLoop.End); if (LoLoop.IsTailPredicationLegal()) ConvertVPTBlocks(LoLoop); for (auto *I : LoLoop.ToRemove) { LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); I->eraseFromParent(); } for (auto *I : LoLoop.BlockMasksToRecompute) { LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); recomputeVPTBlockMask(*I); LLVM_DEBUG(dbgs() << " ... done: " << *I); } } PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); DFS.ProcessLoop(); const SmallVectorImpl &PostOrder = DFS.getOrder(); for (auto *MBB : PostOrder) { recomputeLiveIns(*MBB); // FIXME: For some reason, the live-in print order is non-deterministic for // our tests and I can't out why... So just sort them. MBB->sortUniqueLiveIns(); } for (auto *MBB : reverse(PostOrder)) recomputeLivenessFlags(*MBB); // We've moved, removed and inserted new instructions, so update RDA. RDA->reset(); } bool ARMLowOverheadLoops::RevertNonLoops() { LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); bool Changed = false; for (auto &MBB : *MF) { SmallVector Starts; SmallVector Decs; SmallVector Ends; for (auto &I : MBB) { if (isLoopStart(I)) Starts.push_back(&I); else if (I.getOpcode() == ARM::t2LoopDec) Decs.push_back(&I); else if (I.getOpcode() == ARM::t2LoopEnd) Ends.push_back(&I); } if (Starts.empty() && Decs.empty() && Ends.empty()) continue; Changed = true; for (auto *Start : Starts) { if (Start->getOpcode() == ARM::t2WhileLoopStart) RevertWhile(Start); else RevertDo(Start); } for (auto *Dec : Decs) RevertLoopDec(Dec); for (auto *End : Ends) RevertLoopEnd(End); } return Changed; } FunctionPass *llvm::createARMLowOverheadLoopsPass() { return new ARMLowOverheadLoops(); }