//===- GVNSink.cpp - sink expressions into successors ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file GVNSink.cpp /// This pass attempts to sink instructions into successors, reducing static /// instruction count and enabling if-conversion. /// /// We use a variant of global value numbering to decide what can be sunk. /// Consider: /// /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] /// \ / /// [ %e = phi i32 %a2, %c2 ] /// [ add i32 %e, 4 ] /// /// /// GVN would number %a1 and %c1 differently because they compute different /// results - the VN of an instruction is a function of its opcode and the /// transitive closure of its operands. This is the key property for hoisting /// and CSE. /// /// What we want when sinking however is for a numbering that is a function of /// the *uses* of an instruction, which allows us to answer the question "if I /// replace %a1 with %c1, will it contribute in an equivalent way to all /// successive instructions?". The PostValueTable class in GVN provides this /// mapping. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Scalar/GVNExpression.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "gvn-sink" STATISTIC(NumRemoved, "Number of instructions removed"); namespace llvm { namespace GVNExpression { LLVM_DUMP_METHOD void Expression::dump() const { print(dbgs()); dbgs() << "\n"; } } // end namespace GVNExpression } // end namespace llvm namespace { static bool isMemoryInst(const Instruction *I) { return isa(I) || isa(I) || (isa(I) && !cast(I)->doesNotAccessMemory()) || (isa(I) && !cast(I)->doesNotAccessMemory()); } /// Iterates through instructions in a set of blocks in reverse order from the /// first non-terminator. For example (assume all blocks have size n): /// LockstepReverseIterator I([B1, B2, B3]); /// *I-- = [B1[n], B2[n], B3[n]]; /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; /// ... /// /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() /// to /// determine which blocks are still going and the order they appear in the /// list returned by operator*. class LockstepReverseIterator { ArrayRef Blocks; SmallSetVector ActiveBlocks; SmallVector Insts; bool Fail; public: LockstepReverseIterator(ArrayRef Blocks) : Blocks(Blocks) { reset(); } void reset() { Fail = false; ActiveBlocks.clear(); for (BasicBlock *BB : Blocks) ActiveBlocks.insert(BB); Insts.clear(); for (BasicBlock *BB : Blocks) { if (BB->size() <= 1) { // Block wasn't big enough - only contained a terminator. ActiveBlocks.remove(BB); continue; } Insts.push_back(BB->getTerminator()->getPrevNode()); } if (Insts.empty()) Fail = true; } bool isValid() const { return !Fail; } ArrayRef operator*() const { return Insts; } // Note: This needs to return a SmallSetVector as the elements of // ActiveBlocks will be later copied to Blocks using std::copy. The // resultant order of elements in Blocks needs to be deterministic. // Using SmallPtrSet instead causes non-deterministic order while // copying. And we cannot simply sort Blocks as they need to match the // corresponding Values. SmallSetVector &getActiveBlocks() { return ActiveBlocks; } void restrictToBlocks(SmallSetVector &Blocks) { for (auto II = Insts.begin(); II != Insts.end();) { if (!llvm::is_contained(Blocks, (*II)->getParent())) { ActiveBlocks.remove((*II)->getParent()); II = Insts.erase(II); } else { ++II; } } } void operator--() { if (Fail) return; SmallVector NewInsts; for (auto *Inst : Insts) { if (Inst == &Inst->getParent()->front()) ActiveBlocks.remove(Inst->getParent()); else NewInsts.push_back(Inst->getPrevNode()); } if (NewInsts.empty()) { Fail = true; return; } Insts = NewInsts; } }; //===----------------------------------------------------------------------===// /// Candidate solution for sinking. There may be different ways to /// sink instructions, differing in the number of instructions sunk, /// the number of predecessors sunk from and the number of PHIs /// required. struct SinkingInstructionCandidate { unsigned NumBlocks; unsigned NumInstructions; unsigned NumPHIs; unsigned NumMemoryInsts; int Cost = -1; SmallVector Blocks; void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; Cost = (NumInstructions * (NumBlocks - 1)) - (NumExtraPHIs * NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. - SplitEdgeCost; } bool operator>(const SinkingInstructionCandidate &Other) const { return Cost > Other.Cost; } }; #ifndef NDEBUG raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { OS << ""; return OS; } #endif //===----------------------------------------------------------------------===// /// Describes a PHI node that may or may not exist. These track the PHIs /// that must be created if we sunk a sequence of instructions. It provides /// a hash function for efficient equality comparisons. class ModelledPHI { SmallVector Values; SmallVector Blocks; public: ModelledPHI() = default; ModelledPHI(const PHINode *PN) { // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. SmallVector, 4> Ops; for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); llvm::sort(Ops); for (auto &P : Ops) { Blocks.push_back(P.first); Values.push_back(P.second); } } /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI /// without the same ID. /// \note This is specifically for DenseMapInfo - do not use this! static ModelledPHI createDummy(size_t ID) { ModelledPHI M; M.Values.push_back(reinterpret_cast(ID)); return M; } /// Create a PHI from an array of incoming values and incoming blocks. template ModelledPHI(const VArray &V, const BArray &B) { llvm::copy(V, std::back_inserter(Values)); llvm::copy(B, std::back_inserter(Blocks)); } /// Create a PHI from [I[OpNum] for I in Insts]. template ModelledPHI(ArrayRef Insts, unsigned OpNum, const BArray &B) { llvm::copy(B, std::back_inserter(Blocks)); for (auto *I : Insts) Values.push_back(I->getOperand(OpNum)); } /// Restrict the PHI's contents down to only \c NewBlocks. /// \c NewBlocks must be a subset of \c this->Blocks. void restrictToBlocks(const SmallSetVector &NewBlocks) { auto BI = Blocks.begin(); auto VI = Values.begin(); while (BI != Blocks.end()) { assert(VI != Values.end()); if (!llvm::is_contained(NewBlocks, *BI)) { BI = Blocks.erase(BI); VI = Values.erase(VI); } else { ++BI; ++VI; } } assert(Blocks.size() == NewBlocks.size()); } ArrayRef getValues() const { return Values; } bool areAllIncomingValuesSame() const { return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); } bool areAllIncomingValuesSameType() const { return llvm::all_of( Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); } bool areAnyIncomingValuesConstant() const { return llvm::any_of(Values, [&](Value *V) { return isa(V); }); } // Hash functor unsigned hash() const { return (unsigned)hash_combine_range(Values.begin(), Values.end()); } bool operator==(const ModelledPHI &Other) const { return Values == Other.Values && Blocks == Other.Blocks; } }; template struct DenseMapInfo { static inline ModelledPHI &getEmptyKey() { static ModelledPHI Dummy = ModelledPHI::createDummy(0); return Dummy; } static inline ModelledPHI &getTombstoneKey() { static ModelledPHI Dummy = ModelledPHI::createDummy(1); return Dummy; } static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { return LHS == RHS; } }; using ModelledPHISet = DenseSet>; //===----------------------------------------------------------------------===// // ValueTable //===----------------------------------------------------------------------===// // This is a value number table where the value number is a function of the // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know // that the program would be equivalent if we replaced A with PHI(A, B). //===----------------------------------------------------------------------===// /// A GVN expression describing how an instruction is used. The operands /// field of BasicExpression is used to store uses, not operands. /// /// This class also contains fields for discriminators used when determining /// equivalence of instructions with sideeffects. class InstructionUseExpr : public GVNExpression::BasicExpression { unsigned MemoryUseOrder = -1; bool Volatile = false; ArrayRef ShuffleMask; public: InstructionUseExpr(Instruction *I, ArrayRecycler &R, BumpPtrAllocator &A) : GVNExpression::BasicExpression(I->getNumUses()) { allocateOperands(R, A); setOpcode(I->getOpcode()); setType(I->getType()); if (ShuffleVectorInst *SVI = dyn_cast(I)) ShuffleMask = SVI->getShuffleMask().copy(A); for (auto &U : I->uses()) op_push_back(U.getUser()); llvm::sort(op_begin(), op_end()); } void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } void setVolatile(bool V) { Volatile = V; } hash_code getHashValue() const override { return hash_combine(GVNExpression::BasicExpression::getHashValue(), MemoryUseOrder, Volatile, ShuffleMask); } template hash_code getHashValue(Function MapFn) { hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile, ShuffleMask); for (auto *V : operands()) H = hash_combine(H, MapFn(V)); return H; } }; class ValueTable { DenseMap ValueNumbering; DenseMap ExpressionNumbering; DenseMap HashNumbering; BumpPtrAllocator Allocator; ArrayRecycler Recycler; uint32_t nextValueNumber = 1; /// Create an expression for I based on its opcode and its uses. If I /// touches or reads memory, the expression is also based upon its memory /// order - see \c getMemoryUseOrder(). InstructionUseExpr *createExpr(Instruction *I) { InstructionUseExpr *E = new (Allocator) InstructionUseExpr(I, Recycler, Allocator); if (isMemoryInst(I)) E->setMemoryUseOrder(getMemoryUseOrder(I)); if (CmpInst *C = dyn_cast(I)) { CmpInst::Predicate Predicate = C->getPredicate(); E->setOpcode((C->getOpcode() << 8) | Predicate); } return E; } /// Helper to compute the value number for a memory instruction /// (LoadInst/StoreInst), including checking the memory ordering and /// volatility. template InstructionUseExpr *createMemoryExpr(Inst *I) { if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) return nullptr; InstructionUseExpr *E = createExpr(I); E->setVolatile(I->isVolatile()); return E; } public: ValueTable() = default; /// Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t lookupOrAdd(Value *V) { auto VI = ValueNumbering.find(V); if (VI != ValueNumbering.end()) return VI->second; if (!isa(V)) { ValueNumbering[V] = nextValueNumber; return nextValueNumber++; } Instruction *I = cast(V); InstructionUseExpr *exp = nullptr; switch (I->getOpcode()) { case Instruction::Load: exp = createMemoryExpr(cast(I)); break; case Instruction::Store: exp = createMemoryExpr(cast(I)); break; case Instruction::Call: case Instruction::Invoke: case Instruction::FNeg: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::FCmp: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: case Instruction::AddrSpaceCast: case Instruction::Select: case Instruction::ExtractElement: case Instruction::InsertElement: case Instruction::ShuffleVector: case Instruction::InsertValue: case Instruction::GetElementPtr: exp = createExpr(I); break; default: break; } if (!exp) { ValueNumbering[V] = nextValueNumber; return nextValueNumber++; } uint32_t e = ExpressionNumbering[exp]; if (!e) { hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); auto I = HashNumbering.find(H); if (I != HashNumbering.end()) { e = I->second; } else { e = nextValueNumber++; HashNumbering[H] = e; ExpressionNumbering[exp] = e; } } ValueNumbering[V] = e; return e; } /// Returns the value number of the specified value. Fails if the value has /// not yet been numbered. uint32_t lookup(Value *V) const { auto VI = ValueNumbering.find(V); assert(VI != ValueNumbering.end() && "Value not numbered?"); return VI->second; } /// Removes all value numberings and resets the value table. void clear() { ValueNumbering.clear(); ExpressionNumbering.clear(); HashNumbering.clear(); Recycler.clear(Allocator); nextValueNumber = 1; } /// \c Inst uses or touches memory. Return an ID describing the memory state /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), /// the exact same memory operations happen after I1 and I2. /// /// This is a very hard problem in general, so we use domain-specific /// knowledge that we only ever check for equivalence between blocks sharing a /// single immediate successor that is common, and when determining if I1 == /// I2 we will have already determined that next(I1) == next(I2). This /// inductive property allows us to simply return the value number of the next /// instruction that defines memory. uint32_t getMemoryUseOrder(Instruction *Inst) { auto *BB = Inst->getParent(); for (auto I = std::next(Inst->getIterator()), E = BB->end(); I != E && !I->isTerminator(); ++I) { if (!isMemoryInst(&*I)) continue; if (isa(&*I)) continue; CallInst *CI = dyn_cast(&*I); if (CI && CI->onlyReadsMemory()) continue; InvokeInst *II = dyn_cast(&*I); if (II && II->onlyReadsMemory()) continue; return lookupOrAdd(&*I); } return 0; } }; //===----------------------------------------------------------------------===// class GVNSink { public: GVNSink() = default; bool run(Function &F) { LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() << "\n"); unsigned NumSunk = 0; ReversePostOrderTraversal RPOT(&F); for (auto *N : RPOT) NumSunk += sinkBB(N); return NumSunk > 0; } private: ValueTable VN; bool shouldAvoidSinkingInstruction(Instruction *I) { // These instructions may change or break semantics if moved. if (isa(I) || I->isEHPad() || isa(I) || I->getType()->isTokenTy()) return true; return false; } /// The main heuristic function. Analyze the set of instructions pointed to by /// LRI and return a candidate solution if these instructions can be sunk, or /// None otherwise. Optional analyzeInstructionForSinking( LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, ModelledPHISet &NeededPHIs, SmallPtrSetImpl &PHIContents); /// Create a ModelledPHI for each PHI in BB, adding to PHIs. void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, SmallPtrSetImpl &PHIContents) { for (PHINode &PN : BB->phis()) { auto MPHI = ModelledPHI(&PN); PHIs.insert(MPHI); for (auto *V : MPHI.getValues()) PHIContents.insert(V); } } /// The main instruction sinking driver. Set up state and try and sink /// instructions into BBEnd from its predecessors. unsigned sinkBB(BasicBlock *BBEnd); /// Perform the actual mechanics of sinking an instruction from Blocks into /// BBEnd, which is their only successor. void sinkLastInstruction(ArrayRef Blocks, BasicBlock *BBEnd); /// Remove PHIs that all have the same incoming value. void foldPointlessPHINodes(BasicBlock *BB) { auto I = BB->begin(); while (PHINode *PN = dyn_cast(I++)) { if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { return V == PN->getIncomingValue(0); })) continue; if (PN->getIncomingValue(0) != PN) PN->replaceAllUsesWith(PN->getIncomingValue(0)); else PN->replaceAllUsesWith(UndefValue::get(PN->getType())); PN->eraseFromParent(); } } }; Optional GVNSink::analyzeInstructionForSinking( LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, ModelledPHISet &NeededPHIs, SmallPtrSetImpl &PHIContents) { auto Insts = *LRI; LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I : Insts) { I->dump(); } dbgs() << " ]\n";); DenseMap VNums; for (auto *I : Insts) { uint32_t N = VN.lookupOrAdd(I); LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); if (N == ~0U) return None; VNums[N]++; } unsigned VNumToSink = std::max_element(VNums.begin(), VNums.end(), [](const std::pair &I, const std::pair &J) { return I.second < J.second; }) ->first; if (VNums[VNumToSink] == 1) // Can't sink anything! return None; // Now restrict the number of incoming blocks down to only those with // VNumToSink. auto &ActivePreds = LRI.getActiveBlocks(); unsigned InitialActivePredSize = ActivePreds.size(); SmallVector NewInsts; for (auto *I : Insts) { if (VN.lookup(I) != VNumToSink) ActivePreds.remove(I->getParent()); else NewInsts.push_back(I); } for (auto *I : NewInsts) if (shouldAvoidSinkingInstruction(I)) return None; // If we've restricted the incoming blocks, restrict all needed PHIs also // to that set. bool RecomputePHIContents = false; if (ActivePreds.size() != InitialActivePredSize) { ModelledPHISet NewNeededPHIs; for (auto P : NeededPHIs) { P.restrictToBlocks(ActivePreds); NewNeededPHIs.insert(P); } NeededPHIs = NewNeededPHIs; LRI.restrictToBlocks(ActivePreds); RecomputePHIContents = true; } // The sunk instruction's results. ModelledPHI NewPHI(NewInsts, ActivePreds); // Does sinking this instruction render previous PHIs redundant? if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { NeededPHIs.erase(NewPHI); RecomputePHIContents = true; } if (RecomputePHIContents) { // The needed PHIs have changed, so recompute the set of all needed // values. PHIContents.clear(); for (auto &PHI : NeededPHIs) PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); } // Is this instruction required by a later PHI that doesn't match this PHI? // if so, we can't sink this instruction. for (auto *V : NewPHI.getValues()) if (PHIContents.count(V)) // V exists in this PHI, but the whole PHI is different to NewPHI // (else it would have been removed earlier). We cannot continue // because this isn't representable. return None; // Which operands need PHIs? // FIXME: If any of these fail, we should partition up the candidates to // try and continue making progress. Instruction *I0 = NewInsts[0]; // If all instructions that are going to participate don't have the same // number of operands, we can't do any useful PHI analysis for all operands. auto hasDifferentNumOperands = [&I0](Instruction *I) { return I->getNumOperands() != I0->getNumOperands(); }; if (any_of(NewInsts, hasDifferentNumOperands)) return None; for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { ModelledPHI PHI(NewInsts, OpNum, ActivePreds); if (PHI.areAllIncomingValuesSame()) continue; if (!canReplaceOperandWithVariable(I0, OpNum)) // We can 't create a PHI from this instruction! return None; if (NeededPHIs.count(PHI)) continue; if (!PHI.areAllIncomingValuesSameType()) return None; // Don't create indirect calls! The called value is the final operand. if ((isa(I0) || isa(I0)) && OpNum == E - 1 && PHI.areAnyIncomingValuesConstant()) return None; NeededPHIs.reserve(NeededPHIs.size()); NeededPHIs.insert(PHI); PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); } if (isMemoryInst(NewInsts[0])) ++MemoryInstNum; SinkingInstructionCandidate Cand; Cand.NumInstructions = ++InstNum; Cand.NumMemoryInsts = MemoryInstNum; Cand.NumBlocks = ActivePreds.size(); Cand.NumPHIs = NeededPHIs.size(); for (auto *C : ActivePreds) Cand.Blocks.push_back(C); return Cand; } unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); SmallVector Preds; for (auto *B : predecessors(BBEnd)) { auto *T = B->getTerminator(); if (isa(T) || isa(T)) Preds.push_back(B); else return 0; } if (Preds.size() < 2) return 0; llvm::sort(Preds); unsigned NumOrigPreds = Preds.size(); // We can only sink instructions through unconditional branches. for (auto I = Preds.begin(); I != Preds.end();) { if ((*I)->getTerminator()->getNumSuccessors() != 1) I = Preds.erase(I); else ++I; } LockstepReverseIterator LRI(Preds); SmallVector Candidates; unsigned InstNum = 0, MemoryInstNum = 0; ModelledPHISet NeededPHIs; SmallPtrSet PHIContents; analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); unsigned NumOrigPHIs = NeededPHIs.size(); while (LRI.isValid()) { auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, NeededPHIs, PHIContents); if (!Cand) break; Cand->calculateCost(NumOrigPHIs, Preds.size()); Candidates.emplace_back(*Cand); --LRI; } llvm::stable_sort(Candidates, std::greater()); LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C : Candidates) dbgs() << " " << C << "\n";); // Pick the top candidate, as long it is positive! if (Candidates.empty() || Candidates.front().Cost <= 0) return 0; auto C = Candidates.front(); LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); BasicBlock *InsertBB = BBEnd; if (C.Blocks.size() < NumOrigPreds) { LLVM_DEBUG(dbgs() << " -- Splitting edge to "; BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); if (!InsertBB) { LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); // Edge couldn't be split. return 0; } } for (unsigned I = 0; I < C.NumInstructions; ++I) sinkLastInstruction(C.Blocks, InsertBB); return C.NumInstructions; } void GVNSink::sinkLastInstruction(ArrayRef Blocks, BasicBlock *BBEnd) { SmallVector Insts; for (BasicBlock *BB : Blocks) Insts.push_back(BB->getTerminator()->getPrevNode()); Instruction *I0 = Insts.front(); SmallVector NewOperands; for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { return I->getOperand(O) != I0->getOperand(O); }); if (!NeedPHI) { NewOperands.push_back(I0->getOperand(O)); continue; } // Create a new PHI in the successor block and populate it. auto *Op = I0->getOperand(O); assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); auto *PN = PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink", &BBEnd->front()); for (auto *I : Insts) PN->addIncoming(I->getOperand(O), I->getParent()); NewOperands.push_back(PN); } // Arbitrarily use I0 as the new "common" instruction; remap its operands // and move it to the start of the successor block. for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) I0->getOperandUse(O).set(NewOperands[O]); I0->moveBefore(&*BBEnd->getFirstInsertionPt()); // Update metadata and IR flags. for (auto *I : Insts) if (I != I0) { combineMetadataForCSE(I0, I, true); I0->andIRFlags(I); } for (auto *I : Insts) if (I != I0) I->replaceAllUsesWith(I0); foldPointlessPHINodes(BBEnd); // Finally nuke all instructions apart from the common instruction. for (auto *I : Insts) if (I != I0) I->eraseFromParent(); NumRemoved += Insts.size() - 1; } //////////////////////////////////////////////////////////////////////////////// // Pass machinery / boilerplate class GVNSinkLegacyPass : public FunctionPass { public: static char ID; GVNSinkLegacyPass() : FunctionPass(ID) { initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; GVNSink G; return G.run(F); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); } }; } // end anonymous namespace PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { GVNSink G; if (!G.run(F)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; } char GVNSinkLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", "Early GVN sinking of Expressions", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", "Early GVN sinking of Expressions", false, false) FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }