//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass implements whole program optimization of virtual calls in cases // where we know (via !type metadata) that the list of callees is fixed. This // includes the following: // - Single implementation devirtualization: if a virtual call has a single // possible callee, replace all calls with a direct call to that callee. // - Virtual constant propagation: if the virtual function's return type is an // integer <=64 bits and all possible callees are readnone, for each class and // each list of constant arguments: evaluate the function, store the return // value alongside the virtual table, and rewrite each virtual call as a load // from the virtual table. // - Uniform return value optimization: if the conditions for virtual constant // propagation hold and each function returns the same constant value, replace // each virtual call with that constant. // - Unique return value optimization for i1 return values: if the conditions // for virtual constant propagation hold and a single vtable's function // returns 0, or a single vtable's function returns 1, replace each virtual // call with a comparison of the vptr against that vtable's address. // // This pass is intended to be used during the regular and thin LTO pipelines: // // During regular LTO, the pass determines the best optimization for each // virtual call and applies the resolutions directly to virtual calls that are // eligible for virtual call optimization (i.e. calls that use either of the // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). // // During hybrid Regular/ThinLTO, the pass operates in two phases: // - Export phase: this is run during the thin link over a single merged module // that contains all vtables with !type metadata that participate in the link. // The pass computes a resolution for each virtual call and stores it in the // type identifier summary. // - Import phase: this is run during the thin backends over the individual // modules. The pass applies the resolutions previously computed during the // import phase to each eligible virtual call. // // During ThinLTO, the pass operates in two phases: // - Export phase: this is run during the thin link over the index which // contains a summary of all vtables with !type metadata that participate in // the link. It computes a resolution for each virtual call and stores it in // the type identifier summary. Only single implementation devirtualization // is supported. // - Import phase: (same as with hybrid case above). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/WholeProgramDevirt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndexYAML.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/GlobPattern.h" #include "llvm/Support/MathExtras.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/Utils/Evaluator.h" #include #include #include #include #include using namespace llvm; using namespace wholeprogramdevirt; #define DEBUG_TYPE "wholeprogramdevirt" static cl::opt ClSummaryAction( "wholeprogramdevirt-summary-action", cl::desc("What to do with the summary when running this pass"), cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), clEnumValN(PassSummaryAction::Import, "import", "Import typeid resolutions from summary and globals"), clEnumValN(PassSummaryAction::Export, "export", "Export typeid resolutions to summary and globals")), cl::Hidden); static cl::opt ClReadSummary( "wholeprogramdevirt-read-summary", cl::desc( "Read summary from given bitcode or YAML file before running pass"), cl::Hidden); static cl::opt ClWriteSummary( "wholeprogramdevirt-write-summary", cl::desc("Write summary to given bitcode or YAML file after running pass. " "Output file format is deduced from extension: *.bc means writing " "bitcode, otherwise YAML"), cl::Hidden); static cl::opt ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, cl::init(10), cl::ZeroOrMore, cl::desc("Maximum number of call targets per " "call site to enable branch funnels")); static cl::opt PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::desc("Print index-based devirtualization messages")); /// Provide a way to force enable whole program visibility in tests. /// This is needed to support legacy tests that don't contain /// !vcall_visibility metadata (the mere presense of type tests /// previously implied hidden visibility). cl::opt WholeProgramVisibility("whole-program-visibility", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Enable whole program visibility")); /// Provide a way to force disable whole program for debugging or workarounds, /// when enabled via the linker. cl::opt DisableWholeProgramVisibility( "disable-whole-program-visibility", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Disable whole program visibility (overrides enabling options)")); /// Provide way to prevent certain function from being devirtualized cl::list SkipFunctionNames("wholeprogramdevirt-skip", cl::desc("Prevent function(s) from being devirtualized"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated); namespace { struct PatternList { std::vector Patterns; template void init(const T &StringList) { for (const auto &S : StringList) if (Expected Pat = GlobPattern::create(S)) Patterns.push_back(std::move(*Pat)); } bool match(StringRef S) { for (const GlobPattern &P : Patterns) if (P.match(S)) return true; return false; } }; } // namespace // Find the minimum offset that we may store a value of size Size bits at. If // IsAfter is set, look for an offset before the object, otherwise look for an // offset after the object. uint64_t wholeprogramdevirt::findLowestOffset(ArrayRef Targets, bool IsAfter, uint64_t Size) { // Find a minimum offset taking into account only vtable sizes. uint64_t MinByte = 0; for (const VirtualCallTarget &Target : Targets) { if (IsAfter) MinByte = std::max(MinByte, Target.minAfterBytes()); else MinByte = std::max(MinByte, Target.minBeforeBytes()); } // Build a vector of arrays of bytes covering, for each target, a slice of the // used region (see AccumBitVector::BytesUsed in // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, // this aligns the used regions to start at MinByte. // // In this example, A, B and C are vtables, # is a byte already allocated for // a virtual function pointer, AAAA... (etc.) are the used regions for the // vtables and Offset(X) is the value computed for the Offset variable below // for X. // // Offset(A) // | | // |MinByte // A: ################AAAAAAAA|AAAAAAAA // B: ########BBBBBBBBBBBBBBBB|BBBB // C: ########################|CCCCCCCCCCCCCCCC // | Offset(B) | // // This code produces the slices of A, B and C that appear after the divider // at MinByte. std::vector> Used; for (const VirtualCallTarget &Target : Targets) { ArrayRef VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed : Target.TM->Bits->Before.BytesUsed; uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() : MinByte - Target.minBeforeBytes(); // Disregard used regions that are smaller than Offset. These are // effectively all-free regions that do not need to be checked. if (VTUsed.size() > Offset) Used.push_back(VTUsed.slice(Offset)); } if (Size == 1) { // Find a free bit in each member of Used. for (unsigned I = 0;; ++I) { uint8_t BitsUsed = 0; for (auto &&B : Used) if (I < B.size()) BitsUsed |= B[I]; if (BitsUsed != 0xff) return (MinByte + I) * 8 + countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); } } else { // Find a free (Size/8) byte region in each member of Used. // FIXME: see if alignment helps. for (unsigned I = 0;; ++I) { for (auto &&B : Used) { unsigned Byte = 0; while ((I + Byte) < B.size() && Byte < (Size / 8)) { if (B[I + Byte]) goto NextI; ++Byte; } } return (MinByte + I) * 8; NextI:; } } } void wholeprogramdevirt::setBeforeReturnValues( MutableArrayRef Targets, uint64_t AllocBefore, unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { if (BitWidth == 1) OffsetByte = -(AllocBefore / 8 + 1); else OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); OffsetBit = AllocBefore % 8; for (VirtualCallTarget &Target : Targets) { if (BitWidth == 1) Target.setBeforeBit(AllocBefore); else Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); } } void wholeprogramdevirt::setAfterReturnValues( MutableArrayRef Targets, uint64_t AllocAfter, unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { if (BitWidth == 1) OffsetByte = AllocAfter / 8; else OffsetByte = (AllocAfter + 7) / 8; OffsetBit = AllocAfter % 8; for (VirtualCallTarget &Target : Targets) { if (BitWidth == 1) Target.setAfterBit(AllocAfter); else Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); } } VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) : Fn(Fn), TM(TM), IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} namespace { // A slot in a set of virtual tables. The TypeID identifies the set of virtual // tables, and the ByteOffset is the offset in bytes from the address point to // the virtual function pointer. struct VTableSlot { Metadata *TypeID; uint64_t ByteOffset; }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static VTableSlot getEmptyKey() { return {DenseMapInfo::getEmptyKey(), DenseMapInfo::getEmptyKey()}; } static VTableSlot getTombstoneKey() { return {DenseMapInfo::getTombstoneKey(), DenseMapInfo::getTombstoneKey()}; } static unsigned getHashValue(const VTableSlot &I) { return DenseMapInfo::getHashValue(I.TypeID) ^ DenseMapInfo::getHashValue(I.ByteOffset); } static bool isEqual(const VTableSlot &LHS, const VTableSlot &RHS) { return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; } }; template <> struct DenseMapInfo { static VTableSlotSummary getEmptyKey() { return {DenseMapInfo::getEmptyKey(), DenseMapInfo::getEmptyKey()}; } static VTableSlotSummary getTombstoneKey() { return {DenseMapInfo::getTombstoneKey(), DenseMapInfo::getTombstoneKey()}; } static unsigned getHashValue(const VTableSlotSummary &I) { return DenseMapInfo::getHashValue(I.TypeID) ^ DenseMapInfo::getHashValue(I.ByteOffset); } static bool isEqual(const VTableSlotSummary &LHS, const VTableSlotSummary &RHS) { return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; } }; } // end namespace llvm namespace { // A virtual call site. VTable is the loaded virtual table pointer, and CS is // the indirect virtual call. struct VirtualCallSite { Value *VTable = nullptr; CallBase &CB; // If non-null, this field points to the associated unsafe use count stored in // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description // of that field for details. unsigned *NumUnsafeUses = nullptr; void emitRemark(const StringRef OptName, const StringRef TargetName, function_ref OREGetter) { Function *F = CB.getCaller(); DebugLoc DLoc = CB.getDebugLoc(); BasicBlock *Block = CB.getParent(); using namespace ore; OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) << NV("Optimization", OptName) << ": devirtualized a call to " << NV("FunctionName", TargetName)); } void replaceAndErase( const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, function_ref OREGetter, Value *New) { if (RemarksEnabled) emitRemark(OptName, TargetName, OREGetter); CB.replaceAllUsesWith(New); if (auto *II = dyn_cast(&CB)) { BranchInst::Create(II->getNormalDest(), &CB); II->getUnwindDest()->removePredecessor(II->getParent()); } CB.eraseFromParent(); // This use is no longer unsafe. if (NumUnsafeUses) --*NumUnsafeUses; } }; // Call site information collected for a specific VTableSlot and possibly a list // of constant integer arguments. The grouping by arguments is handled by the // VTableSlotInfo class. struct CallSiteInfo { /// The set of call sites for this slot. Used during regular LTO and the /// import phase of ThinLTO (as well as the export phase of ThinLTO for any /// call sites that appear in the merged module itself); in each of these /// cases we are directly operating on the call sites at the IR level. std::vector CallSites; /// Whether all call sites represented by this CallSiteInfo, including those /// in summaries, have been devirtualized. This starts off as true because a /// default constructed CallSiteInfo represents no call sites. bool AllCallSitesDevirted = true; // These fields are used during the export phase of ThinLTO and reflect // information collected from function summaries. /// Whether any function summary contains an llvm.assume(llvm.type.test) for /// this slot. bool SummaryHasTypeTestAssumeUsers = false; /// CFI-specific: a vector containing the list of function summaries that use /// the llvm.type.checked.load intrinsic and therefore will require /// resolutions for llvm.type.test in order to implement CFI checks if /// devirtualization was unsuccessful. If devirtualization was successful, the /// pass will clear this vector by calling markDevirt(). If at the end of the /// pass the vector is non-empty, we will need to add a use of llvm.type.test /// to each of the function summaries in the vector. std::vector SummaryTypeCheckedLoadUsers; std::vector SummaryTypeTestAssumeUsers; bool isExported() const { return SummaryHasTypeTestAssumeUsers || !SummaryTypeCheckedLoadUsers.empty(); } void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { SummaryTypeCheckedLoadUsers.push_back(FS); AllCallSitesDevirted = false; } void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { SummaryTypeTestAssumeUsers.push_back(FS); SummaryHasTypeTestAssumeUsers = true; AllCallSitesDevirted = false; } void markDevirt() { AllCallSitesDevirted = true; // As explained in the comment for SummaryTypeCheckedLoadUsers. SummaryTypeCheckedLoadUsers.clear(); } }; // Call site information collected for a specific VTableSlot. struct VTableSlotInfo { // The set of call sites which do not have all constant integer arguments // (excluding "this"). CallSiteInfo CSInfo; // The set of call sites with all constant integer arguments (excluding // "this"), grouped by argument list. std::map, CallSiteInfo> ConstCSInfo; void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); private: CallSiteInfo &findCallSiteInfo(CallBase &CB); }; CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { std::vector Args; auto *CBType = dyn_cast(CB.getType()); if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) return CSInfo; for (auto &&Arg : make_range(CB.arg_begin() + 1, CB.arg_end())) { auto *CI = dyn_cast(Arg); if (!CI || CI->getBitWidth() > 64) return CSInfo; Args.push_back(CI->getZExtValue()); } return ConstCSInfo[Args]; } void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses) { auto &CSI = findCallSiteInfo(CB); CSI.AllCallSitesDevirted = false; CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); } struct DevirtModule { Module &M; function_ref AARGetter; function_ref LookupDomTree; ModuleSummaryIndex *ExportSummary; const ModuleSummaryIndex *ImportSummary; IntegerType *Int8Ty; PointerType *Int8PtrTy; IntegerType *Int32Ty; IntegerType *Int64Ty; IntegerType *IntPtrTy; /// Sizeless array type, used for imported vtables. This provides a signal /// to analyzers that these imports may alias, as they do for example /// when multiple unique return values occur in the same vtable. ArrayType *Int8Arr0Ty; bool RemarksEnabled; function_ref OREGetter; MapVector CallSlots; // This map keeps track of the number of "unsafe" uses of a loaded function // pointer. The key is the associated llvm.type.test intrinsic call generated // by this pass. An unsafe use is one that calls the loaded function pointer // directly. Every time we eliminate an unsafe use (for example, by // devirtualizing it or by applying virtual constant propagation), we // decrement the value stored in this map. If a value reaches zero, we can // eliminate the type check by RAUWing the associated llvm.type.test call with // true. std::map NumUnsafeUsesForTypeTest; PatternList FunctionsToSkip; DevirtModule(Module &M, function_ref AARGetter, function_ref OREGetter, function_ref LookupDomTree, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), ExportSummary(ExportSummary), ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), Int8PtrTy(Type::getInt8PtrTy(M.getContext())), Int32Ty(Type::getInt32Ty(M.getContext())), Int64Ty(Type::getInt64Ty(M.getContext())), IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { assert(!(ExportSummary && ImportSummary)); FunctionsToSkip.init(SkipFunctionNames); } bool areRemarksEnabled(); void scanTypeTestUsers(Function *TypeTestFunc, DenseMap> &TypeIdMap); void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); void buildTypeIdentifierMap( std::vector &Bits, DenseMap> &TypeIdMap); bool tryFindVirtualCallTargets(std::vector &TargetsForSlot, const std::set &TypeMemberInfos, uint64_t ByteOffset); void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, bool &IsExported); bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res); void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, bool &IsExported); void tryICallBranchFunnel(MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot); bool tryEvaluateFunctionsWithArgs( MutableArrayRef TargetsForSlot, ArrayRef Args); void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, uint64_t TheRetVal); bool tryUniformRetValOpt(MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res); // Returns the global symbol name that is used to export information about the // given vtable slot and list of arguments. std::string getGlobalName(VTableSlot Slot, ArrayRef Args, StringRef Name); bool shouldExportConstantsAsAbsoluteSymbols(); // This function is called during the export phase to create a symbol // definition containing information about the given vtable slot and list of // arguments. void exportGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name, Constant *C); void exportConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, uint32_t Const, uint32_t &Storage); // This function is called during the import phase to create a reference to // the symbol definition created during the export phase. Constant *importGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name); Constant *importConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, IntegerType *IntTy, uint32_t Storage); Constant *getMemberAddr(const TypeMemberInfo *M); void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, Constant *UniqueMemberAddr); bool tryUniqueRetValOpt(unsigned BitWidth, MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, VTableSlot Slot, ArrayRef Args); void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, Constant *Byte, Constant *Bit); bool tryVirtualConstProp(MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot); void rebuildGlobal(VTableBits &B); // Apply the summary resolution for Slot to all virtual calls in SlotInfo. void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); // If we were able to eliminate all unsafe uses for a type checked load, // eliminate the associated type tests by replacing them with true. void removeRedundantTypeTests(); bool run(); // Lower the module using the action and summary passed as command line // arguments. For testing purposes only. static bool runForTesting(Module &M, function_ref AARGetter, function_ref OREGetter, function_ref LookupDomTree); }; struct DevirtIndex { ModuleSummaryIndex &ExportSummary; // The set in which to record GUIDs exported from their module by // devirtualization, used by client to ensure they are not internalized. std::set &ExportedGUIDs; // A map in which to record the information necessary to locate the WPD // resolution for local targets in case they are exported by cross module // importing. std::map> &LocalWPDTargetsMap; MapVector CallSlots; PatternList FunctionsToSkip; DevirtIndex( ModuleSummaryIndex &ExportSummary, std::set &ExportedGUIDs, std::map> &LocalWPDTargetsMap) : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), LocalWPDTargetsMap(LocalWPDTargetsMap) { FunctionsToSkip.init(SkipFunctionNames); } bool tryFindVirtualCallTargets(std::vector &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset); bool trySingleImplDevirt(MutableArrayRef TargetsForSlot, VTableSlotSummary &SlotSummary, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, std::set &DevirtTargets); void run(); }; struct WholeProgramDevirt : public ModulePass { static char ID; bool UseCommandLine = false; ModuleSummaryIndex *ExportSummary = nullptr; const ModuleSummaryIndex *ImportSummary = nullptr; WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); } WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) : ModulePass(ID), ExportSummary(ExportSummary), ImportSummary(ImportSummary) { initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; // In the new pass manager, we can request the optimization // remark emitter pass on a per-function-basis, which the // OREGetter will do for us. // In the old pass manager, this is harder, so we just build // an optimization remark emitter on the fly, when we need it. std::unique_ptr ORE; auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { ORE = std::make_unique(F); return *ORE; }; auto LookupDomTree = [this](Function &F) -> DominatorTree & { return this->getAnalysis(F).getDomTree(); }; if (UseCommandLine) return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter, LookupDomTree); return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree, ExportSummary, ImportSummary) .run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); } }; } // end anonymous namespace INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", "Whole program devirtualization", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", "Whole program devirtualization", false, false) char WholeProgramDevirt::ID = 0; ModulePass * llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { return new WholeProgramDevirt(ExportSummary, ImportSummary); } PreservedAnalyses WholeProgramDevirtPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto AARGetter = [&](Function &F) -> AAResults & { return FAM.getResult(F); }; auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { return FAM.getResult(*F); }; auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { return FAM.getResult(F); }; if (UseCommandLine) { if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, ImportSummary) .run()) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } // Enable whole program visibility if enabled by client (e.g. linker) or // internal option, and not force disabled. static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && !DisableWholeProgramVisibility; } namespace llvm { /// If whole program visibility asserted, then upgrade all public vcall /// visibility metadata on vtable definitions to linkage unit visibility in /// Module IR (for regular or hybrid LTO). void updateVCallVisibilityInModule(Module &M, bool WholeProgramVisibilityEnabledInLTO) { if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) return; for (GlobalVariable &GV : M.globals()) // Add linkage unit visibility to any variable with type metadata, which are // the vtable definitions. We won't have an existing vcall_visibility // metadata on vtable definitions with public visibility. if (GV.hasMetadata(LLVMContext::MD_type) && GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic) GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); } /// If whole program visibility asserted, then upgrade all public vcall /// visibility metadata on vtable definition summaries to linkage unit /// visibility in Module summary index (for ThinLTO). void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO) { if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) return; for (auto &P : Index) { for (auto &S : P.second.SummaryList) { auto *GVar = dyn_cast(S.get()); if (!GVar || GVar->vTableFuncs().empty() || GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) continue; GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); } } } void runWholeProgramDevirtOnIndex( ModuleSummaryIndex &Summary, std::set &ExportedGUIDs, std::map> &LocalWPDTargetsMap) { DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); } void updateIndexWPDForExports( ModuleSummaryIndex &Summary, function_ref isExported, std::map> &LocalWPDTargetsMap) { for (auto &T : LocalWPDTargetsMap) { auto &VI = T.first; // This was enforced earlier during trySingleImplDevirt. assert(VI.getSummaryList().size() == 1 && "Devirt of local target has more than one copy"); auto &S = VI.getSummaryList()[0]; if (!isExported(S->modulePath(), VI)) continue; // It's been exported by a cross module import. for (auto &SlotSummary : T.second) { auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); assert(TIdSum); auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); assert(WPDRes != TIdSum->WPDRes.end()); WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( WPDRes->second.SingleImplName, Summary.getModuleHash(S->modulePath())); } } } } // end namespace llvm static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { // Check that summary index contains regular LTO module when performing // export to prevent occasional use of index from pure ThinLTO compilation // (-fno-split-lto-module). This kind of summary index is passed to // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. const auto &ModPaths = Summary->modulePaths(); if (ClSummaryAction != PassSummaryAction::Import && ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == ModPaths.end()) return createStringError( errc::invalid_argument, "combined summary should contain Regular LTO module"); return ErrorSuccess(); } bool DevirtModule::runForTesting( Module &M, function_ref AARGetter, function_ref OREGetter, function_ref LookupDomTree) { std::unique_ptr Summary = std::make_unique(/*HaveGVs=*/false); // Handle the command-line summary arguments. This code is for testing // purposes only, so we handle errors directly. if (!ClReadSummary.empty()) { ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + ": "); auto ReadSummaryFile = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); if (Expected> SummaryOrErr = getModuleSummaryIndex(*ReadSummaryFile)) { Summary = std::move(*SummaryOrErr); ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); } else { // Try YAML if we've failed with bitcode. consumeError(SummaryOrErr.takeError()); yaml::Input In(ReadSummaryFile->getBuffer()); In >> *Summary; ExitOnErr(errorCodeToError(In.error())); } } bool Changed = DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ClSummaryAction == PassSummaryAction::Export ? Summary.get() : nullptr, ClSummaryAction == PassSummaryAction::Import ? Summary.get() : nullptr) .run(); if (!ClWriteSummary.empty()) { ExitOnError ExitOnErr( "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); std::error_code EC; if (StringRef(ClWriteSummary).endswith(".bc")) { raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); ExitOnErr(errorCodeToError(EC)); WriteIndexToFile(*Summary, OS); } else { raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text); ExitOnErr(errorCodeToError(EC)); yaml::Output Out(OS); Out << *Summary; } } return Changed; } void DevirtModule::buildTypeIdentifierMap( std::vector &Bits, DenseMap> &TypeIdMap) { DenseMap GVToBits; Bits.reserve(M.getGlobalList().size()); SmallVector Types; for (GlobalVariable &GV : M.globals()) { Types.clear(); GV.getMetadata(LLVMContext::MD_type, Types); if (GV.isDeclaration() || Types.empty()) continue; VTableBits *&BitsPtr = GVToBits[&GV]; if (!BitsPtr) { Bits.emplace_back(); Bits.back().GV = &GV; Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); BitsPtr = &Bits.back(); } for (MDNode *Type : Types) { auto TypeID = Type->getOperand(1).get(); uint64_t Offset = cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); TypeIdMap[TypeID].insert({BitsPtr, Offset}); } } } bool DevirtModule::tryFindVirtualCallTargets( std::vector &TargetsForSlot, const std::set &TypeMemberInfos, uint64_t ByteOffset) { for (const TypeMemberInfo &TM : TypeMemberInfos) { if (!TM.Bits->GV->isConstant()) return false; // We cannot perform whole program devirtualization analysis on a vtable // with public LTO visibility. if (TM.Bits->GV->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) return false; Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), TM.Offset + ByteOffset, M); if (!Ptr) return false; auto Fn = dyn_cast(Ptr->stripPointerCasts()); if (!Fn) return false; if (FunctionsToSkip.match(Fn->getName())) return false; // We can disregard __cxa_pure_virtual as a possible call target, as // calls to pure virtuals are UB. if (Fn->getName() == "__cxa_pure_virtual") continue; TargetsForSlot.push_back({Fn, &TM}); } // Give up if we couldn't find any targets. return !TargetsForSlot.empty(); } bool DevirtIndex::tryFindVirtualCallTargets( std::vector &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) { for (const TypeIdOffsetVtableInfo &P : TIdInfo) { // Find the first non-available_externally linkage vtable initializer. // We can have multiple available_externally, linkonce_odr and weak_odr // vtable initializers, however we want to skip available_externally as they // do not have type metadata attached, and therefore the summary will not // contain any vtable functions. We can also have multiple external // vtable initializers in the case of comdats, which we cannot check here. // The linker should give an error in this case. // // Also, handle the case of same-named local Vtables with the same path // and therefore the same GUID. This can happen if there isn't enough // distinguishing path when compiling the source file. In that case we // conservatively return false early. const GlobalVarSummary *VS = nullptr; bool LocalFound = false; for (auto &S : P.VTableVI.getSummaryList()) { if (GlobalValue::isLocalLinkage(S->linkage())) { if (LocalFound) return false; LocalFound = true; } if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) { VS = cast(S->getBaseObject()); // We cannot perform whole program devirtualization analysis on a vtable // with public LTO visibility. if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) return false; } } if (!VS->isLive()) continue; for (auto VTP : VS->vTableFuncs()) { if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) continue; TargetsForSlot.push_back(VTP.FuncVI); } } // Give up if we couldn't find any targets. return !TargetsForSlot.empty(); } void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, bool &IsExported) { // Don't devirtualize function if we're told to skip it // in -wholeprogramdevirt-skip. if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) return; auto Apply = [&](CallSiteInfo &CSInfo) { for (auto &&VCallSite : CSInfo.CallSites) { if (RemarksEnabled) VCallSite.emitRemark("single-impl", TheFn->stripPointerCasts()->getName(), OREGetter); VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast( TheFn, VCallSite.CB.getCalledOperand()->getType())); // This use is no longer unsafe. if (VCallSite.NumUnsafeUses) --*VCallSite.NumUnsafeUses; } if (CSInfo.isExported()) IsExported = true; CSInfo.markDevirt(); }; Apply(SlotInfo.CSInfo); for (auto &P : SlotInfo.ConstCSInfo) Apply(P.second); } static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { // We can't add calls if we haven't seen a definition if (Callee.getSummaryList().empty()) return false; // Insert calls into the summary index so that the devirtualized targets // are eligible for import. // FIXME: Annotate type tests with hotness. For now, mark these as hot // to better ensure we have the opportunity to inline them. bool IsExported = false; auto &S = Callee.getSummaryList()[0]; CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); auto AddCalls = [&](CallSiteInfo &CSInfo) { for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { FS->addCall({Callee, CI}); IsExported |= S->modulePath() != FS->modulePath(); } for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { FS->addCall({Callee, CI}); IsExported |= S->modulePath() != FS->modulePath(); } }; AddCalls(SlotInfo.CSInfo); for (auto &P : SlotInfo.ConstCSInfo) AddCalls(P.second); return IsExported; } bool DevirtModule::trySingleImplDevirt( ModuleSummaryIndex *ExportSummary, MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { // See if the program contains a single implementation of this virtual // function. Function *TheFn = TargetsForSlot[0].Fn; for (auto &&Target : TargetsForSlot) if (TheFn != Target.Fn) return false; // If so, update each call site to call that implementation directly. if (RemarksEnabled) TargetsForSlot[0].WasDevirt = true; bool IsExported = false; applySingleImplDevirt(SlotInfo, TheFn, IsExported); if (!IsExported) return false; // If the only implementation has local linkage, we must promote to external // to make it visible to thin LTO objects. We can only get here during the // ThinLTO export phase. if (TheFn->hasLocalLinkage()) { std::string NewName = (TheFn->getName() + "$merged").str(); // Since we are renaming the function, any comdats with the same name must // also be renamed. This is required when targeting COFF, as the comdat name // must match one of the names of the symbols in the comdat. if (Comdat *C = TheFn->getComdat()) { if (C->getName() == TheFn->getName()) { Comdat *NewC = M.getOrInsertComdat(NewName); NewC->setSelectionKind(C->getSelectionKind()); for (GlobalObject &GO : M.global_objects()) if (GO.getComdat() == C) GO.setComdat(NewC); } } TheFn->setLinkage(GlobalValue::ExternalLinkage); TheFn->setVisibility(GlobalValue::HiddenVisibility); TheFn->setName(NewName); } if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) // Any needed promotion of 'TheFn' has already been done during // LTO unit split, so we can ignore return value of AddCalls. AddCalls(SlotInfo, TheFnVI); Res->TheKind = WholeProgramDevirtResolution::SingleImpl; Res->SingleImplName = std::string(TheFn->getName()); return true; } bool DevirtIndex::trySingleImplDevirt(MutableArrayRef TargetsForSlot, VTableSlotSummary &SlotSummary, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, std::set &DevirtTargets) { // See if the program contains a single implementation of this virtual // function. auto TheFn = TargetsForSlot[0]; for (auto &&Target : TargetsForSlot) if (TheFn != Target) return false; // Don't devirtualize if we don't have target definition. auto Size = TheFn.getSummaryList().size(); if (!Size) return false; // Don't devirtualize function if we're told to skip it // in -wholeprogramdevirt-skip. if (FunctionsToSkip.match(TheFn.name())) return false; // If the summary list contains multiple summaries where at least one is // a local, give up, as we won't know which (possibly promoted) name to use. for (auto &S : TheFn.getSummaryList()) if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) return false; // Collect functions devirtualized at least for one call site for stats. if (PrintSummaryDevirt) DevirtTargets.insert(TheFn); auto &S = TheFn.getSummaryList()[0]; bool IsExported = AddCalls(SlotInfo, TheFn); if (IsExported) ExportedGUIDs.insert(TheFn.getGUID()); // Record in summary for use in devirtualization during the ThinLTO import // step. Res->TheKind = WholeProgramDevirtResolution::SingleImpl; if (GlobalValue::isLocalLinkage(S->linkage())) { if (IsExported) // If target is a local function and we are exporting it by // devirtualizing a call in another module, we need to record the // promoted name. Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); else { LocalWPDTargetsMap[TheFn].push_back(SlotSummary); Res->SingleImplName = std::string(TheFn.name()); } } else Res->SingleImplName = std::string(TheFn.name()); // Name will be empty if this thin link driven off of serialized combined // index (e.g. llvm-lto). However, WPD is not supported/invoked for the // legacy LTO API anyway. assert(!Res->SingleImplName.empty()); return true; } void DevirtModule::tryICallBranchFunnel( MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot) { Triple T(M.getTargetTriple()); if (T.getArch() != Triple::x86_64) return; if (TargetsForSlot.size() > ClThreshold) return; bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; if (!HasNonDevirt) for (auto &P : SlotInfo.ConstCSInfo) if (!P.second.AllCallSitesDevirted) { HasNonDevirt = true; break; } if (!HasNonDevirt) return; FunctionType *FT = FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); Function *JT; if (isa(Slot.TypeID)) { JT = Function::Create(FT, Function::ExternalLinkage, M.getDataLayout().getProgramAddressSpace(), getGlobalName(Slot, {}, "branch_funnel"), &M); JT->setVisibility(GlobalValue::HiddenVisibility); } else { JT = Function::Create(FT, Function::InternalLinkage, M.getDataLayout().getProgramAddressSpace(), "branch_funnel", &M); } JT->addAttribute(1, Attribute::Nest); std::vector JTArgs; JTArgs.push_back(JT->arg_begin()); for (auto &T : TargetsForSlot) { JTArgs.push_back(getMemberAddr(T.TM)); JTArgs.push_back(T.Fn); } BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); Function *Intr = Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); auto *CI = CallInst::Create(Intr, JTArgs, "", BB); CI->setTailCallKind(CallInst::TCK_MustTail); ReturnInst::Create(M.getContext(), nullptr, BB); bool IsExported = false; applyICallBranchFunnel(SlotInfo, JT, IsExported); if (IsExported) Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; } void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, bool &IsExported) { auto Apply = [&](CallSiteInfo &CSInfo) { if (CSInfo.isExported()) IsExported = true; if (CSInfo.AllCallSitesDevirted) return; for (auto &&VCallSite : CSInfo.CallSites) { CallBase &CB = VCallSite.CB; // Jump tables are only profitable if the retpoline mitigation is enabled. Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); if (!FSAttr.isValid() || !FSAttr.getValueAsString().contains("+retpoline")) continue; if (RemarksEnabled) VCallSite.emitRemark("branch-funnel", JT->stripPointerCasts()->getName(), OREGetter); // Pass the address of the vtable in the nest register, which is r10 on // x86_64. std::vector NewArgs; NewArgs.push_back(Int8PtrTy); for (Type *T : CB.getFunctionType()->params()) NewArgs.push_back(T); FunctionType *NewFT = FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, CB.getFunctionType()->isVarArg()); PointerType *NewFTPtr = PointerType::getUnqual(NewFT); IRBuilder<> IRB(&CB); std::vector Args; Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); Args.insert(Args.end(), CB.arg_begin(), CB.arg_end()); CallBase *NewCS = nullptr; if (isa(CB)) NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); else NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), cast(CB).getNormalDest(), cast(CB).getUnwindDest(), Args); NewCS->setCallingConv(CB.getCallingConv()); AttributeList Attrs = CB.getAttributes(); std::vector NewArgAttrs; NewArgAttrs.push_back(AttributeSet::get( M.getContext(), ArrayRef{Attribute::get( M.getContext(), Attribute::Nest)})); for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) NewArgAttrs.push_back(Attrs.getParamAttributes(I)); NewCS->setAttributes( AttributeList::get(M.getContext(), Attrs.getFnAttributes(), Attrs.getRetAttributes(), NewArgAttrs)); CB.replaceAllUsesWith(NewCS); CB.eraseFromParent(); // This use is no longer unsafe. if (VCallSite.NumUnsafeUses) --*VCallSite.NumUnsafeUses; } // Don't mark as devirtualized because there may be callers compiled without // retpoline mitigation, which would mean that they are lowered to // llvm.type.test and therefore require an llvm.type.test resolution for the // type identifier. }; Apply(SlotInfo.CSInfo); for (auto &P : SlotInfo.ConstCSInfo) Apply(P.second); } bool DevirtModule::tryEvaluateFunctionsWithArgs( MutableArrayRef TargetsForSlot, ArrayRef Args) { // Evaluate each function and store the result in each target's RetVal // field. for (VirtualCallTarget &Target : TargetsForSlot) { if (Target.Fn->arg_size() != Args.size() + 1) return false; Evaluator Eval(M.getDataLayout(), nullptr); SmallVector EvalArgs; EvalArgs.push_back( Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); for (unsigned I = 0; I != Args.size(); ++I) { auto *ArgTy = dyn_cast( Target.Fn->getFunctionType()->getParamType(I + 1)); if (!ArgTy) return false; EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); } Constant *RetVal; if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || !isa(RetVal)) return false; Target.RetVal = cast(RetVal)->getZExtValue(); } return true; } void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, uint64_t TheRetVal) { for (auto Call : CSInfo.CallSites) Call.replaceAndErase( "uniform-ret-val", FnName, RemarksEnabled, OREGetter, ConstantInt::get(cast(Call.CB.getType()), TheRetVal)); CSInfo.markDevirt(); } bool DevirtModule::tryUniformRetValOpt( MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res) { // Uniform return value optimization. If all functions return the same // constant, replace all calls with that constant. uint64_t TheRetVal = TargetsForSlot[0].RetVal; for (const VirtualCallTarget &Target : TargetsForSlot) if (Target.RetVal != TheRetVal) return false; if (CSInfo.isExported()) { Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; Res->Info = TheRetVal; } applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; return true; } std::string DevirtModule::getGlobalName(VTableSlot Slot, ArrayRef Args, StringRef Name) { std::string FullName = "__typeid_"; raw_string_ostream OS(FullName); OS << cast(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; for (uint64_t Arg : Args) OS << '_' << Arg; OS << '_' << Name; return OS.str(); } bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { Triple T(M.getTargetTriple()); return T.isX86() && T.getObjectFormat() == Triple::ELF; } void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name, Constant *C) { GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, getGlobalName(Slot, Args, Name), C, &M); GA->setVisibility(GlobalValue::HiddenVisibility); } void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, uint32_t Const, uint32_t &Storage) { if (shouldExportConstantsAsAbsoluteSymbols()) { exportGlobal( Slot, Args, Name, ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); return; } Storage = Const; } Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name) { Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); auto *GV = dyn_cast(C); if (GV) GV->setVisibility(GlobalValue::HiddenVisibility); return C; } Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, IntegerType *IntTy, uint32_t Storage) { if (!shouldExportConstantsAsAbsoluteSymbols()) return ConstantInt::get(IntTy, Storage); Constant *C = importGlobal(Slot, Args, Name); auto *GV = cast(C->stripPointerCasts()); C = ConstantExpr::getPtrToInt(C, IntTy); // We only need to set metadata if the global is newly created, in which // case it would not have hidden visibility. if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) return C; auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); GV->setMetadata(LLVMContext::MD_absolute_symbol, MDNode::get(M.getContext(), {MinC, MaxC})); }; unsigned AbsWidth = IntTy->getBitWidth(); if (AbsWidth == IntPtrTy->getBitWidth()) SetAbsRange(~0ull, ~0ull); // Full set. else SetAbsRange(0, 1ull << AbsWidth); return C; } void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, Constant *UniqueMemberAddr) { for (auto &&Call : CSInfo.CallSites) { IRBuilder<> B(&Call.CB); Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); Cmp = B.CreateZExt(Cmp, Call.CB.getType()); Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, Cmp); } CSInfo.markDevirt(); } Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); return ConstantExpr::getGetElementPtr(Int8Ty, C, ConstantInt::get(Int64Ty, M->Offset)); } bool DevirtModule::tryUniqueRetValOpt( unsigned BitWidth, MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, VTableSlot Slot, ArrayRef Args) { // IsOne controls whether we look for a 0 or a 1. auto tryUniqueRetValOptFor = [&](bool IsOne) { const TypeMemberInfo *UniqueMember = nullptr; for (const VirtualCallTarget &Target : TargetsForSlot) { if (Target.RetVal == (IsOne ? 1 : 0)) { if (UniqueMember) return false; UniqueMember = Target.TM; } } // We should have found a unique member or bailed out by now. We already // checked for a uniform return value in tryUniformRetValOpt. assert(UniqueMember); Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); if (CSInfo.isExported()) { Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; Res->Info = IsOne; exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); } // Replace each call with the comparison. applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, UniqueMemberAddr); // Update devirtualization statistics for targets. if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; return true; }; if (BitWidth == 1) { if (tryUniqueRetValOptFor(true)) return true; if (tryUniqueRetValOptFor(false)) return true; } return false; } void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, Constant *Byte, Constant *Bit) { for (auto Call : CSInfo.CallSites) { auto *RetType = cast(Call.CB.getType()); IRBuilder<> B(&Call.CB); Value *Addr = B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); if (RetType->getBitWidth() == 1) { Value *Bits = B.CreateLoad(Int8Ty, Addr); Value *BitsAndBit = B.CreateAnd(Bits, Bit); auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, OREGetter, IsBitSet); } else { Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); Value *Val = B.CreateLoad(RetType, ValAddr); Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, OREGetter, Val); } } CSInfo.markDevirt(); } bool DevirtModule::tryVirtualConstProp( MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot) { // This only works if the function returns an integer. auto RetType = dyn_cast(TargetsForSlot[0].Fn->getReturnType()); if (!RetType) return false; unsigned BitWidth = RetType->getBitWidth(); if (BitWidth > 64) return false; // Make sure that each function is defined, does not access memory, takes at // least one argument, does not use its first argument (which we assume is // 'this'), and has the same return type. // // Note that we test whether this copy of the function is readnone, rather // than testing function attributes, which must hold for any copy of the // function, even a less optimized version substituted at link time. This is // sound because the virtual constant propagation optimizations effectively // inline all implementations of the virtual function into each call site, // rather than using function attributes to perform local optimization. for (VirtualCallTarget &Target : TargetsForSlot) { if (Target.Fn->isDeclaration() || computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != MAK_ReadNone || Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || Target.Fn->getReturnType() != RetType) return false; } for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) continue; WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; if (Res) ResByArg = &Res->ResByArg[CSByConstantArg.first]; if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) continue; if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, ResByArg, Slot, CSByConstantArg.first)) continue; // Find an allocation offset in bits in all vtables associated with the // type. uint64_t AllocBefore = findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); uint64_t AllocAfter = findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); // Calculate the total amount of padding needed to store a value at both // ends of the object. uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; for (auto &&Target : TargetsForSlot) { TotalPaddingBefore += std::max( (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); TotalPaddingAfter += std::max( (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); } // If the amount of padding is too large, give up. // FIXME: do something smarter here. if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) continue; // Calculate the offset to the value as a (possibly negative) byte offset // and (if applicable) a bit offset, and store the values in the targets. int64_t OffsetByte; uint64_t OffsetBit; if (TotalPaddingBefore <= TotalPaddingAfter) setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, OffsetBit); else setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, OffsetBit); if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; if (CSByConstantArg.second.isExported()) { ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, ResByArg->Byte); exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, ResByArg->Bit); } // Rewrite each call to a load from OffsetByte/OffsetBit. Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); applyVirtualConstProp(CSByConstantArg.second, TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); } return true; } void DevirtModule::rebuildGlobal(VTableBits &B) { if (B.Before.Bytes.empty() && B.After.Bytes.empty()) return; // Align the before byte array to the global's minimum alignment so that we // don't break any alignment requirements on the global. Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( B.GV->getAlign(), B.GV->getValueType()); B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); // Before was stored in reverse order; flip it now. for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); // Build an anonymous global containing the before bytes, followed by the // original initializer, followed by the after bytes. auto NewInit = ConstantStruct::getAnon( {ConstantDataArray::get(M.getContext(), B.Before.Bytes), B.GV->getInitializer(), ConstantDataArray::get(M.getContext(), B.After.Bytes)}); auto NewGV = new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), GlobalVariable::PrivateLinkage, NewInit, "", B.GV); NewGV->setSection(B.GV->getSection()); NewGV->setComdat(B.GV->getComdat()); NewGV->setAlignment(MaybeAlign(B.GV->getAlignment())); // Copy the original vtable's metadata to the anonymous global, adjusting // offsets as required. NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); // Build an alias named after the original global, pointing at the second // element (the original initializer). auto Alias = GlobalAlias::create( B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", ConstantExpr::getGetElementPtr( NewInit->getType(), NewGV, ArrayRef{ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)}), &M); Alias->setVisibility(B.GV->getVisibility()); Alias->takeName(B.GV); B.GV->replaceAllUsesWith(Alias); B.GV->eraseFromParent(); } bool DevirtModule::areRemarksEnabled() { const auto &FL = M.getFunctionList(); for (const Function &Fn : FL) { const auto &BBL = Fn.getBasicBlockList(); if (BBL.empty()) continue; auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); return DI.isEnabled(); } return false; } void DevirtModule::scanTypeTestUsers( Function *TypeTestFunc, DenseMap> &TypeIdMap) { // Find all virtual calls via a virtual table pointer %p under an assumption // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p // points to a member of the type identifier %md. Group calls by (type ID, // offset) pair (effectively the identity of the virtual function) and store // to CallSlots. for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); I != E;) { auto CI = dyn_cast(I->getUser()); ++I; if (!CI) continue; // Search for virtual calls based on %p and add them to DevirtCalls. SmallVector DevirtCalls; SmallVector Assumes; auto &DT = LookupDomTree(*CI->getFunction()); findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); Metadata *TypeId = cast(CI->getArgOperand(1))->getMetadata(); // If we found any, add them to CallSlots. if (!Assumes.empty()) { Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); for (DevirtCallSite Call : DevirtCalls) CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); } auto RemoveTypeTestAssumes = [&]() { // We no longer need the assumes or the type test. for (auto Assume : Assumes) Assume->eraseFromParent(); // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we // may use the vtable argument later. if (CI->use_empty()) CI->eraseFromParent(); }; // At this point we could remove all type test assume sequences, as they // were originally inserted for WPD. However, we can keep these in the // code stream for later analysis (e.g. to help drive more efficient ICP // sequences). They will eventually be removed by a second LowerTypeTests // invocation that cleans them up. In order to do this correctly, the first // LowerTypeTests invocation needs to know that they have "Unknown" type // test resolution, so that they aren't treated as Unsat and lowered to // False, which will break any uses on assumes. Below we remove any type // test assumes that will not be treated as Unknown by LTT. // The type test assumes will be treated by LTT as Unsat if the type id is // not used on a global (in which case it has no entry in the TypeIdMap). if (!TypeIdMap.count(TypeId)) RemoveTypeTestAssumes(); // For ThinLTO importing, we need to remove the type test assumes if this is // an MDString type id without a corresponding TypeIdSummary. Any // non-MDString type ids are ignored and treated as Unknown by LTT, so their // type test assumes can be kept. If the MDString type id is missing a // TypeIdSummary (e.g. because there was no use on a vcall, preventing the // exporting phase of WPD from analyzing it), then it would be treated as // Unsat by LTT and we need to remove its type test assumes here. If not // used on a vcall we don't need them for later optimization use in any // case. else if (ImportSummary && isa(TypeId)) { const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(cast(TypeId)->getString()); if (!TidSummary) RemoveTypeTestAssumes(); else // If one was created it should not be Unsat, because if we reached here // the type id was used on a global. assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); } } } void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); for (auto I = TypeCheckedLoadFunc->use_begin(), E = TypeCheckedLoadFunc->use_end(); I != E;) { auto CI = dyn_cast(I->getUser()); ++I; if (!CI) continue; Value *Ptr = CI->getArgOperand(0); Value *Offset = CI->getArgOperand(1); Value *TypeIdValue = CI->getArgOperand(2); Metadata *TypeId = cast(TypeIdValue)->getMetadata(); SmallVector DevirtCalls; SmallVector LoadedPtrs; SmallVector Preds; bool HasNonCallUses = false; auto &DT = LookupDomTree(*CI->getFunction()); findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, HasNonCallUses, CI, DT); // Start by generating "pessimistic" code that explicitly loads the function // pointer from the vtable and performs the type check. If possible, we will // eliminate the load and the type check later. // If possible, only generate the load at the point where it is used. // This helps avoid unnecessary spills. IRBuilder<> LoadB( (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); for (Instruction *LoadedPtr : LoadedPtrs) { LoadedPtr->replaceAllUsesWith(LoadedValue); LoadedPtr->eraseFromParent(); } // Likewise for the type test. IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); for (Instruction *Pred : Preds) { Pred->replaceAllUsesWith(TypeTestCall); Pred->eraseFromParent(); } // We have already erased any extractvalue instructions that refer to the // intrinsic call, but the intrinsic may have other non-extractvalue uses // (although this is unlikely). In that case, explicitly build a pair and // RAUW it. if (!CI->use_empty()) { Value *Pair = UndefValue::get(CI->getType()); IRBuilder<> B(CI); Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); CI->replaceAllUsesWith(Pair); } // The number of unsafe uses is initially the number of uses. auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; NumUnsafeUses = DevirtCalls.size(); // If the function pointer has a non-call user, we cannot eliminate the type // check, as one of those users may eventually call the pointer. Increment // the unsafe use count to make sure it cannot reach zero. if (HasNonCallUses) ++NumUnsafeUses; for (DevirtCallSite Call : DevirtCalls) { CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, &NumUnsafeUses); } CI->eraseFromParent(); } } void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { auto *TypeId = dyn_cast(Slot.TypeID); if (!TypeId) return; const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId->getString()); if (!TidSummary) return; auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); if (ResI == TidSummary->WPDRes.end()) return; const WholeProgramDevirtResolution &Res = ResI->second; if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { assert(!Res.SingleImplName.empty()); // The type of the function in the declaration is irrelevant because every // call site will cast it to the correct type. Constant *SingleImpl = cast(M.getOrInsertFunction(Res.SingleImplName, Type::getVoidTy(M.getContext())) .getCallee()); // This is the import phase so we should not be exporting anything. bool IsExported = false; applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); assert(!IsExported); } for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { auto I = Res.ResByArg.find(CSByConstantArg.first); if (I == Res.ResByArg.end()) continue; auto &ResByArg = I->second; // FIXME: We should figure out what to do about the "function name" argument // to the apply* functions, as the function names are unavailable during the // importing phase. For now we just pass the empty string. This does not // impact correctness because the function names are just used for remarks. switch (ResByArg.TheKind) { case WholeProgramDevirtResolution::ByArg::UniformRetVal: applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); break; case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { Constant *UniqueMemberAddr = importGlobal(Slot, CSByConstantArg.first, "unique_member"); applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, UniqueMemberAddr); break; } case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", Int32Ty, ResByArg.Byte); Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, ResByArg.Bit); applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); break; } default: break; } } if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { // The type of the function is irrelevant, because it's bitcast at calls // anyhow. Constant *JT = cast( M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), Type::getVoidTy(M.getContext())) .getCallee()); bool IsExported = false; applyICallBranchFunnel(SlotInfo, JT, IsExported); assert(!IsExported); } } void DevirtModule::removeRedundantTypeTests() { auto True = ConstantInt::getTrue(M.getContext()); for (auto &&U : NumUnsafeUsesForTypeTest) { if (U.second == 0) { U.first->replaceAllUsesWith(True); U.first->eraseFromParent(); } } } bool DevirtModule::run() { // If only some of the modules were split, we cannot correctly perform // this transformation. We already checked for the presense of type tests // with partially split modules during the thin link, and would have emitted // an error if any were found, so here we can simply return. if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || (ImportSummary && ImportSummary->partiallySplitLTOUnits())) return false; Function *TypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_test)); Function *TypeCheckedLoadFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); // Normally if there are no users of the devirtualization intrinsics in the // module, this pass has nothing to do. But if we are exporting, we also need // to handle any users that appear only in the function summaries. if (!ExportSummary && (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || AssumeFunc->use_empty()) && (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) return false; // Rebuild type metadata into a map for easy lookup. std::vector Bits; DenseMap> TypeIdMap; buildTypeIdentifierMap(Bits, TypeIdMap); if (TypeTestFunc && AssumeFunc) scanTypeTestUsers(TypeTestFunc, TypeIdMap); if (TypeCheckedLoadFunc) scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); if (ImportSummary) { for (auto &S : CallSlots) importResolution(S.first, S.second); removeRedundantTypeTests(); // We have lowered or deleted the type instrinsics, so we will no // longer have enough information to reason about the liveness of virtual // function pointers in GlobalDCE. for (GlobalVariable &GV : M.globals()) GV.eraseMetadata(LLVMContext::MD_vcall_visibility); // The rest of the code is only necessary when exporting or during regular // LTO, so we are done. return true; } if (TypeIdMap.empty()) return true; // Collect information from summary about which calls to try to devirtualize. if (ExportSummary) { DenseMap> MetadataByGUID; for (auto &P : TypeIdMap) { if (auto *TypeId = dyn_cast(P.first)) MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( TypeId); } for (auto &P : *ExportSummary) { for (auto &S : P.second.SummaryList) { auto *FS = dyn_cast(S.get()); if (!FS) continue; // FIXME: Only add live functions. for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { for (Metadata *MD : MetadataByGUID[VF.GUID]) { CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); } } for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { for (Metadata *MD : MetadataByGUID[VF.GUID]) { CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); } } for (const FunctionSummary::ConstVCall &VC : FS->type_test_assume_const_vcalls()) { for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { CallSlots[{MD, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .addSummaryTypeTestAssumeUser(FS); } } for (const FunctionSummary::ConstVCall &VC : FS->type_checked_load_const_vcalls()) { for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { CallSlots[{MD, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .addSummaryTypeCheckedLoadUser(FS); } } } } } // For each (type, offset) pair: bool DidVirtualConstProp = false; std::map DevirtTargets; for (auto &S : CallSlots) { // Search each of the members of the type identifier for the virtual // function implementation at offset S.first.ByteOffset, and add to // TargetsForSlot. std::vector TargetsForSlot; WholeProgramDevirtResolution *Res = nullptr; const std::set &TypeMemberInfos = TypeIdMap[S.first.TypeID]; if (ExportSummary && isa(S.first.TypeID) && TypeMemberInfos.size()) // For any type id used on a global's type metadata, create the type id // summary resolution regardless of whether we can devirtualize, so that // lower type tests knows the type id is not Unsat. If it was not used on // a global's type metadata, the TypeIdMap entry set will be empty, and // we don't want to create an entry (with the default Unknown type // resolution), which can prevent detection of the Unsat. Res = &ExportSummary ->getOrInsertTypeIdSummary( cast(S.first.TypeID)->getString()) .WPDRes[S.first.ByteOffset]; if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, S.first.ByteOffset)) { if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); } // Collect functions devirtualized at least for one call site for stats. if (RemarksEnabled) for (const auto &T : TargetsForSlot) if (T.WasDevirt) DevirtTargets[std::string(T.Fn->getName())] = T.Fn; } // CFI-specific: if we are exporting and any llvm.type.checked.load // intrinsics were *not* devirtualized, we need to add the resulting // llvm.type.test intrinsics to the function summaries so that the // LowerTypeTests pass will export them. if (ExportSummary && isa(S.first.TypeID)) { auto GUID = GlobalValue::getGUID(cast(S.first.TypeID)->getString()); for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) FS->addTypeTest(GUID); for (auto &CCS : S.second.ConstCSInfo) for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) FS->addTypeTest(GUID); } } if (RemarksEnabled) { // Generate remarks for each devirtualized function. for (const auto &DT : DevirtTargets) { Function *F = DT.second; using namespace ore; OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) << "devirtualized " << NV("FunctionName", DT.first)); } } removeRedundantTypeTests(); // Rebuild each global we touched as part of virtual constant propagation to // include the before and after bytes. if (DidVirtualConstProp) for (VTableBits &B : Bits) rebuildGlobal(B); // We have lowered or deleted the type instrinsics, so we will no // longer have enough information to reason about the liveness of virtual // function pointers in GlobalDCE. for (GlobalVariable &GV : M.globals()) GV.eraseMetadata(LLVMContext::MD_vcall_visibility); return true; } void DevirtIndex::run() { if (ExportSummary.typeIdCompatibleVtableMap().empty()) return; DenseMap> NameByGUID; for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) { NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); } // Collect information from summary about which calls to try to devirtualize. for (auto &P : ExportSummary) { for (auto &S : P.second.SummaryList) { auto *FS = dyn_cast(S.get()); if (!FS) continue; // FIXME: Only add live functions. for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { for (StringRef Name : NameByGUID[VF.GUID]) { CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); } } for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { for (StringRef Name : NameByGUID[VF.GUID]) { CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); } } for (const FunctionSummary::ConstVCall &VC : FS->type_test_assume_const_vcalls()) { for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { CallSlots[{Name, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .addSummaryTypeTestAssumeUser(FS); } } for (const FunctionSummary::ConstVCall &VC : FS->type_checked_load_const_vcalls()) { for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { CallSlots[{Name, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .addSummaryTypeCheckedLoadUser(FS); } } } } std::set DevirtTargets; // For each (type, offset) pair: for (auto &S : CallSlots) { // Search each of the members of the type identifier for the virtual // function implementation at offset S.first.ByteOffset, and add to // TargetsForSlot. std::vector TargetsForSlot; auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); assert(TidSummary); // Create the type id summary resolution regardlness of whether we can // devirtualize, so that lower type tests knows the type id is used on // a global and not Unsat. WholeProgramDevirtResolution *Res = &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID) .WPDRes[S.first.ByteOffset]; if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, S.first.ByteOffset)) { if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, DevirtTargets)) continue; } } // Optionally have the thin link print message for each devirtualized // function. if (PrintSummaryDevirt) for (const auto &DT : DevirtTargets) errs() << "Devirtualized call to " << DT << "\n"; return; }