//===- JumpThreading.cpp - Thread control through conditional blocks ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Jump Threading pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/JumpThreading.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include #include #include using namespace llvm; using namespace jumpthreading; #define DEBUG_TYPE "jump-threading" STATISTIC(NumThreads, "Number of jumps threaded"); STATISTIC(NumFolds, "Number of terminators folded"); STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); static cl::opt BBDuplicateThreshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden); static cl::opt ImplicationSearchThreshold( "jump-threading-implication-search-threshold", cl::desc("The number of predecessors to search for a stronger " "condition to use to thread over a weaker condition"), cl::init(3), cl::Hidden); static cl::opt PrintLVIAfterJumpThreading( "print-lvi-after-jump-threading", cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), cl::Hidden); static cl::opt JumpThreadingFreezeSelectCond( "jump-threading-freeze-select-cond", cl::desc("Freeze the condition when unfolding select"), cl::init(false), cl::Hidden); static cl::opt ThreadAcrossLoopHeaders( "jump-threading-across-loop-headers", cl::desc("Allow JumpThreading to thread across loop headers, for testing"), cl::init(false), cl::Hidden); namespace { /// This pass performs 'jump threading', which looks at blocks that have /// multiple predecessors and multiple successors. If one or more of the /// predecessors of the block can be proven to always jump to one of the /// successors, we forward the edge from the predecessor to the successor by /// duplicating the contents of this block. /// /// An example of when this can occur is code like this: /// /// if () { ... /// X = 4; /// } /// if (X < 3) { /// /// In this case, the unconditional branch at the end of the first if can be /// revectored to the false side of the second if. class JumpThreading : public FunctionPass { JumpThreadingPass Impl; public: static char ID; // Pass identification JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); } void releaseMemory() override { Impl.releaseMemory(); } }; } // end anonymous namespace char JumpThreading::ID = 0; INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", "Jump Threading", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(JumpThreading, "jump-threading", "Jump Threading", false, false) // Public interface to the Jump Threading pass FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { return new JumpThreading(InsertFr, Threshold); } JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); } // Update branch probability information according to conditional // branch probability. This is usually made possible for cloned branches // in inline instances by the context specific profile in the caller. // For instance, // // [Block PredBB] // [Branch PredBr] // if (t) { // Block A; // } else { // Block B; // } // // [Block BB] // cond = PN([true, %A], [..., %B]); // PHI node // [Branch CondBr] // if (cond) { // ... // P(cond == true) = 1% // } // // Here we know that when block A is taken, cond must be true, which means // P(cond == true | A) = 1 // // Given that P(cond == true) = P(cond == true | A) * P(A) + // P(cond == true | B) * P(B) // we get: // P(cond == true ) = P(A) + P(cond == true | B) * P(B) // // which gives us: // P(A) is less than P(cond == true), i.e. // P(t == true) <= P(cond == true) // // In other words, if we know P(cond == true) is unlikely, we know // that P(t == true) is also unlikely. // static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { BranchInst *CondBr = dyn_cast(BB->getTerminator()); if (!CondBr) return; uint64_t TrueWeight, FalseWeight; if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) return; if (TrueWeight + FalseWeight == 0) // Zero branch_weights do not give a hint for getting branch probabilities. // Technically it would result in division by zero denominator, which is // TrueWeight + FalseWeight. return; // Returns the outgoing edge of the dominating predecessor block // that leads to the PhiNode's incoming block: auto GetPredOutEdge = [](BasicBlock *IncomingBB, BasicBlock *PhiBB) -> std::pair { auto *PredBB = IncomingBB; auto *SuccBB = PhiBB; SmallPtrSet Visited; while (true) { BranchInst *PredBr = dyn_cast(PredBB->getTerminator()); if (PredBr && PredBr->isConditional()) return {PredBB, SuccBB}; Visited.insert(PredBB); auto *SinglePredBB = PredBB->getSinglePredecessor(); if (!SinglePredBB) return {nullptr, nullptr}; // Stop searching when SinglePredBB has been visited. It means we see // an unreachable loop. if (Visited.count(SinglePredBB)) return {nullptr, nullptr}; SuccBB = PredBB; PredBB = SinglePredBB; } }; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *PhiOpnd = PN->getIncomingValue(i); ConstantInt *CI = dyn_cast(PhiOpnd); if (!CI || !CI->getType()->isIntegerTy(1)) continue; BranchProbability BP = (CI->isOne() ? BranchProbability::getBranchProbability( TrueWeight, TrueWeight + FalseWeight) : BranchProbability::getBranchProbability( FalseWeight, TrueWeight + FalseWeight)); auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); if (!PredOutEdge.first) return; BasicBlock *PredBB = PredOutEdge.first; BranchInst *PredBr = dyn_cast(PredBB->getTerminator()); if (!PredBr) return; uint64_t PredTrueWeight, PredFalseWeight; // FIXME: We currently only set the profile data when it is missing. // With PGO, this can be used to refine even existing profile data with // context information. This needs to be done after more performance // testing. if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) continue; // We can not infer anything useful when BP >= 50%, because BP is the // upper bound probability value. if (BP >= BranchProbability(50, 100)) continue; SmallVector Weights; if (PredBr->getSuccessor(0) == PredOutEdge.second) { Weights.push_back(BP.getNumerator()); Weights.push_back(BP.getCompl().getNumerator()); } else { Weights.push_back(BP.getCompl().getNumerator()); Weights.push_back(BP.getNumerator()); } PredBr->setMetadata(LLVMContext::MD_prof, MDBuilder(PredBr->getParent()->getContext()) .createBranchWeights(Weights)); } } /// runOnFunction - Toplevel algorithm. bool JumpThreading::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto TLI = &getAnalysis().getTLI(F); auto DT = &getAnalysis().getDomTree(); auto LVI = &getAnalysis().getLVI(); auto AA = &getAnalysis().getAAResults(); DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); std::unique_ptr BFI; std::unique_ptr BPI; if (F.hasProfileData()) { LoopInfo LI{DominatorTree(F)}; BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); } bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), std::move(BFI), std::move(BPI)); if (PrintLVIAfterJumpThreading) { dbgs() << "LVI for function '" << F.getName() << "':\n"; LVI->printLVI(F, DTU.getDomTree(), dbgs()); } return Changed; } PreservedAnalyses JumpThreadingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &DT = AM.getResult(F); auto &LVI = AM.getResult(F); auto &AA = AM.getResult(F); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); std::unique_ptr BFI; std::unique_ptr BPI; if (F.hasProfileData()) { LoopInfo LI{DominatorTree(F)}; BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); } bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), std::move(BFI), std::move(BPI)); if (PrintLVIAfterJumpThreading) { dbgs() << "LVI for function '" << F.getName() << "':\n"; LVI.printLVI(F, DTU.getDomTree(), dbgs()); } if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); return PA; } bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, LazyValueInfo *LVI_, AliasAnalysis *AA_, DomTreeUpdater *DTU_, bool HasProfileData_, std::unique_ptr BFI_, std::unique_ptr BPI_) { LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); TLI = TLI_; LVI = LVI_; AA = AA_; DTU = DTU_; BFI.reset(); BPI.reset(); // When profile data is available, we need to update edge weights after // successful jump threading, which requires both BPI and BFI being available. HasProfileData = HasProfileData_; auto *GuardDecl = F.getParent()->getFunction( Intrinsic::getName(Intrinsic::experimental_guard)); HasGuards = GuardDecl && !GuardDecl->use_empty(); if (HasProfileData) { BPI = std::move(BPI_); BFI = std::move(BFI_); } // Reduce the number of instructions duplicated when optimizing strictly for // size. if (BBDuplicateThreshold.getNumOccurrences()) BBDupThreshold = BBDuplicateThreshold; else if (F.hasFnAttribute(Attribute::MinSize)) BBDupThreshold = 3; else BBDupThreshold = DefaultBBDupThreshold; // JumpThreading must not processes blocks unreachable from entry. It's a // waste of compute time and can potentially lead to hangs. SmallPtrSet Unreachable; assert(DTU && "DTU isn't passed into JumpThreading before using it."); assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); DominatorTree &DT = DTU->getDomTree(); for (auto &BB : F) if (!DT.isReachableFromEntry(&BB)) Unreachable.insert(&BB); if (!ThreadAcrossLoopHeaders) findLoopHeaders(F); bool EverChanged = false; bool Changed; do { Changed = false; for (auto &BB : F) { if (Unreachable.count(&BB)) continue; while (processBlock(&BB)) // Thread all of the branches we can over BB. Changed = true; // Jump threading may have introduced redundant debug values into BB // which should be removed. if (Changed) RemoveRedundantDbgInstrs(&BB); // Stop processing BB if it's the entry or is now deleted. The following // routines attempt to eliminate BB and locating a suitable replacement // for the entry is non-trivial. if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) continue; if (pred_empty(&BB)) { // When processBlock makes BB unreachable it doesn't bother to fix up // the instructions in it. We must remove BB to prevent invalid IR. LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() << "' with terminator: " << *BB.getTerminator() << '\n'); LoopHeaders.erase(&BB); LVI->eraseBlock(&BB); DeleteDeadBlock(&BB, DTU); Changed = true; continue; } // processBlock doesn't thread BBs with unconditional TIs. However, if BB // is "almost empty", we attempt to merge BB with its sole successor. auto *BI = dyn_cast(BB.getTerminator()); if (BI && BI->isUnconditional()) { BasicBlock *Succ = BI->getSuccessor(0); if ( // The terminator must be the only non-phi instruction in BB. BB.getFirstNonPHIOrDbg()->isTerminator() && // Don't alter Loop headers and latches to ensure another pass can // detect and transform nested loops later. !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { RemoveRedundantDbgInstrs(Succ); // BB is valid for cleanup here because we passed in DTU. F remains // BB's parent until a DTU->getDomTree() event. LVI->eraseBlock(&BB); Changed = true; } } } EverChanged |= Changed; } while (Changed); LoopHeaders.clear(); return EverChanged; } // Replace uses of Cond with ToVal when safe to do so. If all uses are // replaced, we can remove Cond. We cannot blindly replace all uses of Cond // because we may incorrectly replace uses when guards/assumes are uses of // of `Cond` and we used the guards/assume to reason about the `Cond` value // at the end of block. RAUW unconditionally replaces all uses // including the guards/assumes themselves and the uses before the // guard/assume. static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { assert(Cond->getType() == ToVal->getType()); auto *BB = Cond->getParent(); // We can unconditionally replace all uses in non-local blocks (i.e. uses // strictly dominated by BB), since LVI information is true from the // terminator of BB. replaceNonLocalUsesWith(Cond, ToVal); for (Instruction &I : reverse(*BB)) { // Reached the Cond whose uses we are trying to replace, so there are no // more uses. if (&I == Cond) break; // We only replace uses in instructions that are guaranteed to reach the end // of BB, where we know Cond is ToVal. if (!isGuaranteedToTransferExecutionToSuccessor(&I)) break; I.replaceUsesOfWith(Cond, ToVal); } if (Cond->use_empty() && !Cond->mayHaveSideEffects()) Cond->eraseFromParent(); } /// Return the cost of duplicating a piece of this block from first non-phi /// and before StopAt instruction to thread across it. Stop scanning the block /// when exceeding the threshold. If duplication is impossible, returns ~0U. static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, Instruction *StopAt, unsigned Threshold) { assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); /// Ignore PHI nodes, these will be flattened when duplication happens. BasicBlock::const_iterator I(BB->getFirstNonPHI()); // FIXME: THREADING will delete values that are just used to compute the // branch, so they shouldn't count against the duplication cost. unsigned Bonus = 0; if (BB->getTerminator() == StopAt) { // Threading through a switch statement is particularly profitable. If this // block ends in a switch, decrease its cost to make it more likely to // happen. if (isa(StopAt)) Bonus = 6; // The same holds for indirect branches, but slightly more so. if (isa(StopAt)) Bonus = 8; } // Bump the threshold up so the early exit from the loop doesn't skip the // terminator-based Size adjustment at the end. Threshold += Bonus; // Sum up the cost of each instruction until we get to the terminator. Don't // include the terminator because the copy won't include it. unsigned Size = 0; for (; &*I != StopAt; ++I) { // Stop scanning the block if we've reached the threshold. if (Size > Threshold) return Size; // Debugger intrinsics don't incur code size. if (isa(I)) continue; // Pseudo-probes don't incur code size. if (isa(I)) continue; // If this is a pointer->pointer bitcast, it is free. if (isa(I) && I->getType()->isPointerTy()) continue; // Freeze instruction is free, too. if (isa(I)) continue; // Bail out if this instruction gives back a token type, it is not possible // to duplicate it if it is used outside this BB. if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) return ~0U; // All other instructions count for at least one unit. ++Size; // Calls are more expensive. If they are non-intrinsic calls, we model them // as having cost of 4. If they are a non-vector intrinsic, we model them // as having cost of 2 total, and if they are a vector intrinsic, we model // them as having cost 1. if (const CallInst *CI = dyn_cast(I)) { if (CI->cannotDuplicate() || CI->isConvergent()) // Blocks with NoDuplicate are modelled as having infinite cost, so they // are never duplicated. return ~0U; else if (!isa(CI)) Size += 3; else if (!CI->getType()->isVectorTy()) Size += 1; } } return Size > Bonus ? Size - Bonus : 0; } /// findLoopHeaders - We do not want jump threading to turn proper loop /// structures into irreducible loops. Doing this breaks up the loop nesting /// hierarchy and pessimizes later transformations. To prevent this from /// happening, we first have to find the loop headers. Here we approximate this /// by finding targets of backedges in the CFG. /// /// Note that there definitely are cases when we want to allow threading of /// edges across a loop header. For example, threading a jump from outside the /// loop (the preheader) to an exit block of the loop is definitely profitable. /// It is also almost always profitable to thread backedges from within the loop /// to exit blocks, and is often profitable to thread backedges to other blocks /// within the loop (forming a nested loop). This simple analysis is not rich /// enough to track all of these properties and keep it up-to-date as the CFG /// mutates, so we don't allow any of these transformations. void JumpThreadingPass::findLoopHeaders(Function &F) { SmallVector, 32> Edges; FindFunctionBackedges(F, Edges); for (const auto &Edge : Edges) LoopHeaders.insert(Edge.second); } /// getKnownConstant - Helper method to determine if we can thread over a /// terminator with the given value as its condition, and if so what value to /// use for that. What kind of value this is depends on whether we want an /// integer or a block address, but an undef is always accepted. /// Returns null if Val is null or not an appropriate constant. static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { if (!Val) return nullptr; // Undef is "known" enough. if (UndefValue *U = dyn_cast(Val)) return U; if (Preference == WantBlockAddress) return dyn_cast(Val->stripPointerCasts()); return dyn_cast(Val); } /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see /// if we can infer that the value is a known ConstantInt/BlockAddress or undef /// in any of our predecessors. If so, return the known list of value and pred /// BB in the result vector. /// /// This returns true if there were any known values. bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( Value *V, BasicBlock *BB, PredValueInfo &Result, ConstantPreference Preference, DenseSet &RecursionSet, Instruction *CxtI) { // This method walks up use-def chains recursively. Because of this, we could // get into an infinite loop going around loops in the use-def chain. To // prevent this, keep track of what (value, block) pairs we've already visited // and terminate the search if we loop back to them if (!RecursionSet.insert(V).second) return false; // If V is a constant, then it is known in all predecessors. if (Constant *KC = getKnownConstant(V, Preference)) { for (BasicBlock *Pred : predecessors(BB)) Result.emplace_back(KC, Pred); return !Result.empty(); } // If V is a non-instruction value, or an instruction in a different block, // then it can't be derived from a PHI. Instruction *I = dyn_cast(V); if (!I || I->getParent() != BB) { // Okay, if this is a live-in value, see if it has a known value at the end // of any of our predecessors. // // FIXME: This should be an edge property, not a block end property. /// TODO: Per PR2563, we could infer value range information about a /// predecessor based on its terminator. // // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if // "I" is a non-local compare-with-a-constant instruction. This would be // able to handle value inequalities better, for example if the compare is // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. // Perhaps getConstantOnEdge should be smart enough to do this? for (BasicBlock *P : predecessors(BB)) { // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); if (Constant *KC = getKnownConstant(PredCst, Preference)) Result.emplace_back(KC, P); } return !Result.empty(); } /// If I is a PHI node, then we know the incoming values for any constants. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *InVal = PN->getIncomingValue(i); if (Constant *KC = getKnownConstant(InVal, Preference)) { Result.emplace_back(KC, PN->getIncomingBlock(i)); } else { Constant *CI = LVI->getConstantOnEdge(InVal, PN->getIncomingBlock(i), BB, CxtI); if (Constant *KC = getKnownConstant(CI, Preference)) Result.emplace_back(KC, PN->getIncomingBlock(i)); } } return !Result.empty(); } // Handle Cast instructions. if (CastInst *CI = dyn_cast(I)) { Value *Source = CI->getOperand(0); computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, RecursionSet, CxtI); if (Result.empty()) return false; // Convert the known values. for (auto &R : Result) R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); return true; } if (FreezeInst *FI = dyn_cast(I)) { Value *Source = FI->getOperand(0); computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, RecursionSet, CxtI); erase_if(Result, [](auto &Pair) { return !isGuaranteedNotToBeUndefOrPoison(Pair.first); }); return !Result.empty(); } // Handle some boolean conditions. if (I->getType()->getPrimitiveSizeInBits() == 1) { assert(Preference == WantInteger && "One-bit non-integer type?"); // X | true -> true // X & false -> false if (I->getOpcode() == Instruction::Or || I->getOpcode() == Instruction::And) { PredValueInfoTy LHSVals, RHSVals; computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, WantInteger, RecursionSet, CxtI); computeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, WantInteger, RecursionSet, CxtI); if (LHSVals.empty() && RHSVals.empty()) return false; ConstantInt *InterestingVal; if (I->getOpcode() == Instruction::Or) InterestingVal = ConstantInt::getTrue(I->getContext()); else InterestingVal = ConstantInt::getFalse(I->getContext()); SmallPtrSet LHSKnownBBs; // Scan for the sentinel. If we find an undef, force it to the // interesting value: x|undef -> true and x&undef -> false. for (const auto &LHSVal : LHSVals) if (LHSVal.first == InterestingVal || isa(LHSVal.first)) { Result.emplace_back(InterestingVal, LHSVal.second); LHSKnownBBs.insert(LHSVal.second); } for (const auto &RHSVal : RHSVals) if (RHSVal.first == InterestingVal || isa(RHSVal.first)) { // If we already inferred a value for this block on the LHS, don't // re-add it. if (!LHSKnownBBs.count(RHSVal.second)) Result.emplace_back(InterestingVal, RHSVal.second); } return !Result.empty(); } // Handle the NOT form of XOR. if (I->getOpcode() == Instruction::Xor && isa(I->getOperand(1)) && cast(I->getOperand(1))->isOne()) { computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, WantInteger, RecursionSet, CxtI); if (Result.empty()) return false; // Invert the known values. for (auto &R : Result) R.first = ConstantExpr::getNot(R.first); return true; } // Try to simplify some other binary operator values. } else if (BinaryOperator *BO = dyn_cast(I)) { assert(Preference != WantBlockAddress && "A binary operator creating a block address?"); if (ConstantInt *CI = dyn_cast(BO->getOperand(1))) { PredValueInfoTy LHSVals; computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, WantInteger, RecursionSet, CxtI); // Try to use constant folding to simplify the binary operator. for (const auto &LHSVal : LHSVals) { Constant *V = LHSVal.first; Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); if (Constant *KC = getKnownConstant(Folded, WantInteger)) Result.emplace_back(KC, LHSVal.second); } } return !Result.empty(); } // Handle compare with phi operand, where the PHI is defined in this block. if (CmpInst *Cmp = dyn_cast(I)) { assert(Preference == WantInteger && "Compares only produce integers"); Type *CmpType = Cmp->getType(); Value *CmpLHS = Cmp->getOperand(0); Value *CmpRHS = Cmp->getOperand(1); CmpInst::Predicate Pred = Cmp->getPredicate(); PHINode *PN = dyn_cast(CmpLHS); if (!PN) PN = dyn_cast(CmpRHS); if (PN && PN->getParent() == BB) { const DataLayout &DL = PN->getModule()->getDataLayout(); // We can do this simplification if any comparisons fold to true or false. // See if any do. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = PN->getIncomingBlock(i); Value *LHS, *RHS; if (PN == CmpLHS) { LHS = PN->getIncomingValue(i); RHS = CmpRHS->DoPHITranslation(BB, PredBB); } else { LHS = CmpLHS->DoPHITranslation(BB, PredBB); RHS = PN->getIncomingValue(i); } Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); if (!Res) { if (!isa(RHS)) continue; // getPredicateOnEdge call will make no sense if LHS is defined in BB. auto LHSInst = dyn_cast(LHS); if (LHSInst && LHSInst->getParent() == BB) continue; LazyValueInfo::Tristate ResT = LVI->getPredicateOnEdge(Pred, LHS, cast(RHS), PredBB, BB, CxtI ? CxtI : Cmp); if (ResT == LazyValueInfo::Unknown) continue; Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); } if (Constant *KC = getKnownConstant(Res, WantInteger)) Result.emplace_back(KC, PredBB); } return !Result.empty(); } // If comparing a live-in value against a constant, see if we know the // live-in value on any predecessors. if (isa(CmpRHS) && !CmpType->isVectorTy()) { Constant *CmpConst = cast(CmpRHS); if (!isa(CmpLHS) || cast(CmpLHS)->getParent() != BB) { for (BasicBlock *P : predecessors(BB)) { // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB, CxtI ? CxtI : Cmp); if (Res == LazyValueInfo::Unknown) continue; Constant *ResC = ConstantInt::get(CmpType, Res); Result.emplace_back(ResC, P); } return !Result.empty(); } // InstCombine can fold some forms of constant range checks into // (icmp (add (x, C1)), C2). See if we have we have such a thing with // x as a live-in. { using namespace PatternMatch; Value *AddLHS; ConstantInt *AddConst; if (isa(CmpConst) && match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { if (!isa(AddLHS) || cast(AddLHS)->getParent() != BB) { for (BasicBlock *P : predecessors(BB)) { // If the value is known by LazyValueInfo to be a ConstantRange in // a predecessor, use that information to try to thread this // block. ConstantRange CR = LVI->getConstantRangeOnEdge( AddLHS, P, BB, CxtI ? CxtI : cast(CmpLHS)); // Propagate the range through the addition. CR = CR.add(AddConst->getValue()); // Get the range where the compare returns true. ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( Pred, cast(CmpConst)->getValue()); Constant *ResC; if (CmpRange.contains(CR)) ResC = ConstantInt::getTrue(CmpType); else if (CmpRange.inverse().contains(CR)) ResC = ConstantInt::getFalse(CmpType); else continue; Result.emplace_back(ResC, P); } return !Result.empty(); } } } // Try to find a constant value for the LHS of a comparison, // and evaluate it statically if we can. PredValueInfoTy LHSVals; computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, WantInteger, RecursionSet, CxtI); for (const auto &LHSVal : LHSVals) { Constant *V = LHSVal.first; Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); if (Constant *KC = getKnownConstant(Folded, WantInteger)) Result.emplace_back(KC, LHSVal.second); } return !Result.empty(); } } if (SelectInst *SI = dyn_cast(I)) { // Handle select instructions where at least one operand is a known constant // and we can figure out the condition value for any predecessor block. Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); PredValueInfoTy Conds; if ((TrueVal || FalseVal) && computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, WantInteger, RecursionSet, CxtI)) { for (auto &C : Conds) { Constant *Cond = C.first; // Figure out what value to use for the condition. bool KnownCond; if (ConstantInt *CI = dyn_cast(Cond)) { // A known boolean. KnownCond = CI->isOne(); } else { assert(isa(Cond) && "Unexpected condition value"); // Either operand will do, so be sure to pick the one that's a known // constant. // FIXME: Do this more cleverly if both values are known constants? KnownCond = (TrueVal != nullptr); } // See if the select has a known constant value for this predecessor. if (Constant *Val = KnownCond ? TrueVal : FalseVal) Result.emplace_back(Val, C.second); } return !Result.empty(); } } // If all else fails, see if LVI can figure out a constant value for us. assert(CxtI->getParent() == BB && "CxtI should be in BB"); Constant *CI = LVI->getConstant(V, CxtI); if (Constant *KC = getKnownConstant(CI, Preference)) { for (BasicBlock *Pred : predecessors(BB)) Result.emplace_back(KC, Pred); } return !Result.empty(); } /// GetBestDestForBranchOnUndef - If we determine that the specified block ends /// in an undefined jump, decide which block is best to revector to. /// /// Since we can pick an arbitrary destination, we pick the successor with the /// fewest predecessors. This should reduce the in-degree of the others. static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { Instruction *BBTerm = BB->getTerminator(); unsigned MinSucc = 0; BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); // Compute the successor with the minimum number of predecessors. unsigned MinNumPreds = pred_size(TestBB); for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { TestBB = BBTerm->getSuccessor(i); unsigned NumPreds = pred_size(TestBB); if (NumPreds < MinNumPreds) { MinSucc = i; MinNumPreds = NumPreds; } } return MinSucc; } static bool hasAddressTakenAndUsed(BasicBlock *BB) { if (!BB->hasAddressTaken()) return false; // If the block has its address taken, it may be a tree of dead constants // hanging off of it. These shouldn't keep the block alive. BlockAddress *BA = BlockAddress::get(BB); BA->removeDeadConstantUsers(); return !BA->use_empty(); } /// processBlock - If there are any predecessors whose control can be threaded /// through to a successor, transform them now. bool JumpThreadingPass::processBlock(BasicBlock *BB) { // If the block is trivially dead, just return and let the caller nuke it. // This simplifies other transformations. if (DTU->isBBPendingDeletion(BB) || (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) return false; // If this block has a single predecessor, and if that pred has a single // successor, merge the blocks. This encourages recursive jump threading // because now the condition in this block can be threaded through // predecessors of our predecessor block. if (maybeMergeBasicBlockIntoOnlyPred(BB)) return true; if (tryToUnfoldSelectInCurrBB(BB)) return true; // Look if we can propagate guards to predecessors. if (HasGuards && processGuards(BB)) return true; // What kind of constant we're looking for. ConstantPreference Preference = WantInteger; // Look to see if the terminator is a conditional branch, switch or indirect // branch, if not we can't thread it. Value *Condition; Instruction *Terminator = BB->getTerminator(); if (BranchInst *BI = dyn_cast(Terminator)) { // Can't thread an unconditional jump. if (BI->isUnconditional()) return false; Condition = BI->getCondition(); } else if (SwitchInst *SI = dyn_cast(Terminator)) { Condition = SI->getCondition(); } else if (IndirectBrInst *IB = dyn_cast(Terminator)) { // Can't thread indirect branch with no successors. if (IB->getNumSuccessors() == 0) return false; Condition = IB->getAddress()->stripPointerCasts(); Preference = WantBlockAddress; } else { return false; // Must be an invoke or callbr. } // Keep track if we constant folded the condition in this invocation. bool ConstantFolded = false; // Run constant folding to see if we can reduce the condition to a simple // constant. if (Instruction *I = dyn_cast(Condition)) { Value *SimpleVal = ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); if (SimpleVal) { I->replaceAllUsesWith(SimpleVal); if (isInstructionTriviallyDead(I, TLI)) I->eraseFromParent(); Condition = SimpleVal; ConstantFolded = true; } } // If the terminator is branching on an undef or freeze undef, we can pick any // of the successors to branch to. Let getBestDestForJumpOnUndef decide. auto *FI = dyn_cast(Condition); if (isa(Condition) || (FI && isa(FI->getOperand(0)) && FI->hasOneUse())) { unsigned BestSucc = getBestDestForJumpOnUndef(BB); std::vector Updates; // Fold the branch/switch. Instruction *BBTerm = BB->getTerminator(); Updates.reserve(BBTerm->getNumSuccessors()); for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { if (i == BestSucc) continue; BasicBlock *Succ = BBTerm->getSuccessor(i); Succ->removePredecessor(BB, true); Updates.push_back({DominatorTree::Delete, BB, Succ}); } LLVM_DEBUG(dbgs() << " In block '" << BB->getName() << "' folding undef terminator: " << *BBTerm << '\n'); BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); BBTerm->eraseFromParent(); DTU->applyUpdatesPermissive(Updates); if (FI) FI->eraseFromParent(); return true; } // If the terminator of this block is branching on a constant, simplify the // terminator to an unconditional branch. This can occur due to threading in // other blocks. if (getKnownConstant(Condition, Preference)) { LLVM_DEBUG(dbgs() << " In block '" << BB->getName() << "' folding terminator: " << *BB->getTerminator() << '\n'); ++NumFolds; ConstantFoldTerminator(BB, true, nullptr, DTU); if (HasProfileData) BPI->eraseBlock(BB); return true; } Instruction *CondInst = dyn_cast(Condition); // All the rest of our checks depend on the condition being an instruction. if (!CondInst) { // FIXME: Unify this with code below. if (processThreadableEdges(Condition, BB, Preference, Terminator)) return true; return ConstantFolded; } if (CmpInst *CondCmp = dyn_cast(CondInst)) { // If we're branching on a conditional, LVI might be able to determine // it's value at the branch instruction. We only handle comparisons // against a constant at this time. // TODO: This should be extended to handle switches as well. BranchInst *CondBr = dyn_cast(BB->getTerminator()); Constant *CondConst = dyn_cast(CondCmp->getOperand(1)); if (CondBr && CondConst) { // We should have returned as soon as we turn a conditional branch to // unconditional. Because its no longer interesting as far as jump // threading is concerned. assert(CondBr->isConditional() && "Threading on unconditional terminator"); LazyValueInfo::Tristate Ret = LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), CondConst, CondBr); if (Ret != LazyValueInfo::Unknown) { unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); ToRemoveSucc->removePredecessor(BB, true); BranchInst *UncondBr = BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); UncondBr->setDebugLoc(CondBr->getDebugLoc()); CondBr->eraseFromParent(); if (CondCmp->use_empty()) CondCmp->eraseFromParent(); // We can safely replace *some* uses of the CondInst if it has // exactly one value as returned by LVI. RAUW is incorrect in the // presence of guards and assumes, that have the `Cond` as the use. This // is because we use the guards/assume to reason about the `Cond` value // at the end of block, but RAUW unconditionally replaces all uses // including the guards/assumes themselves and the uses before the // guard/assume. else if (CondCmp->getParent() == BB) { auto *CI = Ret == LazyValueInfo::True ? ConstantInt::getTrue(CondCmp->getType()) : ConstantInt::getFalse(CondCmp->getType()); replaceFoldableUses(CondCmp, CI); } DTU->applyUpdatesPermissive( {{DominatorTree::Delete, BB, ToRemoveSucc}}); if (HasProfileData) BPI->eraseBlock(BB); return true; } // We did not manage to simplify this branch, try to see whether // CondCmp depends on a known phi-select pattern. if (tryToUnfoldSelect(CondCmp, BB)) return true; } } if (SwitchInst *SI = dyn_cast(BB->getTerminator())) if (tryToUnfoldSelect(SI, BB)) return true; // Check for some cases that are worth simplifying. Right now we want to look // for loads that are used by a switch or by the condition for the branch. If // we see one, check to see if it's partially redundant. If so, insert a PHI // which can then be used to thread the values. Value *SimplifyValue = CondInst; if (auto *FI = dyn_cast(SimplifyValue)) // Look into freeze's operand SimplifyValue = FI->getOperand(0); if (CmpInst *CondCmp = dyn_cast(SimplifyValue)) if (isa(CondCmp->getOperand(1))) SimplifyValue = CondCmp->getOperand(0); // TODO: There are other places where load PRE would be profitable, such as // more complex comparisons. if (LoadInst *LoadI = dyn_cast(SimplifyValue)) if (simplifyPartiallyRedundantLoad(LoadI)) return true; // Before threading, try to propagate profile data backwards: if (PHINode *PN = dyn_cast(CondInst)) if (PN->getParent() == BB && isa(BB->getTerminator())) updatePredecessorProfileMetadata(PN, BB); // Handle a variety of cases where we are branching on something derived from // a PHI node in the current block. If we can prove that any predecessors // compute a predictable value based on a PHI node, thread those predecessors. if (processThreadableEdges(CondInst, BB, Preference, Terminator)) return true; // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in // the current block, see if we can simplify. PHINode *PN = dyn_cast( isa(CondInst) ? cast(CondInst)->getOperand(0) : CondInst); if (PN && PN->getParent() == BB && isa(BB->getTerminator())) return processBranchOnPHI(PN); // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. if (CondInst->getOpcode() == Instruction::Xor && CondInst->getParent() == BB && isa(BB->getTerminator())) return processBranchOnXOR(cast(CondInst)); // Search for a stronger dominating condition that can be used to simplify a // conditional branch leaving BB. if (processImpliedCondition(BB)) return true; return false; } bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { auto *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; Value *Cond = BI->getCondition(); BasicBlock *CurrentBB = BB; BasicBlock *CurrentPred = BB->getSinglePredecessor(); unsigned Iter = 0; auto &DL = BB->getModule()->getDataLayout(); while (CurrentPred && Iter++ < ImplicationSearchThreshold) { auto *PBI = dyn_cast(CurrentPred->getTerminator()); if (!PBI || !PBI->isConditional()) return false; if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) return false; bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; Optional Implication = isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); if (Implication) { BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); RemoveSucc->removePredecessor(BB); BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); UncondBI->setDebugLoc(BI->getDebugLoc()); BI->eraseFromParent(); DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); if (HasProfileData) BPI->eraseBlock(BB); return true; } CurrentBB = CurrentPred; CurrentPred = CurrentBB->getSinglePredecessor(); } return false; } /// Return true if Op is an instruction defined in the given block. static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { if (Instruction *OpInst = dyn_cast(Op)) if (OpInst->getParent() == BB) return true; return false; } /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially /// redundant load instruction, eliminate it by replacing it with a PHI node. /// This is an important optimization that encourages jump threading, and needs /// to be run interlaced with other jump threading tasks. bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { // Don't hack volatile and ordered loads. if (!LoadI->isUnordered()) return false; // If the load is defined in a block with exactly one predecessor, it can't be // partially redundant. BasicBlock *LoadBB = LoadI->getParent(); if (LoadBB->getSinglePredecessor()) return false; // If the load is defined in an EH pad, it can't be partially redundant, // because the edges between the invoke and the EH pad cannot have other // instructions between them. if (LoadBB->isEHPad()) return false; Value *LoadedPtr = LoadI->getOperand(0); // If the loaded operand is defined in the LoadBB and its not a phi, // it can't be available in predecessors. if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa(LoadedPtr)) return false; // Scan a few instructions up from the load, to see if it is obviously live at // the entry to its block. BasicBlock::iterator BBIt(LoadI); bool IsLoadCSE; if (Value *AvailableVal = FindAvailableLoadedValue( LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { // If the value of the load is locally available within the block, just use // it. This frequently occurs for reg2mem'd allocas. if (IsLoadCSE) { LoadInst *NLoadI = cast(AvailableVal); combineMetadataForCSE(NLoadI, LoadI, false); }; // If the returned value is the load itself, replace with an undef. This can // only happen in dead loops. if (AvailableVal == LoadI) AvailableVal = UndefValue::get(LoadI->getType()); if (AvailableVal->getType() != LoadI->getType()) AvailableVal = CastInst::CreateBitOrPointerCast( AvailableVal, LoadI->getType(), "", LoadI); LoadI->replaceAllUsesWith(AvailableVal); LoadI->eraseFromParent(); return true; } // Otherwise, if we scanned the whole block and got to the top of the block, // we know the block is locally transparent to the load. If not, something // might clobber its value. if (BBIt != LoadBB->begin()) return false; // If all of the loads and stores that feed the value have the same AA tags, // then we can propagate them onto any newly inserted loads. AAMDNodes AATags; LoadI->getAAMetadata(AATags); SmallPtrSet PredsScanned; using AvailablePredsTy = SmallVector, 8>; AvailablePredsTy AvailablePreds; BasicBlock *OneUnavailablePred = nullptr; SmallVector CSELoads; // If we got here, the loaded value is transparent through to the start of the // block. Check to see if it is available in any of the predecessor blocks. for (BasicBlock *PredBB : predecessors(LoadBB)) { // If we already scanned this predecessor, skip it. if (!PredsScanned.insert(PredBB).second) continue; BBIt = PredBB->end(); unsigned NumScanedInst = 0; Value *PredAvailable = nullptr; // NOTE: We don't CSE load that is volatile or anything stronger than // unordered, that should have been checked when we entered the function. assert(LoadI->isUnordered() && "Attempting to CSE volatile or atomic loads"); // If this is a load on a phi pointer, phi-translate it and search // for available load/store to the pointer in predecessors. Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); PredAvailable = FindAvailablePtrLoadStore( Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); // If PredBB has a single predecessor, continue scanning through the // single predecessor. BasicBlock *SinglePredBB = PredBB; while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && NumScanedInst < DefMaxInstsToScan) { SinglePredBB = SinglePredBB->getSinglePredecessor(); if (SinglePredBB) { BBIt = SinglePredBB->end(); PredAvailable = FindAvailablePtrLoadStore( Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, &NumScanedInst); } } if (!PredAvailable) { OneUnavailablePred = PredBB; continue; } if (IsLoadCSE) CSELoads.push_back(cast(PredAvailable)); // If so, this load is partially redundant. Remember this info so that we // can create a PHI node. AvailablePreds.emplace_back(PredBB, PredAvailable); } // If the loaded value isn't available in any predecessor, it isn't partially // redundant. if (AvailablePreds.empty()) return false; // Okay, the loaded value is available in at least one (and maybe all!) // predecessors. If the value is unavailable in more than one unique // predecessor, we want to insert a merge block for those common predecessors. // This ensures that we only have to insert one reload, thus not increasing // code size. BasicBlock *UnavailablePred = nullptr; // If the value is unavailable in one of predecessors, we will end up // inserting a new instruction into them. It is only valid if all the // instructions before LoadI are guaranteed to pass execution to its // successor, or if LoadI is safe to speculate. // TODO: If this logic becomes more complex, and we will perform PRE insertion // farther than to a predecessor, we need to reuse the code from GVN's PRE. // It requires domination tree analysis, so for this simple case it is an // overkill. if (PredsScanned.size() != AvailablePreds.size() && !isSafeToSpeculativelyExecute(LoadI)) for (auto I = LoadBB->begin(); &*I != LoadI; ++I) if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) return false; // If there is exactly one predecessor where the value is unavailable, the // already computed 'OneUnavailablePred' block is it. If it ends in an // unconditional branch, we know that it isn't a critical edge. if (PredsScanned.size() == AvailablePreds.size()+1 && OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { UnavailablePred = OneUnavailablePred; } else if (PredsScanned.size() != AvailablePreds.size()) { // Otherwise, we had multiple unavailable predecessors or we had a critical // edge from the one. SmallVector PredsToSplit; SmallPtrSet AvailablePredSet; for (const auto &AvailablePred : AvailablePreds) AvailablePredSet.insert(AvailablePred.first); // Add all the unavailable predecessors to the PredsToSplit list. for (BasicBlock *P : predecessors(LoadBB)) { // If the predecessor is an indirect goto, we can't split the edge. // Same for CallBr. if (isa(P->getTerminator()) || isa(P->getTerminator())) return false; if (!AvailablePredSet.count(P)) PredsToSplit.push_back(P); } // Split them out to their own block. UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); } // If the value isn't available in all predecessors, then there will be // exactly one where it isn't available. Insert a load on that edge and add // it to the AvailablePreds list. if (UnavailablePred) { assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && "Can't handle critical edge here!"); LoadInst *NewVal = new LoadInst( LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), LoadI->getName() + ".pr", false, LoadI->getAlign(), LoadI->getOrdering(), LoadI->getSyncScopeID(), UnavailablePred->getTerminator()); NewVal->setDebugLoc(LoadI->getDebugLoc()); if (AATags) NewVal->setAAMetadata(AATags); AvailablePreds.emplace_back(UnavailablePred, NewVal); } // Now we know that each predecessor of this block has a value in // AvailablePreds, sort them for efficient access as we're walking the preds. array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); // Create a PHI node at the start of the block for the PRE'd load value. pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", &LoadBB->front()); PN->takeName(LoadI); PN->setDebugLoc(LoadI->getDebugLoc()); // Insert new entries into the PHI for each predecessor. A single block may // have multiple entries here. for (pred_iterator PI = PB; PI != PE; ++PI) { BasicBlock *P = *PI; AvailablePredsTy::iterator I = llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); assert(I != AvailablePreds.end() && I->first == P && "Didn't find entry for predecessor!"); // If we have an available predecessor but it requires casting, insert the // cast in the predecessor and use the cast. Note that we have to update the // AvailablePreds vector as we go so that all of the PHI entries for this // predecessor use the same bitcast. Value *&PredV = I->second; if (PredV->getType() != LoadI->getType()) PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", P->getTerminator()); PN->addIncoming(PredV, I->first); } for (LoadInst *PredLoadI : CSELoads) { combineMetadataForCSE(PredLoadI, LoadI, true); } LoadI->replaceAllUsesWith(PN); LoadI->eraseFromParent(); return true; } /// findMostPopularDest - The specified list contains multiple possible /// threadable destinations. Pick the one that occurs the most frequently in /// the list. static BasicBlock * findMostPopularDest(BasicBlock *BB, const SmallVectorImpl> &PredToDestList) { assert(!PredToDestList.empty()); // Determine popularity. If there are multiple possible destinations, we // explicitly choose to ignore 'undef' destinations. We prefer to thread // blocks with known and real destinations to threading undef. We'll handle // them later if interesting. MapVector DestPopularity; // Populate DestPopularity with the successors in the order they appear in the // successor list. This way, we ensure determinism by iterating it in the // same order in std::max_element below. We map nullptr to 0 so that we can // return nullptr when PredToDestList contains nullptr only. DestPopularity[nullptr] = 0; for (auto *SuccBB : successors(BB)) DestPopularity[SuccBB] = 0; for (const auto &PredToDest : PredToDestList) if (PredToDest.second) DestPopularity[PredToDest.second]++; // Find the most popular dest. using VT = decltype(DestPopularity)::value_type; auto MostPopular = std::max_element( DestPopularity.begin(), DestPopularity.end(), [](const VT &L, const VT &R) { return L.second < R.second; }); // Okay, we have finally picked the most popular destination. return MostPopular->first; } // Try to evaluate the value of V when the control flows from PredPredBB to // BB->getSinglePredecessor() and then on to BB. Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, BasicBlock *PredPredBB, Value *V) { BasicBlock *PredBB = BB->getSinglePredecessor(); assert(PredBB && "Expected a single predecessor"); if (Constant *Cst = dyn_cast(V)) { return Cst; } // Consult LVI if V is not an instruction in BB or PredBB. Instruction *I = dyn_cast(V); if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); } // Look into a PHI argument. if (PHINode *PHI = dyn_cast(V)) { if (PHI->getParent() == PredBB) return dyn_cast(PHI->getIncomingValueForBlock(PredPredBB)); return nullptr; } // If we have a CmpInst, try to fold it for each incoming edge into PredBB. if (CmpInst *CondCmp = dyn_cast(V)) { if (CondCmp->getParent() == BB) { Constant *Op0 = evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); Constant *Op1 = evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); if (Op0 && Op1) { return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); } } return nullptr; } return nullptr; } bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, ConstantPreference Preference, Instruction *CxtI) { // If threading this would thread across a loop header, don't even try to // thread the edge. if (LoopHeaders.count(BB)) return false; PredValueInfoTy PredValues; if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) { // We don't have known values in predecessors. See if we can thread through // BB and its sole predecessor. return maybethreadThroughTwoBasicBlocks(BB, Cond); } assert(!PredValues.empty() && "computeValueKnownInPredecessors returned true with no values"); LLVM_DEBUG(dbgs() << "IN BB: " << *BB; for (const auto &PredValue : PredValues) { dbgs() << " BB '" << BB->getName() << "': FOUND condition = " << *PredValue.first << " for pred '" << PredValue.second->getName() << "'.\n"; }); // Decide what we want to thread through. Convert our list of known values to // a list of known destinations for each pred. This also discards duplicate // predecessors and keeps track of the undefined inputs (which are represented // as a null dest in the PredToDestList). SmallPtrSet SeenPreds; SmallVector, 16> PredToDestList; BasicBlock *OnlyDest = nullptr; BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; Constant *OnlyVal = nullptr; Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; for (const auto &PredValue : PredValues) { BasicBlock *Pred = PredValue.second; if (!SeenPreds.insert(Pred).second) continue; // Duplicate predecessor entry. Constant *Val = PredValue.first; BasicBlock *DestBB; if (isa(Val)) DestBB = nullptr; else if (BranchInst *BI = dyn_cast(BB->getTerminator())) { assert(isa(Val) && "Expecting a constant integer"); DestBB = BI->getSuccessor(cast(Val)->isZero()); } else if (SwitchInst *SI = dyn_cast(BB->getTerminator())) { assert(isa(Val) && "Expecting a constant integer"); DestBB = SI->findCaseValue(cast(Val))->getCaseSuccessor(); } else { assert(isa(BB->getTerminator()) && "Unexpected terminator"); assert(isa(Val) && "Expecting a constant blockaddress"); DestBB = cast(Val)->getBasicBlock(); } // If we have exactly one destination, remember it for efficiency below. if (PredToDestList.empty()) { OnlyDest = DestBB; OnlyVal = Val; } else { if (OnlyDest != DestBB) OnlyDest = MultipleDestSentinel; // It possible we have same destination, but different value, e.g. default // case in switchinst. if (Val != OnlyVal) OnlyVal = MultipleVal; } // If the predecessor ends with an indirect goto, we can't change its // destination. Same for CallBr. if (isa(Pred->getTerminator()) || isa(Pred->getTerminator())) continue; PredToDestList.emplace_back(Pred, DestBB); } // If all edges were unthreadable, we fail. if (PredToDestList.empty()) return false; // If all the predecessors go to a single known successor, we want to fold, // not thread. By doing so, we do not need to duplicate the current block and // also miss potential opportunities in case we dont/cant duplicate. if (OnlyDest && OnlyDest != MultipleDestSentinel) { if (BB->hasNPredecessors(PredToDestList.size())) { bool SeenFirstBranchToOnlyDest = false; std::vector Updates; Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); for (BasicBlock *SuccBB : successors(BB)) { if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. } else { SuccBB->removePredecessor(BB, true); // This is unreachable successor. Updates.push_back({DominatorTree::Delete, BB, SuccBB}); } } // Finally update the terminator. Instruction *Term = BB->getTerminator(); BranchInst::Create(OnlyDest, Term); Term->eraseFromParent(); DTU->applyUpdatesPermissive(Updates); if (HasProfileData) BPI->eraseBlock(BB); // If the condition is now dead due to the removal of the old terminator, // erase it. if (auto *CondInst = dyn_cast(Cond)) { if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) CondInst->eraseFromParent(); // We can safely replace *some* uses of the CondInst if it has // exactly one value as returned by LVI. RAUW is incorrect in the // presence of guards and assumes, that have the `Cond` as the use. This // is because we use the guards/assume to reason about the `Cond` value // at the end of block, but RAUW unconditionally replaces all uses // including the guards/assumes themselves and the uses before the // guard/assume. else if (OnlyVal && OnlyVal != MultipleVal && CondInst->getParent() == BB) replaceFoldableUses(CondInst, OnlyVal); } return true; } } // Determine which is the most common successor. If we have many inputs and // this block is a switch, we want to start by threading the batch that goes // to the most popular destination first. If we only know about one // threadable destination (the common case) we can avoid this. BasicBlock *MostPopularDest = OnlyDest; if (MostPopularDest == MultipleDestSentinel) { // Remove any loop headers from the Dest list, threadEdge conservatively // won't process them, but we might have other destination that are eligible // and we still want to process. erase_if(PredToDestList, [&](const std::pair &PredToDest) { return LoopHeaders.count(PredToDest.second) != 0; }); if (PredToDestList.empty()) return false; MostPopularDest = findMostPopularDest(BB, PredToDestList); } // Now that we know what the most popular destination is, factor all // predecessors that will jump to it into a single predecessor. SmallVector PredsToFactor; for (const auto &PredToDest : PredToDestList) if (PredToDest.second == MostPopularDest) { BasicBlock *Pred = PredToDest.first; // This predecessor may be a switch or something else that has multiple // edges to the block. Factor each of these edges by listing them // according to # occurrences in PredsToFactor. for (BasicBlock *Succ : successors(Pred)) if (Succ == BB) PredsToFactor.push_back(Pred); } // If the threadable edges are branching on an undefined value, we get to pick // the destination that these predecessors should get to. if (!MostPopularDest) MostPopularDest = BB->getTerminator()-> getSuccessor(getBestDestForJumpOnUndef(BB)); // Ok, try to thread it! return tryThreadEdge(BB, PredsToFactor, MostPopularDest); } /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on /// a PHI node (or freeze PHI) in the current block. See if there are any /// simplifications we can do based on inputs to the phi node. bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { BasicBlock *BB = PN->getParent(); // TODO: We could make use of this to do it once for blocks with common PHI // values. SmallVector PredBBs; PredBBs.resize(1); // If any of the predecessor blocks end in an unconditional branch, we can // *duplicate* the conditional branch into that block in order to further // encourage jump threading and to eliminate cases where we have branch on a // phi of an icmp (branch on icmp is much better). // This is still beneficial when a frozen phi is used as the branch condition // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) // to br(icmp(freeze ...)). for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = PN->getIncomingBlock(i); if (BranchInst *PredBr = dyn_cast(PredBB->getTerminator())) if (PredBr->isUnconditional()) { PredBBs[0] = PredBB; // Try to duplicate BB into PredBB. if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) return true; } } return false; } /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on /// a xor instruction in the current block. See if there are any /// simplifications we can do based on inputs to the xor. bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { BasicBlock *BB = BO->getParent(); // If either the LHS or RHS of the xor is a constant, don't do this // optimization. if (isa(BO->getOperand(0)) || isa(BO->getOperand(1))) return false; // If the first instruction in BB isn't a phi, we won't be able to infer // anything special about any particular predecessor. if (!isa(BB->front())) return false; // If this BB is a landing pad, we won't be able to split the edge into it. if (BB->isEHPad()) return false; // If we have a xor as the branch input to this block, and we know that the // LHS or RHS of the xor in any predecessor is true/false, then we can clone // the condition into the predecessor and fix that value to true, saving some // logical ops on that path and encouraging other paths to simplify. // // This copies something like this: // // BB: // %X = phi i1 [1], [%X'] // %Y = icmp eq i32 %A, %B // %Z = xor i1 %X, %Y // br i1 %Z, ... // // Into: // BB': // %Y = icmp ne i32 %A, %B // br i1 %Y, ... PredValueInfoTy XorOpValues; bool isLHS = true; if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, WantInteger, BO)) { assert(XorOpValues.empty()); if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, WantInteger, BO)) return false; isLHS = false; } assert(!XorOpValues.empty() && "computeValueKnownInPredecessors returned true with no values"); // Scan the information to see which is most popular: true or false. The // predecessors can be of the set true, false, or undef. unsigned NumTrue = 0, NumFalse = 0; for (const auto &XorOpValue : XorOpValues) { if (isa(XorOpValue.first)) // Ignore undefs for the count. continue; if (cast(XorOpValue.first)->isZero()) ++NumFalse; else ++NumTrue; } // Determine which value to split on, true, false, or undef if neither. ConstantInt *SplitVal = nullptr; if (NumTrue > NumFalse) SplitVal = ConstantInt::getTrue(BB->getContext()); else if (NumTrue != 0 || NumFalse != 0) SplitVal = ConstantInt::getFalse(BB->getContext()); // Collect all of the blocks that this can be folded into so that we can // factor this once and clone it once. SmallVector BlocksToFoldInto; for (const auto &XorOpValue : XorOpValues) { if (XorOpValue.first != SplitVal && !isa(XorOpValue.first)) continue; BlocksToFoldInto.push_back(XorOpValue.second); } // If we inferred a value for all of the predecessors, then duplication won't // help us. However, we can just replace the LHS or RHS with the constant. if (BlocksToFoldInto.size() == cast(BB->front()).getNumIncomingValues()) { if (!SplitVal) { // If all preds provide undef, just nuke the xor, because it is undef too. BO->replaceAllUsesWith(UndefValue::get(BO->getType())); BO->eraseFromParent(); } else if (SplitVal->isZero()) { // If all preds provide 0, replace the xor with the other input. BO->replaceAllUsesWith(BO->getOperand(isLHS)); BO->eraseFromParent(); } else { // If all preds provide 1, set the computed value to 1. BO->setOperand(!isLHS, SplitVal); } return true; } // If any of predecessors end with an indirect goto, we can't change its // destination. Same for CallBr. if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { return isa(Pred->getTerminator()) || isa(Pred->getTerminator()); })) return false; // Try to duplicate BB into PredBB. return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); } /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new /// predecessor to the PHIBB block. If it has PHI nodes, add entries for /// NewPred using the entries from OldPred (suitably mapped). static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, DenseMap &ValueMap) { for (PHINode &PN : PHIBB->phis()) { // Ok, we have a PHI node. Figure out what the incoming value was for the // DestBlock. Value *IV = PN.getIncomingValueForBlock(OldPred); // Remap the value if necessary. if (Instruction *Inst = dyn_cast(IV)) { DenseMap::iterator I = ValueMap.find(Inst); if (I != ValueMap.end()) IV = I->second; } PN.addIncoming(IV, NewPred); } } /// Merge basic block BB into its sole predecessor if possible. bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { BasicBlock *SinglePred = BB->getSinglePredecessor(); if (!SinglePred) return false; const Instruction *TI = SinglePred->getTerminator(); if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || SinglePred == BB || hasAddressTakenAndUsed(BB)) return false; // If SinglePred was a loop header, BB becomes one. if (LoopHeaders.erase(SinglePred)) LoopHeaders.insert(BB); LVI->eraseBlock(SinglePred); MergeBasicBlockIntoOnlyPred(BB, DTU); // Now that BB is merged into SinglePred (i.e. SinglePred code followed by // BB code within one basic block `BB`), we need to invalidate the LVI // information associated with BB, because the LVI information need not be // true for all of BB after the merge. For example, // Before the merge, LVI info and code is as follows: // SinglePred: // %y = use of %p // call @exit() // need not transfer execution to successor. // assume(%p) // from this point on %p is true // br label %BB // BB: // %x = use of %p // br label exit // // Note that this LVI info for blocks BB and SinglPred is correct for %p // (info2 and info1 respectively). After the merge and the deletion of the // LVI info1 for SinglePred. We have the following code: // BB: // %y = use of %p // call @exit() // assume(%p) // %x = use of %p <-- LVI info2 is correct from here onwards. // br label exit // LVI info2 for BB is incorrect at the beginning of BB. // Invalidate LVI information for BB if the LVI is not provably true for // all of BB. if (!isGuaranteedToTransferExecutionToSuccessor(BB)) LVI->eraseBlock(BB); return true; } /// Update the SSA form. NewBB contains instructions that are copied from BB. /// ValueMapping maps old values in BB to new ones in NewBB. void JumpThreadingPass::updateSSA( BasicBlock *BB, BasicBlock *NewBB, DenseMap &ValueMapping) { // If there were values defined in BB that are used outside the block, then we // now have to update all uses of the value to use either the original value, // the cloned value, or some PHI derived value. This can require arbitrary // PHI insertion, of which we are prepared to do, clean these up now. SSAUpdater SSAUpdate; SmallVector UsesToRename; for (Instruction &I : *BB) { // Scan all uses of this instruction to see if it is used outside of its // block, and if so, record them in UsesToRename. for (Use &U : I.uses()) { Instruction *User = cast(U.getUser()); if (PHINode *UserPN = dyn_cast(User)) { if (UserPN->getIncomingBlock(U) == BB) continue; } else if (User->getParent() == BB) continue; UsesToRename.push_back(&U); } // If there are no uses outside the block, we're done with this instruction. if (UsesToRename.empty()) continue; LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); // We found a use of I outside of BB. Rename all uses of I that are outside // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks // with the two values we know. SSAUpdate.Initialize(I.getType(), I.getName()); SSAUpdate.AddAvailableValue(BB, &I); SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); while (!UsesToRename.empty()) SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); LLVM_DEBUG(dbgs() << "\n"); } } /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone /// arguments that come from PredBB. Return the map from the variables in the /// source basic block to the variables in the newly created basic block. DenseMap JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, BasicBlock::iterator BE, BasicBlock *NewBB, BasicBlock *PredBB) { // We are going to have to map operands from the source basic block to the new // copy of the block 'NewBB'. If there are PHI nodes in the source basic // block, evaluate them to account for entry from PredBB. DenseMap ValueMapping; // Clone the phi nodes of the source basic block into NewBB. The resulting // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater // might need to rewrite the operand of the cloned phi. for (; PHINode *PN = dyn_cast(BI); ++BI) { PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); ValueMapping[PN] = NewPN; } // Clone the non-phi instructions of the source basic block into NewBB, // keeping track of the mapping and using it to remap operands in the cloned // instructions. for (; BI != BE; ++BI) { Instruction *New = BI->clone(); New->setName(BI->getName()); NewBB->getInstList().push_back(New); ValueMapping[&*BI] = New; // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } } return ValueMapping; } /// Attempt to thread through two successive basic blocks. bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, Value *Cond) { // Consider: // // PredBB: // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] // %tobool = icmp eq i32 %cond, 0 // br i1 %tobool, label %BB, label ... // // BB: // %cmp = icmp eq i32* %var, null // br i1 %cmp, label ..., label ... // // We don't know the value of %var at BB even if we know which incoming edge // we take to BB. However, once we duplicate PredBB for each of its incoming // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. // Require that BB end with a Branch for simplicity. BranchInst *CondBr = dyn_cast(BB->getTerminator()); if (!CondBr) return false; // BB must have exactly one predecessor. BasicBlock *PredBB = BB->getSinglePredecessor(); if (!PredBB) return false; // Require that PredBB end with a conditional Branch. If PredBB ends with an // unconditional branch, we should be merging PredBB and BB instead. For // simplicity, we don't deal with a switch. BranchInst *PredBBBranch = dyn_cast(PredBB->getTerminator()); if (!PredBBBranch || PredBBBranch->isUnconditional()) return false; // If PredBB has exactly one incoming edge, we don't gain anything by copying // PredBB. if (PredBB->getSinglePredecessor()) return false; // Don't thread through PredBB if it contains a successor edge to itself, in // which case we would infinite loop. Suppose we are threading an edge from // PredPredBB through PredBB and BB to SuccBB with PredBB containing a // successor edge to itself. If we allowed jump threading in this case, we // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since // PredBB.thread has a successor edge to PredBB, we would immediately come up // with another jump threading opportunity from PredBB.thread through PredBB // and BB to SuccBB. This jump threading would repeatedly occur. That is, we // would keep peeling one iteration from PredBB. if (llvm::is_contained(successors(PredBB), PredBB)) return false; // Don't thread across a loop header. if (LoopHeaders.count(PredBB)) return false; // Avoid complication with duplicating EH pads. if (PredBB->isEHPad()) return false; // Find a predecessor that we can thread. For simplicity, we only consider a // successor edge out of BB to which we thread exactly one incoming edge into // PredBB. unsigned ZeroCount = 0; unsigned OneCount = 0; BasicBlock *ZeroPred = nullptr; BasicBlock *OnePred = nullptr; for (BasicBlock *P : predecessors(PredBB)) { if (ConstantInt *CI = dyn_cast_or_null( evaluateOnPredecessorEdge(BB, P, Cond))) { if (CI->isZero()) { ZeroCount++; ZeroPred = P; } else if (CI->isOne()) { OneCount++; OnePred = P; } } } // Disregard complicated cases where we have to thread multiple edges. BasicBlock *PredPredBB; if (ZeroCount == 1) { PredPredBB = ZeroPred; } else if (OneCount == 1) { PredPredBB = OnePred; } else { return false; } BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); // If threading to the same block as we come from, we would infinite loop. if (SuccBB == BB) { LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() << "' - would thread to self!\n"); return false; } // If threading this would thread across a loop header, don't thread the edge. // See the comments above findLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { LLVM_DEBUG({ bool BBIsHeader = LoopHeaders.count(BB); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() << " Not threading across " << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") << SuccBB->getName() << "' - it might create an irreducible loop!\n"; }); return false; } // Compute the cost of duplicating BB and PredBB. unsigned BBCost = getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); unsigned PredBBCost = getJumpThreadDuplicationCost( PredBB, PredBB->getTerminator(), BBDupThreshold); // Give up if costs are too high. We need to check BBCost and PredBBCost // individually before checking their sum because getJumpThreadDuplicationCost // return (unsigned)~0 for those basic blocks that cannot be duplicated. if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || BBCost + PredBBCost > BBDupThreshold) { LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() << "' - Cost is too high: " << PredBBCost << " for PredBB, " << BBCost << "for BB\n"); return false; } // Now we are ready to duplicate PredBB. threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); return true; } void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, BasicBlock *PredBB, BasicBlock *BB, BasicBlock *SuccBB) { LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" << BB->getName() << "'\n"); BranchInst *CondBr = cast(BB->getTerminator()); BranchInst *PredBBBranch = cast(PredBB->getTerminator()); BasicBlock *NewBB = BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", PredBB->getParent(), PredBB); NewBB->moveAfter(PredBB); // Set the block frequency of NewBB. if (HasProfileData) { auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * BPI->getEdgeProbability(PredPredBB, PredBB); BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); } // We are going to have to map operands from the original BB block to the new // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them // to account for entry from PredPredBB. DenseMap ValueMapping = cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); // Copy the edge probabilities from PredBB to NewBB. if (HasProfileData) BPI->copyEdgeProbabilities(PredBB, NewBB); // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. // This eliminates predecessors from PredPredBB, which requires us to simplify // any PHI nodes in PredBB. Instruction *PredPredTerm = PredPredBB->getTerminator(); for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) if (PredPredTerm->getSuccessor(i) == PredBB) { PredBB->removePredecessor(PredPredBB, true); PredPredTerm->setSuccessor(i, NewBB); } addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, ValueMapping); addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, ValueMapping); DTU->applyUpdatesPermissive( {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, {DominatorTree::Insert, PredPredBB, NewBB}, {DominatorTree::Delete, PredPredBB, PredBB}}); updateSSA(PredBB, NewBB, ValueMapping); // Clean up things like PHI nodes with single operands, dead instructions, // etc. SimplifyInstructionsInBlock(NewBB, TLI); SimplifyInstructionsInBlock(PredBB, TLI); SmallVector PredsToFactor; PredsToFactor.push_back(NewBB); threadEdge(BB, PredsToFactor, SuccBB); } /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. bool JumpThreadingPass::tryThreadEdge( BasicBlock *BB, const SmallVectorImpl &PredBBs, BasicBlock *SuccBB) { // If threading to the same block as we come from, we would infinite loop. if (SuccBB == BB) { LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() << "' - would thread to self!\n"); return false; } // If threading this would thread across a loop header, don't thread the edge. // See the comments above findLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { LLVM_DEBUG({ bool BBIsHeader = LoopHeaders.count(BB); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() << " Not threading across " << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") << SuccBB->getName() << "' - it might create an irreducible loop!\n"; }); return false; } unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); if (JumpThreadCost > BBDupThreshold) { LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() << "' - Cost is too high: " << JumpThreadCost << "\n"); return false; } threadEdge(BB, PredBBs, SuccBB); return true; } /// threadEdge - We have decided that it is safe and profitable to factor the /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB /// across BB. Transform the IR to reflect this change. void JumpThreadingPass::threadEdge(BasicBlock *BB, const SmallVectorImpl &PredBBs, BasicBlock *SuccBB) { assert(SuccBB != BB && "Don't create an infinite loop"); assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && "Don't thread across loop headers"); // And finally, do it! Start by factoring the predecessors if needed. BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); } // And finally, do it! LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" << SuccBB->getName() << ", across block:\n " << *BB << "\n"); LVI->threadEdge(PredBB, BB, SuccBB); BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+".thread", BB->getParent(), BB); NewBB->moveAfter(PredBB); // Set the block frequency of NewBB. if (HasProfileData) { auto NewBBFreq = BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); } // Copy all the instructions from BB to NewBB except the terminator. DenseMap ValueMapping = cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); // We didn't copy the terminator from BB over to NewBB, because there is now // an unconditional jump to SuccBB. Insert the unconditional jump. BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the // PHI nodes for NewBB now. addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); // Update the terminator of PredBB to jump to NewBB instead of BB. This // eliminates predecessors from BB, which requires us to simplify any PHI // nodes in BB. Instruction *PredTerm = PredBB->getTerminator(); for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) if (PredTerm->getSuccessor(i) == BB) { BB->removePredecessor(PredBB, true); PredTerm->setSuccessor(i, NewBB); } // Enqueue required DT updates. DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, {DominatorTree::Insert, PredBB, NewBB}, {DominatorTree::Delete, PredBB, BB}}); updateSSA(BB, NewBB, ValueMapping); // At this point, the IR is fully up to date and consistent. Do a quick scan // over the new instructions and zap any that are constants or dead. This // frequently happens because of phi translation. SimplifyInstructionsInBlock(NewBB, TLI); // Update the edge weight from BB to SuccBB, which should be less than before. updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); // Threaded an edge! ++NumThreads; } /// Create a new basic block that will be the predecessor of BB and successor of /// all blocks in Preds. When profile data is available, update the frequency of /// this new block. BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, ArrayRef Preds, const char *Suffix) { SmallVector NewBBs; // Collect the frequencies of all predecessors of BB, which will be used to // update the edge weight of the result of splitting predecessors. DenseMap FreqMap; if (HasProfileData) for (auto Pred : Preds) FreqMap.insert(std::make_pair( Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); // In the case when BB is a LandingPad block we create 2 new predecessors // instead of just one. if (BB->isLandingPad()) { std::string NewName = std::string(Suffix) + ".split-lp"; SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); } else { NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); } std::vector Updates; Updates.reserve((2 * Preds.size()) + NewBBs.size()); for (auto NewBB : NewBBs) { BlockFrequency NewBBFreq(0); Updates.push_back({DominatorTree::Insert, NewBB, BB}); for (auto Pred : predecessors(NewBB)) { Updates.push_back({DominatorTree::Delete, Pred, BB}); Updates.push_back({DominatorTree::Insert, Pred, NewBB}); if (HasProfileData) // Update frequencies between Pred -> NewBB. NewBBFreq += FreqMap.lookup(Pred); } if (HasProfileData) // Apply the summed frequency to NewBB. BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); } DTU->applyUpdatesPermissive(Updates); return NewBBs[0]; } bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { const Instruction *TI = BB->getTerminator(); assert(TI->getNumSuccessors() > 1 && "not a split"); MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); if (!WeightsNode) return false; MDString *MDName = cast(WeightsNode->getOperand(0)); if (MDName->getString() != "branch_weights") return false; // Ensure there are weights for all of the successors. Note that the first // operand to the metadata node is a name, not a weight. return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; } /// Update the block frequency of BB and branch weight and the metadata on the /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - /// Freq(PredBB->BB) / Freq(BB->SuccBB). void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, BasicBlock *NewBB, BasicBlock *SuccBB) { if (!HasProfileData) return; assert(BFI && BPI && "BFI & BPI should have been created here"); // As the edge from PredBB to BB is deleted, we have to update the block // frequency of BB. auto BBOrigFreq = BFI->getBlockFreq(BB); auto NewBBFreq = BFI->getBlockFreq(NewBB); auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); auto BBNewFreq = BBOrigFreq - NewBBFreq; BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); // Collect updated outgoing edges' frequencies from BB and use them to update // edge probabilities. SmallVector BBSuccFreq; for (BasicBlock *Succ : successors(BB)) { auto SuccFreq = (Succ == SuccBB) ? BB2SuccBBFreq - NewBBFreq : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); BBSuccFreq.push_back(SuccFreq.getFrequency()); } uint64_t MaxBBSuccFreq = *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); SmallVector BBSuccProbs; if (MaxBBSuccFreq == 0) BBSuccProbs.assign(BBSuccFreq.size(), {1, static_cast(BBSuccFreq.size())}); else { for (uint64_t Freq : BBSuccFreq) BBSuccProbs.push_back( BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); // Normalize edge probabilities so that they sum up to one. BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), BBSuccProbs.end()); } // Update edge probabilities in BPI. BPI->setEdgeProbability(BB, BBSuccProbs); // Update the profile metadata as well. // // Don't do this if the profile of the transformed blocks was statically // estimated. (This could occur despite the function having an entry // frequency in completely cold parts of the CFG.) // // In this case we don't want to suggest to subsequent passes that the // calculated weights are fully consistent. Consider this graph: // // check_1 // 50% / | // eq_1 | 50% // \ | // check_2 // 50% / | // eq_2 | 50% // \ | // check_3 // 50% / | // eq_3 | 50% // \ | // // Assuming the blocks check_* all compare the same value against 1, 2 and 3, // the overall probabilities are inconsistent; the total probability that the // value is either 1, 2 or 3 is 150%. // // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 // becomes 0%. This is even worse if the edge whose probability becomes 0% is // the loop exit edge. Then based solely on static estimation we would assume // the loop was extremely hot. // // FIXME this locally as well so that BPI and BFI are consistent as well. We // shouldn't make edges extremely likely or unlikely based solely on static // estimation. if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { SmallVector Weights; for (auto Prob : BBSuccProbs) Weights.push_back(Prob.getNumerator()); auto TI = BB->getTerminator(); TI->setMetadata( LLVMContext::MD_prof, MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); } } /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch /// to BB which contains an i1 PHI node and a conditional branch on that PHI. /// If we can duplicate the contents of BB up into PredBB do so now, this /// improves the odds that the branch will be on an analyzable instruction like /// a compare. bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( BasicBlock *BB, const SmallVectorImpl &PredBBs) { assert(!PredBBs.empty() && "Can't handle an empty set"); // If BB is a loop header, then duplicating this block outside the loop would // cause us to transform this into an irreducible loop, don't do this. // See the comments above findLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB)) { LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() << "' into predecessor block '" << PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"); return false; } unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); if (DuplicationCost > BBDupThreshold) { LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() << "' - Cost is too high: " << DuplicationCost << "\n"); return false; } // And finally, do it! Start by factoring the predecessors if needed. std::vector Updates; BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); } Updates.push_back({DominatorTree::Delete, PredBB, BB}); // Okay, we decided to do this! Clone all the instructions in BB onto the end // of PredBB. LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" << PredBB->getName() << "' to eliminate branch on phi. Cost: " << DuplicationCost << " block is:" << *BB << "\n"); // Unless PredBB ends with an unconditional branch, split the edge so that we // can just clone the bits from BB into the end of the new PredBB. BranchInst *OldPredBranch = dyn_cast(PredBB->getTerminator()); if (!OldPredBranch || !OldPredBranch->isUnconditional()) { BasicBlock *OldPredBB = PredBB; PredBB = SplitEdge(OldPredBB, BB); Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); Updates.push_back({DominatorTree::Insert, PredBB, BB}); Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); OldPredBranch = cast(PredBB->getTerminator()); } // We are going to have to map operands from the original BB block into the // PredBB block. Evaluate PHI nodes in BB. DenseMap ValueMapping; BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); // Clone the non-phi instructions of BB into PredBB, keeping track of the // mapping and using it to remap operands in the cloned instructions. for (; BI != BB->end(); ++BI) { Instruction *New = BI->clone(); // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } // If this instruction can be simplified after the operands are updated, // just use the simplified value instead. This frequently happens due to // phi translation. if (Value *IV = SimplifyInstruction( New, {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { ValueMapping[&*BI] = IV; if (!New->mayHaveSideEffects()) { New->deleteValue(); New = nullptr; } } else { ValueMapping[&*BI] = New; } if (New) { // Otherwise, insert the new instruction into the block. New->setName(BI->getName()); PredBB->getInstList().insert(OldPredBranch->getIterator(), New); // Update Dominance from simplified New instruction operands. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (BasicBlock *SuccBB = dyn_cast(New->getOperand(i))) Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); } } // Check to see if the targets of the branch had PHI nodes. If so, we need to // add entries to the PHI nodes for branch from PredBB now. BranchInst *BBBranch = cast(BB->getTerminator()); addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, ValueMapping); addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, ValueMapping); updateSSA(BB, PredBB, ValueMapping); // PredBB no longer jumps to BB, remove entries in the PHI node for the edge // that we nuked. BB->removePredecessor(PredBB, true); // Remove the unconditional branch at the end of the PredBB block. OldPredBranch->eraseFromParent(); if (HasProfileData) BPI->copyEdgeProbabilities(BB, PredBB); DTU->applyUpdatesPermissive(Updates); ++NumDupes; return true; } // Pred is a predecessor of BB with an unconditional branch to BB. SI is // a Select instruction in Pred. BB has other predecessors and SI is used in // a PHI node in BB. SI has no other use. // A new basic block, NewBB, is created and SI is converted to compare and // conditional branch. SI is erased from parent. void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, SelectInst *SI, PHINode *SIUse, unsigned Idx) { // Expand the select. // // Pred -- // | v // | NewBB // | | // |----- // v // BB BranchInst *PredTerm = cast(Pred->getTerminator()); BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", BB->getParent(), BB); // Move the unconditional branch to NewBB. PredTerm->removeFromParent(); NewBB->getInstList().insert(NewBB->end(), PredTerm); // Create a conditional branch and update PHI nodes. BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); SIUse->setIncomingValue(Idx, SI->getFalseValue()); SIUse->addIncoming(SI->getTrueValue(), NewBB); // The select is now dead. SI->eraseFromParent(); DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, {DominatorTree::Insert, Pred, NewBB}}); // Update any other PHI nodes in BB. for (BasicBlock::iterator BI = BB->begin(); PHINode *Phi = dyn_cast(BI); ++BI) if (Phi != SIUse) Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); } bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { PHINode *CondPHI = dyn_cast(SI->getCondition()); if (!CondPHI || CondPHI->getParent() != BB) return false; for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { BasicBlock *Pred = CondPHI->getIncomingBlock(I); SelectInst *PredSI = dyn_cast(CondPHI->getIncomingValue(I)); // The second and third condition can be potentially relaxed. Currently // the conditions help to simplify the code and allow us to reuse existing // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) continue; BranchInst *PredTerm = dyn_cast(Pred->getTerminator()); if (!PredTerm || !PredTerm->isUnconditional()) continue; unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); return true; } return false; } /// tryToUnfoldSelect - Look for blocks of the form /// bb1: /// %a = select /// br bb2 /// /// bb2: /// %p = phi [%a, %bb1] ... /// %c = icmp %p /// br i1 %c /// /// And expand the select into a branch structure if one of its arms allows %c /// to be folded. This later enables threading from bb1 over bb2. bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { BranchInst *CondBr = dyn_cast(BB->getTerminator()); PHINode *CondLHS = dyn_cast(CondCmp->getOperand(0)); Constant *CondRHS = cast(CondCmp->getOperand(1)); if (!CondBr || !CondBr->isConditional() || !CondLHS || CondLHS->getParent() != BB) return false; for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { BasicBlock *Pred = CondLHS->getIncomingBlock(I); SelectInst *SI = dyn_cast(CondLHS->getIncomingValue(I)); // Look if one of the incoming values is a select in the corresponding // predecessor. if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) continue; BranchInst *PredTerm = dyn_cast(Pred->getTerminator()); if (!PredTerm || !PredTerm->isUnconditional()) continue; // Now check if one of the select values would allow us to constant fold the // terminator in BB. We don't do the transform if both sides fold, those // cases will be threaded in any case. LazyValueInfo::Tristate LHSFolds = LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), CondRHS, Pred, BB, CondCmp); LazyValueInfo::Tristate RHSFolds = LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), CondRHS, Pred, BB, CondCmp); if ((LHSFolds != LazyValueInfo::Unknown || RHSFolds != LazyValueInfo::Unknown) && LHSFolds != RHSFolds) { unfoldSelectInstr(Pred, BB, SI, CondLHS, I); return true; } } return false; } /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the /// same BB in the form /// bb: /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... /// %s = select %p, trueval, falseval /// /// or /// /// bb: /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... /// %c = cmp %p, 0 /// %s = select %c, trueval, falseval /// /// And expand the select into a branch structure. This later enables /// jump-threading over bb in this pass. /// /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold /// select if the associated PHI has at least one constant. If the unfolded /// select is not jump-threaded, it will be folded again in the later /// optimizations. bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { // This transform would reduce the quality of msan diagnostics. // Disable this transform under MemorySanitizer. if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) return false; // If threading this would thread across a loop header, don't thread the edge. // See the comments above findLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB)) return false; for (BasicBlock::iterator BI = BB->begin(); PHINode *PN = dyn_cast(BI); ++BI) { // Look for a Phi having at least one constant incoming value. if (llvm::all_of(PN->incoming_values(), [](Value *V) { return !isa(V); })) continue; auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { // Check if SI is in BB and use V as condition. if (SI->getParent() != BB) return false; Value *Cond = SI->getCondition(); return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); }; SelectInst *SI = nullptr; for (Use &U : PN->uses()) { if (ICmpInst *Cmp = dyn_cast(U.getUser())) { // Look for a ICmp in BB that compares PN with a constant and is the // condition of a Select. if (Cmp->getParent() == BB && Cmp->hasOneUse() && isa(Cmp->getOperand(1 - U.getOperandNo()))) if (SelectInst *SelectI = dyn_cast(Cmp->user_back())) if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { SI = SelectI; break; } } else if (SelectInst *SelectI = dyn_cast(U.getUser())) { // Look for a Select in BB that uses PN as condition. if (isUnfoldCandidate(SelectI, U.get())) { SI = SelectI; break; } } } if (!SI) continue; // Expand the select. Value *Cond = SI->getCondition(); if (InsertFreezeWhenUnfoldingSelect && !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, &DTU->getDomTree())) Cond = new FreezeInst(Cond, "cond.fr", SI); Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); BasicBlock *SplitBB = SI->getParent(); BasicBlock *NewBB = Term->getParent(); PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); NewPN->addIncoming(SI->getFalseValue(), BB); SI->replaceAllUsesWith(NewPN); SI->eraseFromParent(); // NewBB and SplitBB are newly created blocks which require insertion. std::vector Updates; Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); Updates.push_back({DominatorTree::Insert, BB, SplitBB}); Updates.push_back({DominatorTree::Insert, BB, NewBB}); Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); // BB's successors were moved to SplitBB, update DTU accordingly. for (auto *Succ : successors(SplitBB)) { Updates.push_back({DominatorTree::Delete, BB, Succ}); Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); } DTU->applyUpdatesPermissive(Updates); return true; } return false; } /// Try to propagate a guard from the current BB into one of its predecessors /// in case if another branch of execution implies that the condition of this /// guard is always true. Currently we only process the simplest case that /// looks like: /// /// Start: /// %cond = ... /// br i1 %cond, label %T1, label %F1 /// T1: /// br label %Merge /// F1: /// br label %Merge /// Merge: /// %condGuard = ... /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] /// /// And cond either implies condGuard or !condGuard. In this case all the /// instructions before the guard can be duplicated in both branches, and the /// guard is then threaded to one of them. bool JumpThreadingPass::processGuards(BasicBlock *BB) { using namespace PatternMatch; // We only want to deal with two predecessors. BasicBlock *Pred1, *Pred2; auto PI = pred_begin(BB), PE = pred_end(BB); if (PI == PE) return false; Pred1 = *PI++; if (PI == PE) return false; Pred2 = *PI++; if (PI != PE) return false; if (Pred1 == Pred2) return false; // Try to thread one of the guards of the block. // TODO: Look up deeper than to immediate predecessor? auto *Parent = Pred1->getSinglePredecessor(); if (!Parent || Parent != Pred2->getSinglePredecessor()) return false; if (auto *BI = dyn_cast(Parent->getTerminator())) for (auto &I : *BB) if (isGuard(&I) && threadGuard(BB, cast(&I), BI)) return true; return false; } /// Try to propagate the guard from BB which is the lower block of a diamond /// to one of its branches, in case if diamond's condition implies guard's /// condition. bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, BranchInst *BI) { assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); assert(BI->isConditional() && "Unconditional branch has 2 successors?"); Value *GuardCond = Guard->getArgOperand(0); Value *BranchCond = BI->getCondition(); BasicBlock *TrueDest = BI->getSuccessor(0); BasicBlock *FalseDest = BI->getSuccessor(1); auto &DL = BB->getModule()->getDataLayout(); bool TrueDestIsSafe = false; bool FalseDestIsSafe = false; // True dest is safe if BranchCond => GuardCond. auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); if (Impl && *Impl) TrueDestIsSafe = true; else { // False dest is safe if !BranchCond => GuardCond. Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); if (Impl && *Impl) FalseDestIsSafe = true; } if (!TrueDestIsSafe && !FalseDestIsSafe) return false; BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; ValueToValueMapTy UnguardedMapping, GuardedMapping; Instruction *AfterGuard = Guard->getNextNode(); unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); if (Cost > BBDupThreshold) return false; // Duplicate all instructions before the guard and the guard itself to the // branch where implication is not proved. BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); assert(GuardedBlock && "Could not create the guarded block?"); // Duplicate all instructions before the guard in the unguarded branch. // Since we have successfully duplicated the guarded block and this block // has fewer instructions, we expect it to succeed. BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); assert(UnguardedBlock && "Could not create the unguarded block?"); LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " << GuardedBlock->getName() << "\n"); // Some instructions before the guard may still have uses. For them, we need // to create Phi nodes merging their copies in both guarded and unguarded // branches. Those instructions that have no uses can be just removed. SmallVector ToRemove; for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) if (!isa(&*BI)) ToRemove.push_back(&*BI); Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); assert(InsertionPoint && "Empty block?"); // Substitute with Phis & remove. for (auto *Inst : reverse(ToRemove)) { if (!Inst->use_empty()) { PHINode *NewPN = PHINode::Create(Inst->getType(), 2); NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); NewPN->insertBefore(InsertionPoint); Inst->replaceAllUsesWith(NewPN); } Inst->eraseFromParent(); } return true; }