//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This transformation implements the well known scalar replacement of /// aggregates transformation. It tries to identify promotable elements of an /// aggregate alloca, and promote them to registers. It will also try to /// convert uses of an element (or set of elements) of an alloca into a vector /// or bitfield-style integer scalar if appropriate. /// /// It works to do this with minimal slicing of the alloca so that regions /// which are merely transferred in and out of external memory remain unchanged /// and are not decomposed to scalar code. /// /// Because this also performs alloca promotion, it can be thought of as also /// serving the purpose of SSA formation. The algorithm iterates on the /// function until all opportunities for promotion have been realized. /// //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/SROA.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/PtrUseVisitor.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantFolder.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::sroa; #define DEBUG_TYPE "sroa" STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); STATISTIC(NumDeleted, "Number of instructions deleted"); STATISTIC(NumVectorized, "Number of vectorized aggregates"); /// Hidden option to experiment with completely strict handling of inbounds /// GEPs. static cl::opt SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), cl::Hidden); namespace { /// A custom IRBuilder inserter which prefixes all names, but only in /// Assert builds. class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { std::string Prefix; const Twine getNameWithPrefix(const Twine &Name) const { return Name.isTriviallyEmpty() ? Name : Prefix + Name; } public: void SetNamePrefix(const Twine &P) { Prefix = P.str(); } void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const override { IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, InsertPt); } }; /// Provide a type for IRBuilder that drops names in release builds. using IRBuilderTy = IRBuilder; /// A used slice of an alloca. /// /// This structure represents a slice of an alloca used by some instruction. It /// stores both the begin and end offsets of this use, a pointer to the use /// itself, and a flag indicating whether we can classify the use as splittable /// or not when forming partitions of the alloca. class Slice { /// The beginning offset of the range. uint64_t BeginOffset = 0; /// The ending offset, not included in the range. uint64_t EndOffset = 0; /// Storage for both the use of this slice and whether it can be /// split. PointerIntPair UseAndIsSplittable; public: Slice() = default; Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) : BeginOffset(BeginOffset), EndOffset(EndOffset), UseAndIsSplittable(U, IsSplittable) {} uint64_t beginOffset() const { return BeginOffset; } uint64_t endOffset() const { return EndOffset; } bool isSplittable() const { return UseAndIsSplittable.getInt(); } void makeUnsplittable() { UseAndIsSplittable.setInt(false); } Use *getUse() const { return UseAndIsSplittable.getPointer(); } bool isDead() const { return getUse() == nullptr; } void kill() { UseAndIsSplittable.setPointer(nullptr); } /// Support for ordering ranges. /// /// This provides an ordering over ranges such that start offsets are /// always increasing, and within equal start offsets, the end offsets are /// decreasing. Thus the spanning range comes first in a cluster with the /// same start position. bool operator<(const Slice &RHS) const { if (beginOffset() < RHS.beginOffset()) return true; if (beginOffset() > RHS.beginOffset()) return false; if (isSplittable() != RHS.isSplittable()) return !isSplittable(); if (endOffset() > RHS.endOffset()) return true; return false; } /// Support comparison with a single offset to allow binary searches. friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, uint64_t RHSOffset) { return LHS.beginOffset() < RHSOffset; } friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, const Slice &RHS) { return LHSOffset < RHS.beginOffset(); } bool operator==(const Slice &RHS) const { return isSplittable() == RHS.isSplittable() && beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); } bool operator!=(const Slice &RHS) const { return !operator==(RHS); } }; } // end anonymous namespace /// Representation of the alloca slices. /// /// This class represents the slices of an alloca which are formed by its /// various uses. If a pointer escapes, we can't fully build a representation /// for the slices used and we reflect that in this structure. The uses are /// stored, sorted by increasing beginning offset and with unsplittable slices /// starting at a particular offset before splittable slices. class llvm::sroa::AllocaSlices { public: /// Construct the slices of a particular alloca. AllocaSlices(const DataLayout &DL, AllocaInst &AI); /// Test whether a pointer to the allocation escapes our analysis. /// /// If this is true, the slices are never fully built and should be /// ignored. bool isEscaped() const { return PointerEscapingInstr; } /// Support for iterating over the slices. /// @{ using iterator = SmallVectorImpl::iterator; using range = iterator_range; iterator begin() { return Slices.begin(); } iterator end() { return Slices.end(); } using const_iterator = SmallVectorImpl::const_iterator; using const_range = iterator_range; const_iterator begin() const { return Slices.begin(); } const_iterator end() const { return Slices.end(); } /// @} /// Erase a range of slices. void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } /// Insert new slices for this alloca. /// /// This moves the slices into the alloca's slices collection, and re-sorts /// everything so that the usual ordering properties of the alloca's slices /// hold. void insert(ArrayRef NewSlices) { int OldSize = Slices.size(); Slices.append(NewSlices.begin(), NewSlices.end()); auto SliceI = Slices.begin() + OldSize; llvm::sort(SliceI, Slices.end()); std::inplace_merge(Slices.begin(), SliceI, Slices.end()); } // Forward declare the iterator and range accessor for walking the // partitions. class partition_iterator; iterator_range partitions(); /// Access the dead users for this alloca. ArrayRef getDeadUsers() const { return DeadUsers; } /// Access Uses that should be dropped if the alloca is promotable. ArrayRef getDeadUsesIfPromotable() const { return DeadUseIfPromotable; } /// Access the dead operands referring to this alloca. /// /// These are operands which have cannot actually be used to refer to the /// alloca as they are outside its range and the user doesn't correct for /// that. These mostly consist of PHI node inputs and the like which we just /// need to replace with undef. ArrayRef getDeadOperands() const { return DeadOperands; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void printSlice(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void printUse(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; void print(raw_ostream &OS) const; void dump(const_iterator I) const; void dump() const; #endif private: template class BuilderBase; class SliceBuilder; friend class AllocaSlices::SliceBuilder; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Handle to alloca instruction to simplify method interfaces. AllocaInst &AI; #endif /// The instruction responsible for this alloca not having a known set /// of slices. /// /// When an instruction (potentially) escapes the pointer to the alloca, we /// store a pointer to that here and abort trying to form slices of the /// alloca. This will be null if the alloca slices are analyzed successfully. Instruction *PointerEscapingInstr; /// The slices of the alloca. /// /// We store a vector of the slices formed by uses of the alloca here. This /// vector is sorted by increasing begin offset, and then the unsplittable /// slices before the splittable ones. See the Slice inner class for more /// details. SmallVector Slices; /// Instructions which will become dead if we rewrite the alloca. /// /// Note that these are not separated by slice. This is because we expect an /// alloca to be completely rewritten or not rewritten at all. If rewritten, /// all these instructions can simply be removed and replaced with undef as /// they come from outside of the allocated space. SmallVector DeadUsers; /// Uses which will become dead if can promote the alloca. SmallVector DeadUseIfPromotable; /// Operands which will become dead if we rewrite the alloca. /// /// These are operands that in their particular use can be replaced with /// undef when we rewrite the alloca. These show up in out-of-bounds inputs /// to PHI nodes and the like. They aren't entirely dead (there might be /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we /// want to swap this particular input for undef to simplify the use lists of /// the alloca. SmallVector DeadOperands; }; /// A partition of the slices. /// /// An ephemeral representation for a range of slices which can be viewed as /// a partition of the alloca. This range represents a span of the alloca's /// memory which cannot be split, and provides access to all of the slices /// overlapping some part of the partition. /// /// Objects of this type are produced by traversing the alloca's slices, but /// are only ephemeral and not persistent. class llvm::sroa::Partition { private: friend class AllocaSlices; friend class AllocaSlices::partition_iterator; using iterator = AllocaSlices::iterator; /// The beginning and ending offsets of the alloca for this /// partition. uint64_t BeginOffset = 0, EndOffset = 0; /// The start and end iterators of this partition. iterator SI, SJ; /// A collection of split slice tails overlapping the partition. SmallVector SplitTails; /// Raw constructor builds an empty partition starting and ending at /// the given iterator. Partition(iterator SI) : SI(SI), SJ(SI) {} public: /// The start offset of this partition. /// /// All of the contained slices start at or after this offset. uint64_t beginOffset() const { return BeginOffset; } /// The end offset of this partition. /// /// All of the contained slices end at or before this offset. uint64_t endOffset() const { return EndOffset; } /// The size of the partition. /// /// Note that this can never be zero. uint64_t size() const { assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); return EndOffset - BeginOffset; } /// Test whether this partition contains no slices, and merely spans /// a region occupied by split slices. bool empty() const { return SI == SJ; } /// \name Iterate slices that start within the partition. /// These may be splittable or unsplittable. They have a begin offset >= the /// partition begin offset. /// @{ // FIXME: We should probably define a "concat_iterator" helper and use that // to stitch together pointee_iterators over the split tails and the // contiguous iterators of the partition. That would give a much nicer // interface here. We could then additionally expose filtered iterators for // split, unsplit, and unsplittable splices based on the usage patterns. iterator begin() const { return SI; } iterator end() const { return SJ; } /// @} /// Get the sequence of split slice tails. /// /// These tails are of slices which start before this partition but are /// split and overlap into the partition. We accumulate these while forming /// partitions. ArrayRef splitSliceTails() const { return SplitTails; } }; /// An iterator over partitions of the alloca's slices. /// /// This iterator implements the core algorithm for partitioning the alloca's /// slices. It is a forward iterator as we don't support backtracking for /// efficiency reasons, and re-use a single storage area to maintain the /// current set of split slices. /// /// It is templated on the slice iterator type to use so that it can operate /// with either const or non-const slice iterators. class AllocaSlices::partition_iterator : public iterator_facade_base { friend class AllocaSlices; /// Most of the state for walking the partitions is held in a class /// with a nice interface for examining them. Partition P; /// We need to keep the end of the slices to know when to stop. AllocaSlices::iterator SE; /// We also need to keep track of the maximum split end offset seen. /// FIXME: Do we really? uint64_t MaxSplitSliceEndOffset = 0; /// Sets the partition to be empty at given iterator, and sets the /// end iterator. partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) : P(SI), SE(SE) { // If not already at the end, advance our state to form the initial // partition. if (SI != SE) advance(); } /// Advance the iterator to the next partition. /// /// Requires that the iterator not be at the end of the slices. void advance() { assert((P.SI != SE || !P.SplitTails.empty()) && "Cannot advance past the end of the slices!"); // Clear out any split uses which have ended. if (!P.SplitTails.empty()) { if (P.EndOffset >= MaxSplitSliceEndOffset) { // If we've finished all splits, this is easy. P.SplitTails.clear(); MaxSplitSliceEndOffset = 0; } else { // Remove the uses which have ended in the prior partition. This // cannot change the max split slice end because we just checked that // the prior partition ended prior to that max. P.SplitTails.erase(llvm::remove_if(P.SplitTails, [&](Slice *S) { return S->endOffset() <= P.EndOffset; }), P.SplitTails.end()); assert(llvm::any_of(P.SplitTails, [&](Slice *S) { return S->endOffset() == MaxSplitSliceEndOffset; }) && "Could not find the current max split slice offset!"); assert(llvm::all_of(P.SplitTails, [&](Slice *S) { return S->endOffset() <= MaxSplitSliceEndOffset; }) && "Max split slice end offset is not actually the max!"); } } // If P.SI is already at the end, then we've cleared the split tail and // now have an end iterator. if (P.SI == SE) { assert(P.SplitTails.empty() && "Failed to clear the split slices!"); return; } // If we had a non-empty partition previously, set up the state for // subsequent partitions. if (P.SI != P.SJ) { // Accumulate all the splittable slices which started in the old // partition into the split list. for (Slice &S : P) if (S.isSplittable() && S.endOffset() > P.EndOffset) { P.SplitTails.push_back(&S); MaxSplitSliceEndOffset = std::max(S.endOffset(), MaxSplitSliceEndOffset); } // Start from the end of the previous partition. P.SI = P.SJ; // If P.SI is now at the end, we at most have a tail of split slices. if (P.SI == SE) { P.BeginOffset = P.EndOffset; P.EndOffset = MaxSplitSliceEndOffset; return; } // If the we have split slices and the next slice is after a gap and is // not splittable immediately form an empty partition for the split // slices up until the next slice begins. if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && !P.SI->isSplittable()) { P.BeginOffset = P.EndOffset; P.EndOffset = P.SI->beginOffset(); return; } } // OK, we need to consume new slices. Set the end offset based on the // current slice, and step SJ past it. The beginning offset of the // partition is the beginning offset of the next slice unless we have // pre-existing split slices that are continuing, in which case we begin // at the prior end offset. P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; P.EndOffset = P.SI->endOffset(); ++P.SJ; // There are two strategies to form a partition based on whether the // partition starts with an unsplittable slice or a splittable slice. if (!P.SI->isSplittable()) { // When we're forming an unsplittable region, it must always start at // the first slice and will extend through its end. assert(P.BeginOffset == P.SI->beginOffset()); // Form a partition including all of the overlapping slices with this // unsplittable slice. while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { if (!P.SJ->isSplittable()) P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); ++P.SJ; } // We have a partition across a set of overlapping unsplittable // partitions. return; } // If we're starting with a splittable slice, then we need to form // a synthetic partition spanning it and any other overlapping splittable // splices. assert(P.SI->isSplittable() && "Forming a splittable partition!"); // Collect all of the overlapping splittable slices. while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && P.SJ->isSplittable()) { P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); ++P.SJ; } // Back upiP.EndOffset if we ended the span early when encountering an // unsplittable slice. This synthesizes the early end offset of // a partition spanning only splittable slices. if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { assert(!P.SJ->isSplittable()); P.EndOffset = P.SJ->beginOffset(); } } public: bool operator==(const partition_iterator &RHS) const { assert(SE == RHS.SE && "End iterators don't match between compared partition iterators!"); // The observed positions of partitions is marked by the P.SI iterator and // the emptiness of the split slices. The latter is only relevant when // P.SI == SE, as the end iterator will additionally have an empty split // slices list, but the prior may have the same P.SI and a tail of split // slices. if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { assert(P.SJ == RHS.P.SJ && "Same set of slices formed two different sized partitions!"); assert(P.SplitTails.size() == RHS.P.SplitTails.size() && "Same slice position with differently sized non-empty split " "slice tails!"); return true; } return false; } partition_iterator &operator++() { advance(); return *this; } Partition &operator*() { return P; } }; /// A forward range over the partitions of the alloca's slices. /// /// This accesses an iterator range over the partitions of the alloca's /// slices. It computes these partitions on the fly based on the overlapping /// offsets of the slices and the ability to split them. It will visit "empty" /// partitions to cover regions of the alloca only accessed via split /// slices. iterator_range AllocaSlices::partitions() { return make_range(partition_iterator(begin(), end()), partition_iterator(end(), end())); } static Value *foldSelectInst(SelectInst &SI) { // If the condition being selected on is a constant or the same value is // being selected between, fold the select. Yes this does (rarely) happen // early on. if (ConstantInt *CI = dyn_cast(SI.getCondition())) return SI.getOperand(1 + CI->isZero()); if (SI.getOperand(1) == SI.getOperand(2)) return SI.getOperand(1); return nullptr; } /// A helper that folds a PHI node or a select. static Value *foldPHINodeOrSelectInst(Instruction &I) { if (PHINode *PN = dyn_cast(&I)) { // If PN merges together the same value, return that value. return PN->hasConstantValue(); } return foldSelectInst(cast(I)); } /// Builder for the alloca slices. /// /// This class builds a set of alloca slices by recursively visiting the uses /// of an alloca and making a slice for each load and store at each offset. class AllocaSlices::SliceBuilder : public PtrUseVisitor { friend class PtrUseVisitor; friend class InstVisitor; using Base = PtrUseVisitor; const uint64_t AllocSize; AllocaSlices &AS; SmallDenseMap MemTransferSliceMap; SmallDenseMap PHIOrSelectSizes; /// Set to de-duplicate dead instructions found in the use walk. SmallPtrSet VisitedDeadInsts; public: SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) : PtrUseVisitor(DL), AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), AS(AS) {} private: void markAsDead(Instruction &I) { if (VisitedDeadInsts.insert(&I).second) AS.DeadUsers.push_back(&I); } void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, bool IsSplittable = false) { // Completely skip uses which have a zero size or start either before or // past the end of the allocation. if (Size == 0 || Offset.uge(AllocSize)) { LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset << " which has zero size or starts outside of the " << AllocSize << " byte alloca:\n" << " alloca: " << AS.AI << "\n" << " use: " << I << "\n"); return markAsDead(I); } uint64_t BeginOffset = Offset.getZExtValue(); uint64_t EndOffset = BeginOffset + Size; // Clamp the end offset to the end of the allocation. Note that this is // formulated to handle even the case where "BeginOffset + Size" overflows. // This may appear superficially to be something we could ignore entirely, // but that is not so! There may be widened loads or PHI-node uses where // some instructions are dead but not others. We can't completely ignore // them, and so have to record at least the information here. assert(AllocSize >= BeginOffset); // Established above. if (Size > AllocSize - BeginOffset) { LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset << " to remain within the " << AllocSize << " byte alloca:\n" << " alloca: " << AS.AI << "\n" << " use: " << I << "\n"); EndOffset = AllocSize; } AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); } void visitBitCastInst(BitCastInst &BC) { if (BC.use_empty()) return markAsDead(BC); return Base::visitBitCastInst(BC); } void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { if (ASC.use_empty()) return markAsDead(ASC); return Base::visitAddrSpaceCastInst(ASC); } void visitGetElementPtrInst(GetElementPtrInst &GEPI) { if (GEPI.use_empty()) return markAsDead(GEPI); if (SROAStrictInbounds && GEPI.isInBounds()) { // FIXME: This is a manually un-factored variant of the basic code inside // of GEPs with checking of the inbounds invariant specified in the // langref in a very strict sense. If we ever want to enable // SROAStrictInbounds, this code should be factored cleanly into // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds // by writing out the code here where we have the underlying allocation // size readily available. APInt GEPOffset = Offset; const DataLayout &DL = GEPI.getModule()->getDataLayout(); for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) break; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); GEPOffset += APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); } else { // For array or vector indices, scale the index by the size of the // type. APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); GEPOffset += Index * APInt(Offset.getBitWidth(), DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); } // If this index has computed an intermediate pointer which is not // inbounds, then the result of the GEP is a poison value and we can // delete it and all uses. if (GEPOffset.ugt(AllocSize)) return markAsDead(GEPI); } } return Base::visitGetElementPtrInst(GEPI); } void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, uint64_t Size, bool IsVolatile) { // We allow splitting of non-volatile loads and stores where the type is an // integer type. These may be used to implement 'memcpy' or other "transfer // of bits" patterns. bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; insertUse(I, Offset, Size, IsSplittable); } void visitLoadInst(LoadInst &LI) { assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && "All simple FCA loads should have been pre-split"); if (!IsOffsetKnown) return PI.setAborted(&LI); if (LI.isVolatile() && LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) return PI.setAborted(&LI); if (isa(LI.getType())) return PI.setAborted(&LI); uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); } void visitStoreInst(StoreInst &SI) { Value *ValOp = SI.getValueOperand(); if (ValOp == *U) return PI.setEscapedAndAborted(&SI); if (!IsOffsetKnown) return PI.setAborted(&SI); if (SI.isVolatile() && SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) return PI.setAborted(&SI); if (isa(ValOp->getType())) return PI.setAborted(&SI); uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); // If this memory access can be shown to *statically* extend outside the // bounds of the allocation, it's behavior is undefined, so simply // ignore it. Note that this is more strict than the generic clamping // behavior of insertUse. We also try to handle cases which might run the // risk of overflow. // FIXME: We should instead consider the pointer to have escaped if this // function is being instrumented for addressing bugs or race conditions. if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset << " which extends past the end of the " << AllocSize << " byte alloca:\n" << " alloca: " << AS.AI << "\n" << " use: " << SI << "\n"); return markAsDead(SI); } assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && "All simple FCA stores should have been pre-split"); handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); } void visitMemSetInst(MemSetInst &II) { assert(II.getRawDest() == *U && "Pointer use is not the destination?"); ConstantInt *Length = dyn_cast(II.getLength()); if ((Length && Length->getValue() == 0) || (IsOffsetKnown && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); if (!IsOffsetKnown) return PI.setAborted(&II); // Don't replace this with a store with a different address space. TODO: // Use a store with the casted new alloca? if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) return PI.setAborted(&II); insertUse(II, Offset, Length ? Length->getLimitedValue() : AllocSize - Offset.getLimitedValue(), (bool)Length); } void visitMemTransferInst(MemTransferInst &II) { ConstantInt *Length = dyn_cast(II.getLength()); if (Length && Length->getValue() == 0) // Zero-length mem transfer intrinsics can be ignored entirely. return markAsDead(II); // Because we can visit these intrinsics twice, also check to see if the // first time marked this instruction as dead. If so, skip it. if (VisitedDeadInsts.count(&II)) return; if (!IsOffsetKnown) return PI.setAborted(&II); // Don't replace this with a load/store with a different address space. // TODO: Use a store with the casted new alloca? if (II.isVolatile() && (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) return PI.setAborted(&II); // This side of the transfer is completely out-of-bounds, and so we can // nuke the entire transfer. However, we also need to nuke the other side // if already added to our partitions. // FIXME: Yet another place we really should bypass this when // instrumenting for ASan. if (Offset.uge(AllocSize)) { SmallDenseMap::iterator MTPI = MemTransferSliceMap.find(&II); if (MTPI != MemTransferSliceMap.end()) AS.Slices[MTPI->second].kill(); return markAsDead(II); } uint64_t RawOffset = Offset.getLimitedValue(); uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; // Check for the special case where the same exact value is used for both // source and dest. if (*U == II.getRawDest() && *U == II.getRawSource()) { // For non-volatile transfers this is a no-op. if (!II.isVolatile()) return markAsDead(II); return insertUse(II, Offset, Size, /*IsSplittable=*/false); } // If we have seen both source and destination for a mem transfer, then // they both point to the same alloca. bool Inserted; SmallDenseMap::iterator MTPI; std::tie(MTPI, Inserted) = MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); unsigned PrevIdx = MTPI->second; if (!Inserted) { Slice &PrevP = AS.Slices[PrevIdx]; // Check if the begin offsets match and this is a non-volatile transfer. // In that case, we can completely elide the transfer. if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { PrevP.kill(); return markAsDead(II); } // Otherwise we have an offset transfer within the same alloca. We can't // split those. PrevP.makeUnsplittable(); } // Insert the use now that we've fixed up the splittable nature. insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); // Check that we ended up with a valid index in the map. assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && "Map index doesn't point back to a slice with this user."); } // Disable SRoA for any intrinsics except for lifetime invariants. // FIXME: What about debug intrinsics? This matches old behavior, but // doesn't make sense. void visitIntrinsicInst(IntrinsicInst &II) { if (II.isDroppable()) { AS.DeadUseIfPromotable.push_back(U); return; } if (!IsOffsetKnown) return PI.setAborted(&II); if (II.isLifetimeStartOrEnd()) { ConstantInt *Length = cast(II.getArgOperand(0)); uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), Length->getLimitedValue()); insertUse(II, Offset, Size, true); return; } Base::visitIntrinsicInst(II); } Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { // We consider any PHI or select that results in a direct load or store of // the same offset to be a viable use for slicing purposes. These uses // are considered unsplittable and the size is the maximum loaded or stored // size. SmallPtrSet Visited; SmallVector, 4> Uses; Visited.insert(Root); Uses.push_back(std::make_pair(cast(*U), Root)); const DataLayout &DL = Root->getModule()->getDataLayout(); // If there are no loads or stores, the access is dead. We mark that as // a size zero access. Size = 0; do { Instruction *I, *UsedI; std::tie(UsedI, I) = Uses.pop_back_val(); if (LoadInst *LI = dyn_cast(I)) { Size = std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedSize()); continue; } if (StoreInst *SI = dyn_cast(I)) { Value *Op = SI->getOperand(0); if (Op == UsedI) return SI; Size = std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedSize()); continue; } if (GetElementPtrInst *GEP = dyn_cast(I)) { if (!GEP->hasAllZeroIndices()) return GEP; } else if (!isa(I) && !isa(I) && !isa(I) && !isa(I)) { return I; } for (User *U : I->users()) if (Visited.insert(cast(U)).second) Uses.push_back(std::make_pair(I, cast(U))); } while (!Uses.empty()); return nullptr; } void visitPHINodeOrSelectInst(Instruction &I) { assert(isa(I) || isa(I)); if (I.use_empty()) return markAsDead(I); // TODO: We could use SimplifyInstruction here to fold PHINodes and // SelectInsts. However, doing so requires to change the current // dead-operand-tracking mechanism. For instance, suppose neither loading // from %U nor %other traps. Then "load (select undef, %U, %other)" does not // trap either. However, if we simply replace %U with undef using the // current dead-operand-tracking mechanism, "load (select undef, undef, // %other)" may trap because the select may return the first operand // "undef". if (Value *Result = foldPHINodeOrSelectInst(I)) { if (Result == *U) // If the result of the constant fold will be the pointer, recurse // through the PHI/select as if we had RAUW'ed it. enqueueUsers(I); else // Otherwise the operand to the PHI/select is dead, and we can replace // it with undef. AS.DeadOperands.push_back(U); return; } if (!IsOffsetKnown) return PI.setAborted(&I); // See if we already have computed info on this node. uint64_t &Size = PHIOrSelectSizes[&I]; if (!Size) { // This is a new PHI/Select, check for an unsafe use of it. if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) return PI.setAborted(UnsafeI); } // For PHI and select operands outside the alloca, we can't nuke the entire // phi or select -- the other side might still be relevant, so we special // case them here and use a separate structure to track the operands // themselves which should be replaced with undef. // FIXME: This should instead be escaped in the event we're instrumenting // for address sanitization. if (Offset.uge(AllocSize)) { AS.DeadOperands.push_back(U); return; } insertUse(I, Offset, Size); } void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } /// Disable SROA entirely if there are unhandled users of the alloca. void visitInstruction(Instruction &I) { PI.setAborted(&I); } }; AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) AI(AI), #endif PointerEscapingInstr(nullptr) { SliceBuilder PB(DL, AI, *this); SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); if (PtrI.isEscaped() || PtrI.isAborted()) { // FIXME: We should sink the escape vs. abort info into the caller nicely, // possibly by just storing the PtrInfo in the AllocaSlices. PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() : PtrI.getAbortingInst(); assert(PointerEscapingInstr && "Did not track a bad instruction"); return; } Slices.erase( llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }), Slices.end()); // Sort the uses. This arranges for the offsets to be in ascending order, // and the sizes to be in descending order. std::stable_sort(Slices.begin(), Slices.end()); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void AllocaSlices::print(raw_ostream &OS, const_iterator I, StringRef Indent) const { printSlice(OS, I, Indent); OS << "\n"; printUse(OS, I, Indent); } void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, StringRef Indent) const { OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" << " slice #" << (I - begin()) << (I->isSplittable() ? " (splittable)" : ""); } void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, StringRef Indent) const { OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; } void AllocaSlices::print(raw_ostream &OS) const { if (PointerEscapingInstr) { OS << "Can't analyze slices for alloca: " << AI << "\n" << " A pointer to this alloca escaped by:\n" << " " << *PointerEscapingInstr << "\n"; return; } OS << "Slices of alloca: " << AI << "\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) print(OS, I); } LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); } LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Walk the range of a partitioning looking for a common type to cover this /// sequence of slices. static std::pair findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, uint64_t EndOffset) { Type *Ty = nullptr; bool TyIsCommon = true; IntegerType *ITy = nullptr; // Note that we need to look at *every* alloca slice's Use to ensure we // always get consistent results regardless of the order of slices. for (AllocaSlices::const_iterator I = B; I != E; ++I) { Use *U = I->getUse(); if (isa(*U->getUser())) continue; if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) continue; Type *UserTy = nullptr; if (LoadInst *LI = dyn_cast(U->getUser())) { UserTy = LI->getType(); } else if (StoreInst *SI = dyn_cast(U->getUser())) { UserTy = SI->getValueOperand()->getType(); } if (IntegerType *UserITy = dyn_cast_or_null(UserTy)) { // If the type is larger than the partition, skip it. We only encounter // this for split integer operations where we want to use the type of the // entity causing the split. Also skip if the type is not a byte width // multiple. if (UserITy->getBitWidth() % 8 != 0 || UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) continue; // Track the largest bitwidth integer type used in this way in case there // is no common type. if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) ITy = UserITy; } // To avoid depending on the order of slices, Ty and TyIsCommon must not // depend on types skipped above. if (!UserTy || (Ty && Ty != UserTy)) TyIsCommon = false; // Give up on anything but an iN type. else Ty = UserTy; } return {TyIsCommon ? Ty : nullptr, ITy}; } /// PHI instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers in the pred blocks and then PHI the /// results, allowing the load of the alloca to be promoted. /// From this: /// %P2 = phi [i32* %Alloca, i32* %Other] /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// ... /// %V2 = load i32* %Other /// ... /// %V = phi [i32 %V1, i32 %V2] /// /// We can do this to a select if its only uses are loads and if the operands /// to the select can be loaded unconditionally. /// /// FIXME: This should be hoisted into a generic utility, likely in /// Transforms/Util/Local.h static bool isSafePHIToSpeculate(PHINode &PN) { const DataLayout &DL = PN.getModule()->getDataLayout(); // For now, we can only do this promotion if the load is in the same block // as the PHI, and if there are no stores between the phi and load. // TODO: Allow recursive phi users. // TODO: Allow stores. BasicBlock *BB = PN.getParent(); Align MaxAlign; uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); APInt MaxSize(APWidth, 0); bool HaveLoad = false; for (User *U : PN.users()) { LoadInst *LI = dyn_cast(U); if (!LI || !LI->isSimple()) return false; // For now we only allow loads in the same block as the PHI. This is // a common case that happens when instcombine merges two loads through // a PHI. if (LI->getParent() != BB) return false; // Ensure that there are no instructions between the PHI and the load that // could store. for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) if (BBI->mayWriteToMemory()) return false; uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); MaxAlign = std::max(MaxAlign, LI->getAlign()); MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; HaveLoad = true; } if (!HaveLoad) return false; // We can only transform this if it is safe to push the loads into the // predecessor blocks. The only thing to watch out for is that we can't put // a possibly trapping load in the predecessor if it is a critical edge. for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); Value *InVal = PN.getIncomingValue(Idx); // If the value is produced by the terminator of the predecessor (an // invoke) or it has side-effects, there is no valid place to put a load // in the predecessor. if (TI == InVal || TI->mayHaveSideEffects()) return false; // If the predecessor has a single successor, then the edge isn't // critical. if (TI->getNumSuccessors() == 1) continue; // If this pointer is always safe to load, or if we can prove that there // is already a load in the block, then we can move the load to the pred // block. if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) continue; return false; } return true; } static void speculatePHINodeLoads(PHINode &PN) { LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); LoadInst *SomeLoad = cast(PN.user_back()); Type *LoadTy = SomeLoad->getType(); IRBuilderTy PHIBuilder(&PN); PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), PN.getName() + ".sroa.speculated"); // Get the AA tags and alignment to use from one of the loads. It does not // matter which one we get and if any differ. AAMDNodes AATags; SomeLoad->getAAMetadata(AATags); Align Alignment = SomeLoad->getAlign(); // Rewrite all loads of the PN to use the new PHI. while (!PN.use_empty()) { LoadInst *LI = cast(PN.user_back()); LI->replaceAllUsesWith(NewPN); LI->eraseFromParent(); } // Inject loads into all of the pred blocks. DenseMap InjectedLoads; for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { BasicBlock *Pred = PN.getIncomingBlock(Idx); Value *InVal = PN.getIncomingValue(Idx); // A PHI node is allowed to have multiple (duplicated) entries for the same // basic block, as long as the value is the same. So if we already injected // a load in the predecessor, then we should reuse the same load for all // duplicated entries. if (Value* V = InjectedLoads.lookup(Pred)) { NewPN->addIncoming(V, Pred); continue; } Instruction *TI = Pred->getTerminator(); IRBuilderTy PredBuilder(TI); LoadInst *Load = PredBuilder.CreateAlignedLoad( LoadTy, InVal, Alignment, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); ++NumLoadsSpeculated; if (AATags) Load->setAAMetadata(AATags); NewPN->addIncoming(Load, Pred); InjectedLoads[Pred] = Load; } LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); PN.eraseFromParent(); } /// Select instructions that use an alloca and are subsequently loaded can be /// rewritten to load both input pointers and then select between the result, /// allowing the load of the alloca to be promoted. /// From this: /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other /// %V = load i32* %P2 /// to: /// %V1 = load i32* %Alloca -> will be mem2reg'd /// %V2 = load i32* %Other /// %V = select i1 %cond, i32 %V1, i32 %V2 /// /// We can do this to a select if its only uses are loads and if the operand /// to the select can be loaded unconditionally. static bool isSafeSelectToSpeculate(SelectInst &SI) { Value *TValue = SI.getTrueValue(); Value *FValue = SI.getFalseValue(); const DataLayout &DL = SI.getModule()->getDataLayout(); for (User *U : SI.users()) { LoadInst *LI = dyn_cast(U); if (!LI || !LI->isSimple()) return false; // Both operands to the select need to be dereferenceable, either // absolutely (e.g. allocas) or at this point because we can see other // accesses to it. if (!isSafeToLoadUnconditionally(TValue, LI->getType(), LI->getAlign(), DL, LI)) return false; if (!isSafeToLoadUnconditionally(FValue, LI->getType(), LI->getAlign(), DL, LI)) return false; } return true; } static void speculateSelectInstLoads(SelectInst &SI) { LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); IRBuilderTy IRB(&SI); Value *TV = SI.getTrueValue(); Value *FV = SI.getFalseValue(); // Replace the loads of the select with a select of two loads. while (!SI.use_empty()) { LoadInst *LI = cast(SI.user_back()); assert(LI->isSimple() && "We only speculate simple loads"); IRB.SetInsertPoint(LI); LoadInst *TL = IRB.CreateLoad(LI->getType(), TV, LI->getName() + ".sroa.speculate.load.true"); LoadInst *FL = IRB.CreateLoad(LI->getType(), FV, LI->getName() + ".sroa.speculate.load.false"); NumLoadsSpeculated += 2; // Transfer alignment and AA info if present. TL->setAlignment(LI->getAlign()); FL->setAlignment(LI->getAlign()); AAMDNodes Tags; LI->getAAMetadata(Tags); if (Tags) { TL->setAAMetadata(Tags); FL->setAAMetadata(Tags); } Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, LI->getName() + ".sroa.speculated"); LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); LI->replaceAllUsesWith(V); LI->eraseFromParent(); } SI.eraseFromParent(); } /// Build a GEP out of a base pointer and indices. /// /// This will return the BasePtr if that is valid, or build a new GEP /// instruction using the IRBuilder if GEP-ing is needed. static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, SmallVectorImpl &Indices, const Twine &NamePrefix) { if (Indices.empty()) return BasePtr; // A single zero index is a no-op, so check for this and avoid building a GEP // in that case. if (Indices.size() == 1 && cast(Indices.back())->isZero()) return BasePtr; return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), BasePtr, Indices, NamePrefix + "sroa_idx"); } /// Get a natural GEP off of the BasePtr walking through Ty toward /// TargetTy without changing the offset of the pointer. /// /// This routine assumes we've already established a properly offset GEP with /// Indices, and arrived at the Ty type. The goal is to continue to GEP with /// zero-indices down through type layers until we find one the same as /// TargetTy. If we can't find one with the same type, we at least try to use /// one with the same size. If none of that works, we just produce the GEP as /// indicated by Indices to have the correct offset. static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, Value *BasePtr, Type *Ty, Type *TargetTy, SmallVectorImpl &Indices, const Twine &NamePrefix) { if (Ty == TargetTy) return buildGEP(IRB, BasePtr, Indices, NamePrefix); // Offset size to use for the indices. unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); // See if we can descend into a struct and locate a field with the correct // type. unsigned NumLayers = 0; Type *ElementTy = Ty; do { if (ElementTy->isPointerTy()) break; if (ArrayType *ArrayTy = dyn_cast(ElementTy)) { ElementTy = ArrayTy->getElementType(); Indices.push_back(IRB.getIntN(OffsetSize, 0)); } else if (VectorType *VectorTy = dyn_cast(ElementTy)) { ElementTy = VectorTy->getElementType(); Indices.push_back(IRB.getInt32(0)); } else if (StructType *STy = dyn_cast(ElementTy)) { if (STy->element_begin() == STy->element_end()) break; // Nothing left to descend into. ElementTy = *STy->element_begin(); Indices.push_back(IRB.getInt32(0)); } else { break; } ++NumLayers; } while (ElementTy != TargetTy); if (ElementTy != TargetTy) Indices.erase(Indices.end() - NumLayers, Indices.end()); return buildGEP(IRB, BasePtr, Indices, NamePrefix); } /// Recursively compute indices for a natural GEP. /// /// This is the recursive step for getNaturalGEPWithOffset that walks down the /// element types adding appropriate indices for the GEP. static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, Type *Ty, APInt &Offset, Type *TargetTy, SmallVectorImpl &Indices, const Twine &NamePrefix) { if (Offset == 0) return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix); // We can't recurse through pointer types. if (Ty->isPointerTy()) return nullptr; // We try to analyze GEPs over vectors here, but note that these GEPs are // extremely poorly defined currently. The long-term goal is to remove GEPing // over a vector from the IR completely. if (VectorType *VecTy = dyn_cast(Ty)) { unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize(); if (ElementSizeInBits % 8 != 0) { // GEPs over non-multiple of 8 size vector elements are invalid. return nullptr; } APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(cast(VecTy)->getNumElements())) return nullptr; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), Offset, TargetTy, Indices, NamePrefix); } if (ArrayType *ArrTy = dyn_cast(Ty)) { Type *ElementTy = ArrTy->getElementType(); APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy).getFixedSize()); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(ArrTy->getNumElements())) return nullptr; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices, NamePrefix); } StructType *STy = dyn_cast(Ty); if (!STy) return nullptr; const StructLayout *SL = DL.getStructLayout(STy); uint64_t StructOffset = Offset.getZExtValue(); if (StructOffset >= SL->getSizeInBytes()) return nullptr; unsigned Index = SL->getElementContainingOffset(StructOffset); Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); Type *ElementTy = STy->getElementType(Index); if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize())) return nullptr; // The offset points into alignment padding. Indices.push_back(IRB.getInt32(Index)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices, NamePrefix); } /// Get a natural GEP from a base pointer to a particular offset and /// resulting in a particular type. /// /// The goal is to produce a "natural" looking GEP that works with the existing /// composite types to arrive at the appropriate offset and element type for /// a pointer. TargetTy is the element type the returned GEP should point-to if /// possible. We recurse by decreasing Offset, adding the appropriate index to /// Indices, and setting Ty to the result subtype. /// /// If no natural GEP can be constructed, this function returns null. static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *TargetTy, SmallVectorImpl &Indices, const Twine &NamePrefix) { PointerType *Ty = cast(Ptr->getType()); // Don't consider any GEPs through an i8* as natural unless the TargetTy is // an i8. if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) return nullptr; Type *ElementTy = Ty->getElementType(); if (!ElementTy->isSized()) return nullptr; // We can't GEP through an unsized element. if (isa(ElementTy)) return nullptr; APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy).getFixedSize()); if (ElementSize == 0) return nullptr; // Zero-length arrays can't help us build a natural GEP. APInt NumSkippedElements = Offset.sdiv(ElementSize); Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices, NamePrefix); } /// Compute an adjusted pointer from Ptr by Offset bytes where the /// resulting pointer has PointerTy. /// /// This tries very hard to compute a "natural" GEP which arrives at the offset /// and produces the pointer type desired. Where it cannot, it will try to use /// the natural GEP to arrive at the offset and bitcast to the type. Where that /// fails, it will try to use an existing i8* and GEP to the byte offset and /// bitcast to the type. /// /// The strategy for finding the more natural GEPs is to peel off layers of the /// pointer, walking back through bit casts and GEPs, searching for a base /// pointer from which we can compute a natural GEP with the desired /// properties. The algorithm tries to fold as many constant indices into /// a single GEP as possible, thus making each GEP more independent of the /// surrounding code. static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *PointerTy, const Twine &NamePrefix) { // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(Ptr); SmallVector Indices; // We may end up computing an offset pointer that has the wrong type. If we // never are able to compute one directly that has the correct type, we'll // fall back to it, so keep it and the base it was computed from around here. Value *OffsetPtr = nullptr; Value *OffsetBasePtr; // Remember any i8 pointer we come across to re-use if we need to do a raw // byte offset. Value *Int8Ptr = nullptr; APInt Int8PtrOffset(Offset.getBitWidth(), 0); PointerType *TargetPtrTy = cast(PointerTy); Type *TargetTy = TargetPtrTy->getElementType(); // As `addrspacecast` is , `Ptr` (the storage pointer) may have different // address space from the expected `PointerTy` (the pointer to be used). // Adjust the pointer type based the original storage pointer. auto AS = cast(Ptr->getType())->getAddressSpace(); PointerTy = TargetTy->getPointerTo(AS); do { // First fold any existing GEPs into the offset. while (GEPOperator *GEP = dyn_cast(Ptr)) { APInt GEPOffset(Offset.getBitWidth(), 0); if (!GEP->accumulateConstantOffset(DL, GEPOffset)) break; Offset += GEPOffset; Ptr = GEP->getPointerOperand(); if (!Visited.insert(Ptr).second) break; } // See if we can perform a natural GEP here. Indices.clear(); if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, Indices, NamePrefix)) { // If we have a new natural pointer at the offset, clear out any old // offset pointer we computed. Unless it is the base pointer or // a non-instruction, we built a GEP we don't need. Zap it. if (OffsetPtr && OffsetPtr != OffsetBasePtr) if (Instruction *I = dyn_cast(OffsetPtr)) { assert(I->use_empty() && "Built a GEP with uses some how!"); I->eraseFromParent(); } OffsetPtr = P; OffsetBasePtr = Ptr; // If we also found a pointer of the right type, we're done. if (P->getType() == PointerTy) break; } // Stash this pointer if we've found an i8*. if (Ptr->getType()->isIntegerTy(8)) { Int8Ptr = Ptr; Int8PtrOffset = Offset; } // Peel off a layer of the pointer and update the offset appropriately. if (Operator::getOpcode(Ptr) == Instruction::BitCast) { Ptr = cast(Ptr)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(Ptr)) { if (GA->isInterposable()) break; Ptr = GA->getAliasee(); } else { break; } assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(Ptr).second); if (!OffsetPtr) { if (!Int8Ptr) { Int8Ptr = IRB.CreateBitCast( Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), NamePrefix + "sroa_raw_cast"); Int8PtrOffset = Offset; } OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, IRB.getInt(Int8PtrOffset), NamePrefix + "sroa_raw_idx"); } Ptr = OffsetPtr; // On the off chance we were targeting i8*, guard the bitcast here. if (cast(Ptr->getType()) != TargetPtrTy) { Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, TargetPtrTy, NamePrefix + "sroa_cast"); } return Ptr; } /// Compute the adjusted alignment for a load or store from an offset. static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { return commonAlignment(getLoadStoreAlignment(I), Offset); } /// Test whether we can convert a value from the old to the new type. /// /// This predicate should be used to guard calls to convertValue in order to /// ensure that we only try to convert viable values. The strategy is that we /// will peel off single element struct and array wrappings to get to an /// underlying value, and convert that value. static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { if (OldTy == NewTy) return true; // For integer types, we can't handle any bit-width differences. This would // break both vector conversions with extension and introduce endianness // issues when in conjunction with loads and stores. if (isa(OldTy) && isa(NewTy)) { assert(cast(OldTy)->getBitWidth() != cast(NewTy)->getBitWidth() && "We can't have the same bitwidth for different int types"); return false; } if (DL.getTypeSizeInBits(NewTy).getFixedSize() != DL.getTypeSizeInBits(OldTy).getFixedSize()) return false; if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) return false; // We can convert pointers to integers and vice-versa. Same for vectors // of pointers and integers. OldTy = OldTy->getScalarType(); NewTy = NewTy->getScalarType(); if (NewTy->isPointerTy() || OldTy->isPointerTy()) { if (NewTy->isPointerTy() && OldTy->isPointerTy()) { unsigned OldAS = OldTy->getPointerAddressSpace(); unsigned NewAS = NewTy->getPointerAddressSpace(); // Convert pointers if they are pointers from the same address space or // different integral (not non-integral) address spaces with the same // pointer size. return OldAS == NewAS || (!DL.isNonIntegralAddressSpace(OldAS) && !DL.isNonIntegralAddressSpace(NewAS) && DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); } // We can convert integers to integral pointers, but not to non-integral // pointers. if (OldTy->isIntegerTy()) return !DL.isNonIntegralPointerType(NewTy); // We can convert integral pointers to integers, but non-integral pointers // need to remain pointers. if (!DL.isNonIntegralPointerType(OldTy)) return NewTy->isIntegerTy(); return false; } return true; } /// Generic routine to convert an SSA value to a value of a different /// type. /// /// This will try various different casting techniques, such as bitcasts, /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test /// two types for viability with this routine. static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, Type *NewTy) { Type *OldTy = V->getType(); assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); if (OldTy == NewTy) return V; assert(!(isa(OldTy) && isa(NewTy)) && "Integer types must be the exact same to convert."); // See if we need inttoptr for this type pair. May require additional bitcast. if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> // Directly handle i64 to i8* return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), NewTy); } // See if we need ptrtoint for this type pair. May require additional bitcast. if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> // Expand i8* to i64 --> i8* to i64 to i64 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), NewTy); } if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { unsigned OldAS = OldTy->getPointerAddressSpace(); unsigned NewAS = NewTy->getPointerAddressSpace(); // To convert pointers with different address spaces (they are already // checked convertible, i.e. they have the same pointer size), so far we // cannot use `bitcast` (which has restrict on the same address space) or // `addrspacecast` (which is not always no-op casting). Instead, use a pair // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit // size. if (OldAS != NewAS) { assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), NewTy); } } return IRB.CreateBitCast(V, NewTy); } /// Test whether the given slice use can be promoted to a vector. /// /// This function is called to test each entry in a partition which is slated /// for a single slice. static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, VectorType *Ty, uint64_t ElementSize, const DataLayout &DL) { // First validate the slice offsets. uint64_t BeginOffset = std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); uint64_t BeginIndex = BeginOffset / ElementSize; if (BeginIndex * ElementSize != BeginOffset || BeginIndex >= cast(Ty)->getNumElements()) return false; uint64_t EndOffset = std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); uint64_t EndIndex = EndOffset / ElementSize; if (EndIndex * ElementSize != EndOffset || EndIndex > cast(Ty)->getNumElements()) return false; assert(EndIndex > BeginIndex && "Empty vector!"); uint64_t NumElements = EndIndex - BeginIndex; Type *SliceTy = (NumElements == 1) ? Ty->getElementType() : FixedVectorType::get(Ty->getElementType(), NumElements); Type *SplitIntTy = Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); Use *U = S.getUse(); if (MemIntrinsic *MI = dyn_cast(U->getUser())) { if (MI->isVolatile()) return false; if (!S.isSplittable()) return false; // Skip any unsplittable intrinsics. } else if (IntrinsicInst *II = dyn_cast(U->getUser())) { if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) return false; } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { // Disable vector promotion when there are loads or stores of an FCA. return false; } else if (LoadInst *LI = dyn_cast(U->getUser())) { if (LI->isVolatile()) return false; Type *LTy = LI->getType(); if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { assert(LTy->isIntegerTy()); LTy = SplitIntTy; } if (!canConvertValue(DL, SliceTy, LTy)) return false; } else if (StoreInst *SI = dyn_cast(U->getUser())) { if (SI->isVolatile()) return false; Type *STy = SI->getValueOperand()->getType(); if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { assert(STy->isIntegerTy()); STy = SplitIntTy; } if (!canConvertValue(DL, STy, SliceTy)) return false; } else { return false; } return true; } /// Test whether the given alloca partitioning and range of slices can be /// promoted to a vector. /// /// This is a quick test to check whether we can rewrite a particular alloca /// partition (and its newly formed alloca) into a vector alloca with only /// whole-vector loads and stores such that it could be promoted to a vector /// SSA value. We only can ensure this for a limited set of operations, and we /// don't want to do the rewrites unless we are confident that the result will /// be promotable, so we have an early test here. static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { // Collect the candidate types for vector-based promotion. Also track whether // we have different element types. SmallVector CandidateTys; Type *CommonEltTy = nullptr; bool HaveCommonEltTy = true; auto CheckCandidateType = [&](Type *Ty) { if (auto *VTy = dyn_cast(Ty)) { // Return if bitcast to vectors is different for total size in bits. if (!CandidateTys.empty()) { VectorType *V = CandidateTys[0]; if (DL.getTypeSizeInBits(VTy).getFixedSize() != DL.getTypeSizeInBits(V).getFixedSize()) { CandidateTys.clear(); return; } } CandidateTys.push_back(VTy); if (!CommonEltTy) CommonEltTy = VTy->getElementType(); else if (CommonEltTy != VTy->getElementType()) HaveCommonEltTy = false; } }; // Consider any loads or stores that are the exact size of the slice. for (const Slice &S : P) if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset()) { if (auto *LI = dyn_cast(S.getUse()->getUser())) CheckCandidateType(LI->getType()); else if (auto *SI = dyn_cast(S.getUse()->getUser())) CheckCandidateType(SI->getValueOperand()->getType()); } // If we didn't find a vector type, nothing to do here. if (CandidateTys.empty()) return nullptr; // Remove non-integer vector types if we had multiple common element types. // FIXME: It'd be nice to replace them with integer vector types, but we can't // do that until all the backends are known to produce good code for all // integer vector types. if (!HaveCommonEltTy) { CandidateTys.erase( llvm::remove_if(CandidateTys, [](VectorType *VTy) { return !VTy->getElementType()->isIntegerTy(); }), CandidateTys.end()); // If there were no integer vector types, give up. if (CandidateTys.empty()) return nullptr; // Rank the remaining candidate vector types. This is easy because we know // they're all integer vectors. We sort by ascending number of elements. auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { (void)DL; assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == DL.getTypeSizeInBits(LHSTy).getFixedSize() && "Cannot have vector types of different sizes!"); assert(RHSTy->getElementType()->isIntegerTy() && "All non-integer types eliminated!"); assert(LHSTy->getElementType()->isIntegerTy() && "All non-integer types eliminated!"); return cast(RHSTy)->getNumElements() < cast(LHSTy)->getNumElements(); }; llvm::sort(CandidateTys, RankVectorTypes); CandidateTys.erase( std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), CandidateTys.end()); } else { // The only way to have the same element type in every vector type is to // have the same vector type. Check that and remove all but one. #ifndef NDEBUG for (VectorType *VTy : CandidateTys) { assert(VTy->getElementType() == CommonEltTy && "Unaccounted for element type!"); assert(VTy == CandidateTys[0] && "Different vector types with the same element type!"); } #endif CandidateTys.resize(1); } // Try each vector type, and return the one which works. auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); // While the definition of LLVM vectors is bitpacked, we don't support sizes // that aren't byte sized. if (ElementSize % 8) return false; assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && "vector size not a multiple of element size?"); ElementSize /= 8; for (const Slice &S : P) if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) return false; for (const Slice *S : P.splitSliceTails()) if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) return false; return true; }; for (VectorType *VTy : CandidateTys) if (CheckVectorTypeForPromotion(VTy)) return VTy; return nullptr; } /// Test whether a slice of an alloca is valid for integer widening. /// /// This implements the necessary checking for the \c isIntegerWideningViable /// test below on a single slice of the alloca. static bool isIntegerWideningViableForSlice(const Slice &S, uint64_t AllocBeginOffset, Type *AllocaTy, const DataLayout &DL, bool &WholeAllocaOp) { uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; uint64_t RelEnd = S.endOffset() - AllocBeginOffset; // We can't reasonably handle cases where the load or store extends past // the end of the alloca's type and into its padding. if (RelEnd > Size) return false; Use *U = S.getUse(); if (LoadInst *LI = dyn_cast(U->getUser())) { if (LI->isVolatile()) return false; // We can't handle loads that extend past the allocated memory. if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) return false; // So far, AllocaSliceRewriter does not support widening split slice tails // in rewriteIntegerLoad. if (S.beginOffset() < AllocBeginOffset) return false; // Note that we don't count vector loads or stores as whole-alloca // operations which enable integer widening because we would prefer to use // vector widening instead. if (!isa(LI->getType()) && RelBegin == 0 && RelEnd == Size) WholeAllocaOp = true; if (IntegerType *ITy = dyn_cast(LI->getType())) { if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) return false; } else if (RelBegin != 0 || RelEnd != Size || !canConvertValue(DL, AllocaTy, LI->getType())) { // Non-integer loads need to be convertible from the alloca type so that // they are promotable. return false; } } else if (StoreInst *SI = dyn_cast(U->getUser())) { Type *ValueTy = SI->getValueOperand()->getType(); if (SI->isVolatile()) return false; // We can't handle stores that extend past the allocated memory. if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) return false; // So far, AllocaSliceRewriter does not support widening split slice tails // in rewriteIntegerStore. if (S.beginOffset() < AllocBeginOffset) return false; // Note that we don't count vector loads or stores as whole-alloca // operations which enable integer widening because we would prefer to use // vector widening instead. if (!isa(ValueTy) && RelBegin == 0 && RelEnd == Size) WholeAllocaOp = true; if (IntegerType *ITy = dyn_cast(ValueTy)) { if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) return false; } else if (RelBegin != 0 || RelEnd != Size || !canConvertValue(DL, ValueTy, AllocaTy)) { // Non-integer stores need to be convertible to the alloca type so that // they are promotable. return false; } } else if (MemIntrinsic *MI = dyn_cast(U->getUser())) { if (MI->isVolatile() || !isa(MI->getLength())) return false; if (!S.isSplittable()) return false; // Skip any unsplittable intrinsics. } else if (IntrinsicInst *II = dyn_cast(U->getUser())) { if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) return false; } else { return false; } return true; } /// Test whether the given alloca partition's integer operations can be /// widened to promotable ones. /// /// This is a quick test to check whether we can rewrite the integer loads and /// stores to a particular alloca into wider loads and stores and be able to /// promote the resulting alloca. static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, const DataLayout &DL) { uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); // Don't create integer types larger than the maximum bitwidth. if (SizeInBits > IntegerType::MAX_INT_BITS) return false; // Don't try to handle allocas with bit-padding. if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) return false; // We need to ensure that an integer type with the appropriate bitwidth can // be converted to the alloca type, whatever that is. We don't want to force // the alloca itself to have an integer type if there is a more suitable one. Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); if (!canConvertValue(DL, AllocaTy, IntTy) || !canConvertValue(DL, IntTy, AllocaTy)) return false; // While examining uses, we ensure that the alloca has a covering load or // store. We don't want to widen the integer operations only to fail to // promote due to some other unsplittable entry (which we may make splittable // later). However, if there are only splittable uses, go ahead and assume // that we cover the alloca. // FIXME: We shouldn't consider split slices that happen to start in the // partition here... bool WholeAllocaOp = P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); for (const Slice &S : P) if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, WholeAllocaOp)) return false; for (const Slice *S : P.splitSliceTails()) if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, WholeAllocaOp)) return false; return WholeAllocaOp; } static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, IntegerType *Ty, uint64_t Offset, const Twine &Name) { LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); IntegerType *IntTy = cast(V->getType()); assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= DL.getTypeStoreSize(IntTy).getFixedSize() && "Element extends past full value"); uint64_t ShAmt = 8 * Offset; if (DL.isBigEndian()) ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - DL.getTypeStoreSize(Ty).getFixedSize() - Offset); if (ShAmt) { V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); } assert(Ty->getBitWidth() <= IntTy->getBitWidth() && "Cannot extract to a larger integer!"); if (Ty != IntTy) { V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); } return V; } static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, Value *V, uint64_t Offset, const Twine &Name) { IntegerType *IntTy = cast(Old->getType()); IntegerType *Ty = cast(V->getType()); assert(Ty->getBitWidth() <= IntTy->getBitWidth() && "Cannot insert a larger integer!"); LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); if (Ty != IntTy) { V = IRB.CreateZExt(V, IntTy, Name + ".ext"); LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); } assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= DL.getTypeStoreSize(IntTy).getFixedSize() && "Element store outside of alloca store"); uint64_t ShAmt = 8 * Offset; if (DL.isBigEndian()) ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - DL.getTypeStoreSize(Ty).getFixedSize() - Offset); if (ShAmt) { V = IRB.CreateShl(V, ShAmt, Name + ".shift"); LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); } if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); V = IRB.CreateOr(Old, V, Name + ".insert"); LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); } return V; } static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, unsigned EndIndex, const Twine &Name) { auto *VecTy = cast(V->getType()); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); if (NumElements == VecTy->getNumElements()) return V; if (NumElements == 1) { V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), Name + ".extract"); LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); return V; } SmallVector Mask; Mask.reserve(NumElements); for (unsigned i = BeginIndex; i != EndIndex; ++i) Mask.push_back(i); V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask, Name + ".extract"); LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); return V; } static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, unsigned BeginIndex, const Twine &Name) { VectorType *VecTy = cast(Old->getType()); assert(VecTy && "Can only insert a vector into a vector"); VectorType *Ty = dyn_cast(V->getType()); if (!Ty) { // Single element to insert. V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), Name + ".insert"); LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); return V; } assert(cast(Ty)->getNumElements() <= cast(VecTy)->getNumElements() && "Too many elements!"); if (cast(Ty)->getNumElements() == cast(VecTy)->getNumElements()) { assert(V->getType() == VecTy && "Vector type mismatch"); return V; } unsigned EndIndex = BeginIndex + cast(Ty)->getNumElements(); // When inserting a smaller vector into the larger to store, we first // use a shuffle vector to widen it with undef elements, and then // a second shuffle vector to select between the loaded vector and the // incoming vector. SmallVector Mask; Mask.reserve(cast(VecTy)->getNumElements()); for (unsigned i = 0; i != cast(VecTy)->getNumElements(); ++i) if (i >= BeginIndex && i < EndIndex) Mask.push_back(IRB.getInt32(i - BeginIndex)); else Mask.push_back(UndefValue::get(IRB.getInt32Ty())); V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), ConstantVector::get(Mask), Name + ".expand"); LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); Mask.clear(); for (unsigned i = 0; i != cast(VecTy)->getNumElements(); ++i) Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); return V; } /// Visitor to rewrite instructions using p particular slice of an alloca /// to use a new alloca. /// /// Also implements the rewriting to vector-based accesses when the partition /// passes the isVectorPromotionViable predicate. Most of the rewriting logic /// lives here. class llvm::sroa::AllocaSliceRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class InstVisitor; using Base = InstVisitor; const DataLayout &DL; AllocaSlices &AS; SROA &Pass; AllocaInst &OldAI, &NewAI; const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; Type *NewAllocaTy; // This is a convenience and flag variable that will be null unless the new // alloca's integer operations should be widened to this integer type due to // passing isIntegerWideningViable above. If it is non-null, the desired // integer type will be stored here for easy access during rewriting. IntegerType *IntTy; // If we are rewriting an alloca partition which can be written as pure // vector operations, we stash extra information here. When VecTy is // non-null, we have some strict guarantees about the rewritten alloca: // - The new alloca is exactly the size of the vector type here. // - The accesses all either map to the entire vector or to a single // element. // - The set of accessing instructions is only one of those handled above // in isVectorPromotionViable. Generally these are the same access kinds // which are promotable via mem2reg. VectorType *VecTy; Type *ElementTy; uint64_t ElementSize; // The original offset of the slice currently being rewritten relative to // the original alloca. uint64_t BeginOffset = 0; uint64_t EndOffset = 0; // The new offsets of the slice currently being rewritten relative to the // original alloca. uint64_t NewBeginOffset = 0, NewEndOffset = 0; uint64_t SliceSize = 0; bool IsSplittable = false; bool IsSplit = false; Use *OldUse = nullptr; Instruction *OldPtr = nullptr; // Track post-rewrite users which are PHI nodes and Selects. SmallSetVector &PHIUsers; SmallSetVector &SelectUsers; // Utility IR builder, whose name prefix is setup for each visited use, and // the insertion point is set to point to the user. IRBuilderTy IRB; public: AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, uint64_t NewAllocaBeginOffset, uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, VectorType *PromotableVecTy, SmallSetVector &PHIUsers, SmallSetVector &SelectUsers) : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), NewAllocaBeginOffset(NewAllocaBeginOffset), NewAllocaEndOffset(NewAllocaEndOffset), NewAllocaTy(NewAI.getAllocatedType()), IntTy( IsIntegerPromotable ? Type::getIntNTy(NewAI.getContext(), DL.getTypeSizeInBits(NewAI.getAllocatedType()) .getFixedSize()) : nullptr), VecTy(PromotableVecTy), ElementTy(VecTy ? VecTy->getElementType() : nullptr), ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 : 0), PHIUsers(PHIUsers), SelectUsers(SelectUsers), IRB(NewAI.getContext(), ConstantFolder()) { if (VecTy) { assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && "Only multiple-of-8 sized vector elements are viable"); ++NumVectorized; } assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); } bool visit(AllocaSlices::const_iterator I) { bool CanSROA = true; BeginOffset = I->beginOffset(); EndOffset = I->endOffset(); IsSplittable = I->isSplittable(); IsSplit = BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); LLVM_DEBUG(dbgs() << "\n"); // Compute the intersecting offset range. assert(BeginOffset < NewAllocaEndOffset); assert(EndOffset > NewAllocaBeginOffset); NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); SliceSize = NewEndOffset - NewBeginOffset; OldUse = I->getUse(); OldPtr = cast(OldUse->get()); Instruction *OldUserI = cast(OldUse->getUser()); IRB.SetInsertPoint(OldUserI); IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); IRB.getInserter().SetNamePrefix( Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); CanSROA &= visit(cast(OldUse->getUser())); if (VecTy || IntTy) assert(CanSROA); return CanSROA; } private: // Make sure the other visit overloads are visible. using Base::visit; // Every instruction which can end up as a user must have a rewrite rule. bool visitInstruction(Instruction &I) { LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); llvm_unreachable("No rewrite rule for this instruction!"); } Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { // Note that the offset computation can use BeginOffset or NewBeginOffset // interchangeably for unsplit slices. assert(IsSplit || BeginOffset == NewBeginOffset); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; #ifndef NDEBUG StringRef OldName = OldPtr->getName(); // Skip through the last '.sroa.' component of the name. size_t LastSROAPrefix = OldName.rfind(".sroa."); if (LastSROAPrefix != StringRef::npos) { OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); // Look for an SROA slice index. size_t IndexEnd = OldName.find_first_not_of("0123456789"); if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { // Strip the index and look for the offset. OldName = OldName.substr(IndexEnd + 1); size_t OffsetEnd = OldName.find_first_not_of("0123456789"); if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') // Strip the offset. OldName = OldName.substr(OffsetEnd + 1); } } // Strip any SROA suffixes as well. OldName = OldName.substr(0, OldName.find(".sroa_")); #endif return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), PointerTy, #ifndef NDEBUG Twine(OldName) + "." #else Twine() #endif ); } /// Compute suitable alignment to access this slice of the *new* /// alloca. /// /// You can optionally pass a type to this routine and if that type's ABI /// alignment is itself suitable, this will return zero. Align getSliceAlign() { return commonAlignment(NewAI.getAlign(), NewBeginOffset - NewAllocaBeginOffset); } unsigned getIndex(uint64_t Offset) { assert(VecTy && "Can only call getIndex when rewriting a vector"); uint64_t RelOffset = Offset - NewAllocaBeginOffset; assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); uint32_t Index = RelOffset / ElementSize; assert(Index * ElementSize == RelOffset); return Index; } void deleteIfTriviallyDead(Value *V) { Instruction *I = cast(V); if (isInstructionTriviallyDead(I)) Pass.DeadInsts.insert(I); } Value *rewriteVectorizedLoadInst() { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "load"); return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); } Value *rewriteIntegerLoad(LoadInst &LI) { assert(IntTy && "We cannot insert an integer to the alloca"); assert(!LI.isVolatile()); Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "load"); V = convertValue(DL, IRB, V, IntTy); assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); } // It is possible that the extracted type is not the load type. This // happens if there is a load past the end of the alloca, and as // a consequence the slice is narrower but still a candidate for integer // lowering. To handle this case, we just zero extend the extracted // integer. assert(cast(LI.getType())->getBitWidth() >= SliceSize * 8 && "Can only handle an extract for an overly wide load"); if (cast(LI.getType())->getBitWidth() > SliceSize * 8) V = IRB.CreateZExt(V, LI.getType()); return V; } bool visitLoadInst(LoadInst &LI) { LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); Value *OldOp = LI.getOperand(0); assert(OldOp == OldPtr); AAMDNodes AATags; LI.getAAMetadata(AATags); unsigned AS = LI.getPointerAddressSpace(); Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) : LI.getType(); const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; bool IsPtrAdjusted = false; Value *V; if (VecTy) { V = rewriteVectorizedLoadInst(); } else if (IntTy && LI.getType()->isIntegerTy()) { V = rewriteIntegerLoad(LI); } else if (NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset && (canConvertValue(DL, NewAllocaTy, TargetTy) || (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && TargetTy->isIntegerTy()))) { LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), LI.isVolatile(), LI.getName()); if (AATags) NewLI->setAAMetadata(AATags); if (LI.isVolatile()) NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); if (NewLI->isAtomic()) NewLI->setAlignment(LI.getAlign()); // Any !nonnull metadata or !range metadata on the old load is also valid // on the new load. This is even true in some cases even when the loads // are different types, for example by mapping !nonnull metadata to // !range metadata by modeling the null pointer constant converted to the // integer type. // FIXME: Add support for range metadata here. Currently the utilities // for this don't propagate range metadata in trivial cases from one // integer load to another, don't handle non-addrspace-0 null pointers // correctly, and don't have any support for mapping ranges as the // integer type becomes winder or narrower. if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) copyNonnullMetadata(LI, N, *NewLI); // Try to preserve nonnull metadata V = NewLI; // If this is an integer load past the end of the slice (which means the // bytes outside the slice are undef or this load is dead) just forcibly // fix the integer size with correct handling of endianness. if (auto *AITy = dyn_cast(NewAllocaTy)) if (auto *TITy = dyn_cast(TargetTy)) if (AITy->getBitWidth() < TITy->getBitWidth()) { V = IRB.CreateZExt(V, TITy, "load.ext"); if (DL.isBigEndian()) V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), "endian_shift"); } } else { Type *LTy = TargetTy->getPointerTo(AS); LoadInst *NewLI = IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(), LI.isVolatile(), LI.getName()); if (AATags) NewLI->setAAMetadata(AATags); if (LI.isVolatile()) NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); V = NewLI; IsPtrAdjusted = true; } V = convertValue(DL, IRB, V, TargetTy); if (IsSplit) { assert(!LI.isVolatile()); assert(LI.getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && "Split load isn't smaller than original load"); assert(DL.typeSizeEqualsStoreSize(LI.getType()) && "Non-byte-multiple bit width"); // Move the insertion point just past the load so that we can refer to it. IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); // Create a placeholder value with the same type as LI to use as the // basis for the new value. This allows us to replace the uses of LI with // the computed value, and then replace the placeholder with LI, leaving // LI only used for this computation. Value *Placeholder = new LoadInst( LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "", false, Align(1)); V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, "insert"); LI.replaceAllUsesWith(V); Placeholder->replaceAllUsesWith(&LI); Placeholder->deleteValue(); } else { LI.replaceAllUsesWith(V); } Pass.DeadInsts.insert(&LI); deleteIfTriviallyDead(OldOp); LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); return !LI.isVolatile() && !IsPtrAdjusted; } bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, AAMDNodes AATags) { if (V->getType() != VecTy) { unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= cast(VecTy)->getNumElements() && "Too many elements!"); Type *SliceTy = (NumElements == 1) ? ElementTy : FixedVectorType::get(ElementTy, NumElements); if (V->getType() != SliceTy) V = convertValue(DL, IRB, V, SliceTy); // Mix in the existing elements. Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "load"); V = insertVector(IRB, Old, V, BeginIndex, "vec"); } StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); if (AATags) Store->setAAMetadata(AATags); Pass.DeadInsts.insert(&SI); LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { assert(IntTy && "We cannot extract an integer from the alloca"); assert(!SI.isVolatile()); if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != IntTy->getBitWidth()) { Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t Offset = BeginOffset - NewAllocaBeginOffset; V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); } V = convertValue(DL, IRB, V, NewAllocaTy); StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, LLVMContext::MD_access_group}); if (AATags) Store->setAAMetadata(AATags); Pass.DeadInsts.insert(&SI); LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); return true; } bool visitStoreInst(StoreInst &SI) { LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); Value *OldOp = SI.getOperand(1); assert(OldOp == OldPtr); AAMDNodes AATags; SI.getAAMetadata(AATags); Value *V = SI.getValueOperand(); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after promoting this alloca. if (V->getType()->isPointerTy()) if (AllocaInst *AI = dyn_cast(V->stripInBoundsOffsets())) Pass.PostPromotionWorklist.insert(AI); if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { assert(!SI.isVolatile()); assert(V->getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(DL.typeSizeEqualsStoreSize(V->getType()) && "Non-byte-multiple bit width"); IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, "extract"); } if (VecTy) return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); if (IntTy && V->getType()->isIntegerTy()) return rewriteIntegerStore(V, SI, AATags); const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; StoreInst *NewSI; if (NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset && (canConvertValue(DL, V->getType(), NewAllocaTy) || (IsStorePastEnd && NewAllocaTy->isIntegerTy() && V->getType()->isIntegerTy()))) { // If this is an integer store past the end of slice (and thus the bytes // past that point are irrelevant or this is unreachable), truncate the // value prior to storing. if (auto *VITy = dyn_cast(V->getType())) if (auto *AITy = dyn_cast(NewAllocaTy)) if (VITy->getBitWidth() > AITy->getBitWidth()) { if (DL.isBigEndian()) V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), "endian_shift"); V = IRB.CreateTrunc(V, AITy, "load.trunc"); } V = convertValue(DL, IRB, V, NewAllocaTy); NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); } else { unsigned AS = SI.getPointerAddressSpace(); Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); } NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, LLVMContext::MD_access_group}); if (AATags) NewSI->setAAMetadata(AATags); if (SI.isVolatile()) NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); if (NewSI->isAtomic()) NewSI->setAlignment(SI.getAlign()); Pass.DeadInsts.insert(&SI); deleteIfTriviallyDead(OldOp); LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); } /// Compute an integer value from splatting an i8 across the given /// number of bytes. /// /// Note that this routine assumes an i8 is a byte. If that isn't true, don't /// call this routine. /// FIXME: Heed the advice above. /// /// \param V The i8 value to splat. /// \param Size The number of bytes in the output (assuming i8 is one byte) Value *getIntegerSplat(Value *V, unsigned Size) { assert(Size > 0 && "Expected a positive number of bytes."); IntegerType *VTy = cast(V->getType()); assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); if (Size == 1) return V; Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); V = IRB.CreateMul( IRB.CreateZExt(V, SplatIntTy, "zext"), ConstantExpr::getUDiv( Constant::getAllOnesValue(SplatIntTy), ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), SplatIntTy)), "isplat"); return V; } /// Compute a vector splat for a given element value. Value *getVectorSplat(Value *V, unsigned NumElements) { V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); return V; } bool visitMemSetInst(MemSetInst &II) { LLVM_DEBUG(dbgs() << " original: " << II << "\n"); assert(II.getRawDest() == OldPtr); AAMDNodes AATags; II.getAAMetadata(AATags); // If the memset has a variable size, it cannot be split, just adjust the // pointer to the new alloca. if (!isa(II.getLength())) { assert(!IsSplit); assert(NewBeginOffset == BeginOffset); II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); II.setDestAlignment(getSliceAlign()); deleteIfTriviallyDead(OldPtr); return false; } // Record this instruction for deletion. Pass.DeadInsts.insert(&II); Type *AllocaTy = NewAI.getAllocatedType(); Type *ScalarTy = AllocaTy->getScalarType(); const bool CanContinue = [&]() { if (VecTy || IntTy) return true; if (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) return false; auto *C = cast(II.getLength()); if (C->getBitWidth() > 64) return false; const auto Len = C->getZExtValue(); auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); auto *SrcTy = FixedVectorType::get(Int8Ty, Len); return canConvertValue(DL, SrcTy, AllocaTy) && DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); }(); // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memset. if (!CanContinue) { Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); CallInst *New = IRB.CreateMemSet( getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, MaybeAlign(getSliceAlign()), II.isVolatile()); if (AATags) New->setAAMetadata(AATags); LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); return false; } // If we can represent this as a simple value, we have to build the actual // value to store, which requires expanding the byte present in memset to // a sensible representation for the alloca type. This is essentially // splatting the byte to a sufficiently wide integer, splatting it across // any desired vector width, and bitcasting to the final type. Value *V; if (VecTy) { // If this is a memset of a vectorized alloca, insert it. assert(ElementTy == ScalarTy); unsigned BeginIndex = getIndex(NewBeginOffset); unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= cast(VecTy)->getNumElements() && "Too many elements!"); Value *Splat = getIntegerSplat( II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); Splat = convertValue(DL, IRB, Splat, ElementTy); if (NumElements > 1) Splat = getVectorSplat(Splat, NumElements); Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "oldload"); V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); } else if (IntTy) { // If this is a memset on an alloca where we can widen stores, insert the // set integer. assert(!II.isVolatile()); uint64_t Size = NewEndOffset - NewBeginOffset; V = getIntegerSplat(II.getValue(), Size); if (IntTy && (BeginOffset != NewAllocaBeginOffset || EndOffset != NewAllocaBeginOffset)) { Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; V = insertInteger(DL, IRB, Old, V, Offset, "insert"); } else { assert(V->getType() == IntTy && "Wrong type for an alloca wide integer!"); } V = convertValue(DL, IRB, V, AllocaTy); } else { // Established these invariants above. assert(NewBeginOffset == NewAllocaBeginOffset); assert(NewEndOffset == NewAllocaEndOffset); V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); if (VectorType *AllocaVecTy = dyn_cast(AllocaTy)) V = getVectorSplat( V, cast(AllocaVecTy)->getNumElements()); V = convertValue(DL, IRB, V, AllocaTy); } StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); if (AATags) New->setAAMetadata(AATags); LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); return !II.isVolatile(); } bool visitMemTransferInst(MemTransferInst &II) { // Rewriting of memory transfer instructions can be a bit tricky. We break // them into two categories: split intrinsics and unsplit intrinsics. LLVM_DEBUG(dbgs() << " original: " << II << "\n"); AAMDNodes AATags; II.getAAMetadata(AATags); bool IsDest = &II.getRawDestUse() == OldUse; assert((IsDest && II.getRawDest() == OldPtr) || (!IsDest && II.getRawSource() == OldPtr)); MaybeAlign SliceAlign = getSliceAlign(); // For unsplit intrinsics, we simply modify the source and destination // pointers in place. This isn't just an optimization, it is a matter of // correctness. With unsplit intrinsics we may be dealing with transfers // within a single alloca before SROA ran, or with transfers that have // a variable length. We may also be dealing with memmove instead of // memcpy, and so simply updating the pointers is the necessary for us to // update both source and dest of a single call. if (!IsSplittable) { Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); if (IsDest) { II.setDest(AdjustedPtr); II.setDestAlignment(SliceAlign); } else { II.setSource(AdjustedPtr); II.setSourceAlignment(SliceAlign); } LLVM_DEBUG(dbgs() << " to: " << II << "\n"); deleteIfTriviallyDead(OldPtr); return false; } // For split transfer intrinsics we have an incredibly useful assurance: // the source and destination do not reside within the same alloca, and at // least one of them does not escape. This means that we can replace // memmove with memcpy, and we don't need to worry about all manner of // downsides to splitting and transforming the operations. // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memcpy. bool EmitMemCpy = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || !NewAI.getAllocatedType()->isSingleValueType()); // If we're just going to emit a memcpy, the alloca hasn't changed, and the // size hasn't been shrunk based on analysis of the viable range, this is // a no-op. if (EmitMemCpy && &OldAI == &NewAI) { // Ensure the start lines up. assert(NewBeginOffset == BeginOffset); // Rewrite the size as needed. if (NewEndOffset != EndOffset) II.setLength(ConstantInt::get(II.getLength()->getType(), NewEndOffset - NewBeginOffset)); return false; } // Record this instruction for deletion. Pass.DeadInsts.insert(&II); // Strip all inbounds GEPs and pointer casts to try to dig out any root // alloca that should be re-examined after rewriting this instruction. Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); if (AllocaInst *AI = dyn_cast(OtherPtr->stripInBoundsOffsets())) { assert(AI != &OldAI && AI != &NewAI && "Splittable transfers cannot reach the same alloca on both ends."); Pass.Worklist.insert(AI); } Type *OtherPtrTy = OtherPtr->getType(); unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); // Compute the relative offset for the other pointer within the transfer. unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); Align OtherAlign = (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); OtherAlign = commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); if (EmitMemCpy) { // Compute the other pointer, folding as much as possible to produce // a single, simple GEP in most cases. OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, OtherPtr->getName() + "."); Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); Type *SizeTy = II.getLength()->getType(); Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); Value *DestPtr, *SrcPtr; MaybeAlign DestAlign, SrcAlign; // Note: IsDest is true iff we're copying into the new alloca slice if (IsDest) { DestPtr = OurPtr; DestAlign = SliceAlign; SrcPtr = OtherPtr; SrcAlign = OtherAlign; } else { DestPtr = OtherPtr; DestAlign = OtherAlign; SrcPtr = OurPtr; SrcAlign = SliceAlign; } CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, Size, II.isVolatile()); if (AATags) New->setAAMetadata(AATags); LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); return false; } bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && NewEndOffset == NewAllocaEndOffset; uint64_t Size = NewEndOffset - NewBeginOffset; unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; unsigned NumElements = EndIndex - BeginIndex; IntegerType *SubIntTy = IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; // Reset the other pointer type to match the register type we're going to // use, but using the address space of the original other pointer. Type *OtherTy; if (VecTy && !IsWholeAlloca) { if (NumElements == 1) OtherTy = VecTy->getElementType(); else OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); } else if (IntTy && !IsWholeAlloca) { OtherTy = SubIntTy; } else { OtherTy = NewAllocaTy; } OtherPtrTy = OtherTy->getPointerTo(OtherAS); Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, OtherPtr->getName() + "."); MaybeAlign SrcAlign = OtherAlign; Value *DstPtr = &NewAI; MaybeAlign DstAlign = SliceAlign; if (!IsDest) { std::swap(SrcPtr, DstPtr); std::swap(SrcAlign, DstAlign); } Value *Src; if (VecTy && !IsWholeAlloca && !IsDest) { Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "load"); Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); } else if (IntTy && !IsWholeAlloca && !IsDest) { Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "load"); Src = convertValue(DL, IRB, Src, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); } else { LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, II.isVolatile(), "copyload"); if (AATags) Load->setAAMetadata(AATags); Src = Load; } if (VecTy && !IsWholeAlloca && IsDest) { Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "oldload"); Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); } else if (IntTy && !IsWholeAlloca && IsDest) { Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, NewAI.getAlign(), "oldload"); Old = convertValue(DL, IRB, Old, IntTy); uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); Src = convertValue(DL, IRB, Src, NewAllocaTy); } StoreInst *Store = cast( IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); if (AATags) Store->setAAMetadata(AATags); LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); return !II.isVolatile(); } bool visitIntrinsicInst(IntrinsicInst &II) { assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && "Unexpected intrinsic!"); LLVM_DEBUG(dbgs() << " original: " << II << "\n"); // Record this instruction for deletion. Pass.DeadInsts.insert(&II); if (II.isDroppable()) { assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); // TODO For now we forget assumed information, this can be improved. OldPtr->dropDroppableUsesIn(II); return true; } assert(II.getArgOperand(1) == OldPtr); // Lifetime intrinsics are only promotable if they cover the whole alloca. // Therefore, we drop lifetime intrinsics which don't cover the whole // alloca. // (In theory, intrinsics which partially cover an alloca could be // promoted, but PromoteMemToReg doesn't handle that case.) // FIXME: Check whether the alloca is promotable before dropping the // lifetime intrinsics? if (NewBeginOffset != NewAllocaBeginOffset || NewEndOffset != NewAllocaEndOffset) return true; ConstantInt *Size = ConstantInt::get(cast(II.getArgOperand(0)->getType()), NewEndOffset - NewBeginOffset); // Lifetime intrinsics always expect an i8* so directly get such a pointer // for the new alloca slice. Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); Value *New; if (II.getIntrinsicID() == Intrinsic::lifetime_start) New = IRB.CreateLifetimeStart(Ptr, Size); else New = IRB.CreateLifetimeEnd(Ptr, Size); (void)New; LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); return true; } void fixLoadStoreAlign(Instruction &Root) { // This algorithm implements the same visitor loop as // hasUnsafePHIOrSelectUse, and fixes the alignment of each load // or store found. SmallPtrSet Visited; SmallVector Uses; Visited.insert(&Root); Uses.push_back(&Root); do { Instruction *I = Uses.pop_back_val(); if (LoadInst *LI = dyn_cast(I)) { LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); continue; } if (StoreInst *SI = dyn_cast(I)) { SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); continue; } assert(isa(I) || isa(I) || isa(I) || isa(I) || isa(I)); for (User *U : I->users()) if (Visited.insert(cast(U)).second) Uses.push_back(cast(U)); } while (!Uses.empty()); } bool visitPHINode(PHINode &PN) { LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); // We would like to compute a new pointer in only one place, but have it be // as local as possible to the PHI. To do that, we re-use the location of // the old pointer, which necessarily must be in the right position to // dominate the PHI. IRBuilderBase::InsertPointGuard Guard(IRB); if (isa(OldPtr)) IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); else IRB.SetInsertPoint(OldPtr); IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); // Replace the operands which were using the old pointer. std::replace(PN.op_begin(), PN.op_end(), cast(OldPtr), NewPtr); LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); deleteIfTriviallyDead(OldPtr); // Fix the alignment of any loads or stores using this PHI node. fixLoadStoreAlign(PN); // PHIs can't be promoted on their own, but often can be speculated. We // check the speculation outside of the rewriter so that we see the // fully-rewritten alloca. PHIUsers.insert(&PN); return true; } bool visitSelectInst(SelectInst &SI) { LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && "Pointer isn't an operand!"); assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); // Replace the operands which were using the old pointer. if (SI.getOperand(1) == OldPtr) SI.setOperand(1, NewPtr); if (SI.getOperand(2) == OldPtr) SI.setOperand(2, NewPtr); LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldPtr); // Fix the alignment of any loads or stores using this select. fixLoadStoreAlign(SI); // Selects can't be promoted on their own, but often can be speculated. We // check the speculation outside of the rewriter so that we see the // fully-rewritten alloca. SelectUsers.insert(&SI); return true; } }; namespace { /// Visitor to rewrite aggregate loads and stores as scalar. /// /// This pass aggressively rewrites all aggregate loads and stores on /// a particular pointer (or any pointer derived from it which we can identify) /// with scalar loads and stores. class AggLoadStoreRewriter : public InstVisitor { // Befriend the base class so it can delegate to private visit methods. friend class InstVisitor; /// Queue of pointer uses to analyze and potentially rewrite. SmallVector Queue; /// Set to prevent us from cycling with phi nodes and loops. SmallPtrSet Visited; /// The current pointer use being rewritten. This is used to dig up the used /// value (as opposed to the user). Use *U = nullptr; /// Used to calculate offsets, and hence alignment, of subobjects. const DataLayout &DL; public: AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} /// Rewrite loads and stores through a pointer and all pointers derived from /// it. bool rewrite(Instruction &I) { LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); enqueueUsers(I); bool Changed = false; while (!Queue.empty()) { U = Queue.pop_back_val(); Changed |= visit(cast(U->getUser())); } return Changed; } private: /// Enqueue all the users of the given instruction for further processing. /// This uses a set to de-duplicate users. void enqueueUsers(Instruction &I) { for (Use &U : I.uses()) if (Visited.insert(U.getUser()).second) Queue.push_back(&U); } // Conservative default is to not rewrite anything. bool visitInstruction(Instruction &I) { return false; } /// Generic recursive split emission class. template class OpSplitter { protected: /// The builder used to form new instructions. IRBuilderTy IRB; /// The indices which to be used with insert- or extractvalue to select the /// appropriate value within the aggregate. SmallVector Indices; /// The indices to a GEP instruction which will move Ptr to the correct slot /// within the aggregate. SmallVector GEPIndices; /// The base pointer of the original op, used as a base for GEPing the /// split operations. Value *Ptr; /// The base pointee type being GEPed into. Type *BaseTy; /// Known alignment of the base pointer. Align BaseAlign; /// To calculate offset of each component so we can correctly deduce /// alignments. const DataLayout &DL; /// Initialize the splitter with an insertion point, Ptr and start with a /// single zero GEP index. OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, Align BaseAlign, const DataLayout &DL) : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} public: /// Generic recursive split emission routine. /// /// This method recursively splits an aggregate op (load or store) into /// scalar or vector ops. It splits recursively until it hits a single value /// and emits that single value operation via the template argument. /// /// The logic of this routine relies on GEPs and insertvalue and /// extractvalue all operating with the same fundamental index list, merely /// formatted differently (GEPs need actual values). /// /// \param Ty The type being split recursively into smaller ops. /// \param Agg The aggregate value being built up or stored, depending on /// whether this is splitting a load or a store respectively. void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { if (Ty->isSingleValueType()) { unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); return static_cast(this)->emitFunc( Ty, Agg, commonAlignment(BaseAlign, Offset), Name); } if (ArrayType *ATy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } if (StructType *STy = dyn_cast(Ty)) { unsigned OldSize = Indices.size(); (void)OldSize; for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; ++Idx) { assert(Indices.size() == OldSize && "Did not return to the old size"); Indices.push_back(Idx); GEPIndices.push_back(IRB.getInt32(Idx)); emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); GEPIndices.pop_back(); Indices.pop_back(); } return; } llvm_unreachable("Only arrays and structs are aggregate loadable types"); } }; struct LoadOpSplitter : public OpSplitter { AAMDNodes AATags; LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) : OpSplitter(InsertionPoint, Ptr, BaseTy, BaseAlign, DL), AATags(AATags) {} /// Emit a leaf load of a single value. This is called at the leaves of the /// recursive emission to actually load values. void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { assert(Ty->isSingleValueType()); // Load the single value and insert it using the indices. Value *GEP = IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); LoadInst *Load = IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); if (AATags) Load->setAAMetadata(AATags); Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); } }; bool visitLoadInst(LoadInst &LI) { assert(LI.getPointerOperand() == *U); if (!LI.isSimple() || LI.getType()->isSingleValueType()) return false; // We have an aggregate being loaded, split it apart. LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); AAMDNodes AATags; LI.getAAMetadata(AATags); LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags, getAdjustedAlignment(&LI, 0), DL); Value *V = UndefValue::get(LI.getType()); Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); Visited.erase(&LI); LI.replaceAllUsesWith(V); LI.eraseFromParent(); return true; } struct StoreOpSplitter : public OpSplitter { StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) : OpSplitter(InsertionPoint, Ptr, BaseTy, BaseAlign, DL), AATags(AATags) {} AAMDNodes AATags; /// Emit a leaf store of a single value. This is called at the leaves of the /// recursive emission to actually produce stores. void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { assert(Ty->isSingleValueType()); // Extract the single value and store it using the indices. // // The gep and extractvalue values are factored out of the CreateStore // call to make the output independent of the argument evaluation order. Value *ExtractValue = IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); Value *InBoundsGEP = IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); StoreInst *Store = IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); if (AATags) Store->setAAMetadata(AATags); LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); } }; bool visitStoreInst(StoreInst &SI) { if (!SI.isSimple() || SI.getPointerOperand() != *U) return false; Value *V = SI.getValueOperand(); if (V->getType()->isSingleValueType()) return false; // We have an aggregate being stored, split it apart. LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); AAMDNodes AATags; SI.getAAMetadata(AATags); StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags, getAdjustedAlignment(&SI, 0), DL); Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); Visited.erase(&SI); SI.eraseFromParent(); return true; } bool visitBitCastInst(BitCastInst &BC) { enqueueUsers(BC); return false; } bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { enqueueUsers(ASC); return false; } // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) bool foldGEPSelect(GetElementPtrInst &GEPI) { if (!GEPI.hasAllConstantIndices()) return false; SelectInst *Sel = cast(GEPI.getPointerOperand()); LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" << "\n original: " << *Sel << "\n " << GEPI); IRBuilderTy Builder(&GEPI); SmallVector Index(GEPI.idx_begin(), GEPI.idx_end()); bool IsInBounds = GEPI.isInBounds(); Value *True = Sel->getTrueValue(); Value *NTrue = IsInBounds ? Builder.CreateInBoundsGEP(True, Index, True->getName() + ".sroa.gep") : Builder.CreateGEP(True, Index, True->getName() + ".sroa.gep"); Value *False = Sel->getFalseValue(); Value *NFalse = IsInBounds ? Builder.CreateInBoundsGEP(False, Index, False->getName() + ".sroa.gep") : Builder.CreateGEP(False, Index, False->getName() + ".sroa.gep"); Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse, Sel->getName() + ".sroa.sel"); Visited.erase(&GEPI); GEPI.replaceAllUsesWith(NSel); GEPI.eraseFromParent(); Instruction *NSelI = cast(NSel); Visited.insert(NSelI); enqueueUsers(*NSelI); LLVM_DEBUG(dbgs() << "\n to: " << *NTrue << "\n " << *NFalse << "\n " << *NSel << '\n'); return true; } // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) bool foldGEPPhi(GetElementPtrInst &GEPI) { if (!GEPI.hasAllConstantIndices()) return false; PHINode *PHI = cast(GEPI.getPointerOperand()); if (GEPI.getParent() != PHI->getParent() || llvm::any_of(PHI->incoming_values(), [](Value *In) { Instruction *I = dyn_cast(In); return !I || isa(I) || isa(I) || succ_empty(I->getParent()) || !I->getParent()->isLegalToHoistInto(); })) return false; LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" << "\n original: " << *PHI << "\n " << GEPI << "\n to: "); SmallVector Index(GEPI.idx_begin(), GEPI.idx_end()); bool IsInBounds = GEPI.isInBounds(); IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI()); PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), PHI->getName() + ".sroa.phi"); for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { BasicBlock *B = PHI->getIncomingBlock(I); Value *NewVal = nullptr; int Idx = NewPN->getBasicBlockIndex(B); if (Idx >= 0) { NewVal = NewPN->getIncomingValue(Idx); } else { Instruction *In = cast(PHI->getIncomingValue(I)); IRBuilderTy B(In->getParent(), std::next(In->getIterator())); NewVal = IsInBounds ? B.CreateInBoundsGEP(In, Index, In->getName() + ".sroa.gep") : B.CreateGEP(In, Index, In->getName() + ".sroa.gep"); } NewPN->addIncoming(NewVal, B); } Visited.erase(&GEPI); GEPI.replaceAllUsesWith(NewPN); GEPI.eraseFromParent(); Visited.insert(NewPN); enqueueUsers(*NewPN); LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) dbgs() << "\n " << *In; dbgs() << "\n " << *NewPN << '\n'); return true; } bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { if (isa(GEPI.getPointerOperand()) && foldGEPSelect(GEPI)) return true; if (isa(GEPI.getPointerOperand()) && foldGEPPhi(GEPI)) return true; enqueueUsers(GEPI); return false; } bool visitPHINode(PHINode &PN) { enqueueUsers(PN); return false; } bool visitSelectInst(SelectInst &SI) { enqueueUsers(SI); return false; } }; } // end anonymous namespace /// Strip aggregate type wrapping. /// /// This removes no-op aggregate types wrapping an underlying type. It will /// strip as many layers of types as it can without changing either the type /// size or the allocated size. static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { if (Ty->isSingleValueType()) return Ty; uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); Type *InnerTy; if (ArrayType *ArrTy = dyn_cast(Ty)) { InnerTy = ArrTy->getElementType(); } else if (StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Index = SL->getElementContainingOffset(0); InnerTy = STy->getElementType(Index); } else { return Ty; } if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) return Ty; return stripAggregateTypeWrapping(DL, InnerTy); } /// Try to find a partition of the aggregate type passed in for a given /// offset and size. /// /// This recurses through the aggregate type and tries to compute a subtype /// based on the offset and size. When the offset and size span a sub-section /// of an array, it will even compute a new array type for that sub-section, /// and the same for structs. /// /// Note that this routine is very strict and tries to find a partition of the /// type which produces the *exact* right offset and size. It is not forgiving /// when the size or offset cause either end of type-based partition to be off. /// Also, this is a best-effort routine. It is reasonable to give up and not /// return a type if necessary. static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, uint64_t Size) { if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) return stripAggregateTypeWrapping(DL, Ty); if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) return nullptr; if (isa(Ty) || isa(Ty)) { Type *ElementTy; uint64_t TyNumElements; if (auto *AT = dyn_cast(Ty)) { ElementTy = AT->getElementType(); TyNumElements = AT->getNumElements(); } else { // FIXME: This isn't right for vectors with non-byte-sized or // non-power-of-two sized elements. auto *VT = cast(Ty); ElementTy = VT->getElementType(); TyNumElements = VT->getNumElements(); } uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); uint64_t NumSkippedElements = Offset / ElementSize; if (NumSkippedElements >= TyNumElements) return nullptr; Offset -= NumSkippedElements * ElementSize; // First check if we need to recurse. if (Offset > 0 || Size < ElementSize) { // Bail if the partition ends in a different array element. if ((Offset + Size) > ElementSize) return nullptr; // Recurse through the element type trying to peel off offset bytes. return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(DL, ElementTy); assert(Size > ElementSize); uint64_t NumElements = Size / ElementSize; if (NumElements * ElementSize != Size) return nullptr; return ArrayType::get(ElementTy, NumElements); } StructType *STy = dyn_cast(Ty); if (!STy) return nullptr; const StructLayout *SL = DL.getStructLayout(STy); if (Offset >= SL->getSizeInBytes()) return nullptr; uint64_t EndOffset = Offset + Size; if (EndOffset > SL->getSizeInBytes()) return nullptr; unsigned Index = SL->getElementContainingOffset(Offset); Offset -= SL->getElementOffset(Index); Type *ElementTy = STy->getElementType(Index); uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); if (Offset >= ElementSize) return nullptr; // The offset points into alignment padding. // See if any partition must be contained by the element. if (Offset > 0 || Size < ElementSize) { if ((Offset + Size) > ElementSize) return nullptr; return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) return stripAggregateTypeWrapping(DL, ElementTy); StructType::element_iterator EI = STy->element_begin() + Index, EE = STy->element_end(); if (EndOffset < SL->getSizeInBytes()) { unsigned EndIndex = SL->getElementContainingOffset(EndOffset); if (Index == EndIndex) return nullptr; // Within a single element and its padding. // Don't try to form "natural" types if the elements don't line up with the // expected size. // FIXME: We could potentially recurse down through the last element in the // sub-struct to find a natural end point. if (SL->getElementOffset(EndIndex) != EndOffset) return nullptr; assert(Index < EndIndex); EE = STy->element_begin() + EndIndex; } // Try to build up a sub-structure. StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); const StructLayout *SubSL = DL.getStructLayout(SubTy); if (Size != SubSL->getSizeInBytes()) return nullptr; // The sub-struct doesn't have quite the size needed. return SubTy; } /// Pre-split loads and stores to simplify rewriting. /// /// We want to break up the splittable load+store pairs as much as /// possible. This is important to do as a preprocessing step, as once we /// start rewriting the accesses to partitions of the alloca we lose the /// necessary information to correctly split apart paired loads and stores /// which both point into this alloca. The case to consider is something like /// the following: /// /// %a = alloca [12 x i8] /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 /// %iptr1 = bitcast i8* %gep1 to i64* /// %iptr2 = bitcast i8* %gep2 to i64* /// %fptr1 = bitcast i8* %gep1 to float* /// %fptr2 = bitcast i8* %gep2 to float* /// %fptr3 = bitcast i8* %gep3 to float* /// store float 0.0, float* %fptr1 /// store float 1.0, float* %fptr2 /// %v = load i64* %iptr1 /// store i64 %v, i64* %iptr2 /// %f1 = load float* %fptr2 /// %f2 = load float* %fptr3 /// /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and /// promote everything so we recover the 2 SSA values that should have been /// there all along. /// /// \returns true if any changes are made. bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); // Track the loads and stores which are candidates for pre-splitting here, in // the order they first appear during the partition scan. These give stable // iteration order and a basis for tracking which loads and stores we // actually split. SmallVector Loads; SmallVector Stores; // We need to accumulate the splits required of each load or store where we // can find them via a direct lookup. This is important to cross-check loads // and stores against each other. We also track the slice so that we can kill // all the slices that end up split. struct SplitOffsets { Slice *S; std::vector Splits; }; SmallDenseMap SplitOffsetsMap; // Track loads out of this alloca which cannot, for any reason, be pre-split. // This is important as we also cannot pre-split stores of those loads! // FIXME: This is all pretty gross. It means that we can be more aggressive // in pre-splitting when the load feeding the store happens to come from // a separate alloca. Put another way, the effectiveness of SROA would be // decreased by a frontend which just concatenated all of its local allocas // into one big flat alloca. But defeating such patterns is exactly the job // SROA is tasked with! Sadly, to not have this discrepancy we would have // change store pre-splitting to actually force pre-splitting of the load // that feeds it *and all stores*. That makes pre-splitting much harder, but // maybe it would make it more principled? SmallPtrSet UnsplittableLoads; LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); for (auto &P : AS.partitions()) { for (Slice &S : P) { Instruction *I = cast(S.getUse()->getUser()); if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { // If this is a load we have to track that it can't participate in any // pre-splitting. If this is a store of a load we have to track that // that load also can't participate in any pre-splitting. if (auto *LI = dyn_cast(I)) UnsplittableLoads.insert(LI); else if (auto *SI = dyn_cast(I)) if (auto *LI = dyn_cast(SI->getValueOperand())) UnsplittableLoads.insert(LI); continue; } assert(P.endOffset() > S.beginOffset() && "Empty or backwards partition!"); // Determine if this is a pre-splittable slice. if (auto *LI = dyn_cast(I)) { assert(!LI->isVolatile() && "Cannot split volatile loads!"); // The load must be used exclusively to store into other pointers for // us to be able to arbitrarily pre-split it. The stores must also be // simple to avoid changing semantics. auto IsLoadSimplyStored = [](LoadInst *LI) { for (User *LU : LI->users()) { auto *SI = dyn_cast(LU); if (!SI || !SI->isSimple()) return false; } return true; }; if (!IsLoadSimplyStored(LI)) { UnsplittableLoads.insert(LI); continue; } Loads.push_back(LI); } else if (auto *SI = dyn_cast(I)) { if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) // Skip stores *of* pointers. FIXME: This shouldn't even be possible! continue; auto *StoredLoad = dyn_cast(SI->getValueOperand()); if (!StoredLoad || !StoredLoad->isSimple()) continue; assert(!SI->isVolatile() && "Cannot split volatile stores!"); Stores.push_back(SI); } else { // Other uses cannot be pre-split. continue; } // Record the initial split. LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); auto &Offsets = SplitOffsetsMap[I]; assert(Offsets.Splits.empty() && "Should not have splits the first time we see an instruction!"); Offsets.S = &S; Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); } // Now scan the already split slices, and add a split for any of them which // we're going to pre-split. for (Slice *S : P.splitSliceTails()) { auto SplitOffsetsMapI = SplitOffsetsMap.find(cast(S->getUse()->getUser())); if (SplitOffsetsMapI == SplitOffsetsMap.end()) continue; auto &Offsets = SplitOffsetsMapI->second; assert(Offsets.S == S && "Found a mismatched slice!"); assert(!Offsets.Splits.empty() && "Cannot have an empty set of splits on the second partition!"); assert(Offsets.Splits.back() == P.beginOffset() - Offsets.S->beginOffset() && "Previous split does not end where this one begins!"); // Record each split. The last partition's end isn't needed as the size // of the slice dictates that. if (S->endOffset() > P.endOffset()) Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); } } // We may have split loads where some of their stores are split stores. For // such loads and stores, we can only pre-split them if their splits exactly // match relative to their starting offset. We have to verify this prior to // any rewriting. Stores.erase( llvm::remove_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { // Lookup the load we are storing in our map of split // offsets. auto *LI = cast(SI->getValueOperand()); // If it was completely unsplittable, then we're done, // and this store can't be pre-split. if (UnsplittableLoads.count(LI)) return true; auto LoadOffsetsI = SplitOffsetsMap.find(LI); if (LoadOffsetsI == SplitOffsetsMap.end()) return false; // Unrelated loads are definitely safe. auto &LoadOffsets = LoadOffsetsI->second; // Now lookup the store's offsets. auto &StoreOffsets = SplitOffsetsMap[SI]; // If the relative offsets of each split in the load and // store match exactly, then we can split them and we // don't need to remove them here. if (LoadOffsets.Splits == StoreOffsets.Splits) return false; LLVM_DEBUG( dbgs() << " Mismatched splits for load and store:\n" << " " << *LI << "\n" << " " << *SI << "\n"); // We've found a store and load that we need to split // with mismatched relative splits. Just give up on them // and remove both instructions from our list of // candidates. UnsplittableLoads.insert(LI); return true; }), Stores.end()); // Now we have to go *back* through all the stores, because a later store may // have caused an earlier store's load to become unsplittable and if it is // unsplittable for the later store, then we can't rely on it being split in // the earlier store either. Stores.erase(llvm::remove_if(Stores, [&UnsplittableLoads](StoreInst *SI) { auto *LI = cast(SI->getValueOperand()); return UnsplittableLoads.count(LI); }), Stores.end()); // Once we've established all the loads that can't be split for some reason, // filter any that made it into our list out. Loads.erase(llvm::remove_if(Loads, [&UnsplittableLoads](LoadInst *LI) { return UnsplittableLoads.count(LI); }), Loads.end()); // If no loads or stores are left, there is no pre-splitting to be done for // this alloca. if (Loads.empty() && Stores.empty()) return false; // From here on, we can't fail and will be building new accesses, so rig up // an IR builder. IRBuilderTy IRB(&AI); // Collect the new slices which we will merge into the alloca slices. SmallVector NewSlices; // Track any allocas we end up splitting loads and stores for so we iterate // on them. SmallPtrSet ResplitPromotableAllocas; // At this point, we have collected all of the loads and stores we can // pre-split, and the specific splits needed for them. We actually do the // splitting in a specific order in order to handle when one of the loads in // the value operand to one of the stores. // // First, we rewrite all of the split loads, and just accumulate each split // load in a parallel structure. We also build the slices for them and append // them to the alloca slices. SmallDenseMap, 1> SplitLoadsMap; std::vector SplitLoads; const DataLayout &DL = AI.getModule()->getDataLayout(); for (LoadInst *LI : Loads) { SplitLoads.clear(); IntegerType *Ty = cast(LI->getType()); uint64_t LoadSize = Ty->getBitWidth() / 8; assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); auto &Offsets = SplitOffsetsMap[LI]; assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && "Slice size should always match load size exactly!"); uint64_t BaseOffset = Offsets.S->beginOffset(); assert(BaseOffset + LoadSize > BaseOffset && "Cannot represent alloca access size using 64-bit integers!"); Instruction *BasePtr = cast(LI->getPointerOperand()); IRB.SetInsertPoint(LI); LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); int Idx = 0, Size = Offsets.Splits.size(); for (;;) { auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); auto AS = LI->getPointerAddressSpace(); auto *PartPtrTy = PartTy->getPointerTo(AS); LoadInst *PLoad = IRB.CreateAlignedLoad( PartTy, getAdjustedPtr(IRB, DL, BasePtr, APInt(DL.getIndexSizeInBits(AS), PartOffset), PartPtrTy, BasePtr->getName() + "."), getAdjustedAlignment(LI, PartOffset), /*IsVolatile*/ false, LI->getName()); PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, LLVMContext::MD_access_group}); // Append this load onto the list of split loads so we can find it later // to rewrite the stores. SplitLoads.push_back(PLoad); // Now build a new slice for the alloca. NewSlices.push_back( Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), /*IsSplittable*/ false)); LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() << ", " << NewSlices.back().endOffset() << "): " << *PLoad << "\n"); // See if we've handled all the splits. if (Idx >= Size) break; // Setup the next partition. PartOffset = Offsets.Splits[Idx]; ++Idx; PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; } // Now that we have the split loads, do the slow walk over all uses of the // load and rewrite them as split stores, or save the split loads to use // below if the store is going to be split there anyways. bool DeferredStores = false; for (User *LU : LI->users()) { StoreInst *SI = cast(LU); if (!Stores.empty() && SplitOffsetsMap.count(SI)) { DeferredStores = true; LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n"); continue; } Value *StoreBasePtr = SI->getPointerOperand(); IRB.SetInsertPoint(SI); LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { LoadInst *PLoad = SplitLoads[Idx]; uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; auto *PartPtrTy = PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); auto AS = SI->getPointerAddressSpace(); StoreInst *PStore = IRB.CreateAlignedStore( PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, APInt(DL.getIndexSizeInBits(AS), PartOffset), PartPtrTy, StoreBasePtr->getName() + "."), getAdjustedAlignment(SI, PartOffset), /*IsVolatile*/ false); PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, LLVMContext::MD_access_group}); LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); } // We want to immediately iterate on any allocas impacted by splitting // this store, and we have to track any promotable alloca (indicated by // a direct store) as needing to be resplit because it is no longer // promotable. if (AllocaInst *OtherAI = dyn_cast(StoreBasePtr)) { ResplitPromotableAllocas.insert(OtherAI); Worklist.insert(OtherAI); } else if (AllocaInst *OtherAI = dyn_cast( StoreBasePtr->stripInBoundsOffsets())) { Worklist.insert(OtherAI); } // Mark the original store as dead. DeadInsts.insert(SI); } // Save the split loads if there are deferred stores among the users. if (DeferredStores) SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); // Mark the original load as dead and kill the original slice. DeadInsts.insert(LI); Offsets.S->kill(); } // Second, we rewrite all of the split stores. At this point, we know that // all loads from this alloca have been split already. For stores of such // loads, we can simply look up the pre-existing split loads. For stores of // other loads, we split those loads first and then write split stores of // them. for (StoreInst *SI : Stores) { auto *LI = cast(SI->getValueOperand()); IntegerType *Ty = cast(LI->getType()); uint64_t StoreSize = Ty->getBitWidth() / 8; assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); auto &Offsets = SplitOffsetsMap[SI]; assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && "Slice size should always match load size exactly!"); uint64_t BaseOffset = Offsets.S->beginOffset(); assert(BaseOffset + StoreSize > BaseOffset && "Cannot represent alloca access size using 64-bit integers!"); Value *LoadBasePtr = LI->getPointerOperand(); Instruction *StoreBasePtr = cast(SI->getPointerOperand()); LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); // Check whether we have an already split load. auto SplitLoadsMapI = SplitLoadsMap.find(LI); std::vector *SplitLoads = nullptr; if (SplitLoadsMapI != SplitLoadsMap.end()) { SplitLoads = &SplitLoadsMapI->second; assert(SplitLoads->size() == Offsets.Splits.size() + 1 && "Too few split loads for the number of splits in the store!"); } else { LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); } uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); int Idx = 0, Size = Offsets.Splits.size(); for (;;) { auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); // Either lookup a split load or create one. LoadInst *PLoad; if (SplitLoads) { PLoad = (*SplitLoads)[Idx]; } else { IRB.SetInsertPoint(LI); auto AS = LI->getPointerAddressSpace(); PLoad = IRB.CreateAlignedLoad( PartTy, getAdjustedPtr(IRB, DL, LoadBasePtr, APInt(DL.getIndexSizeInBits(AS), PartOffset), LoadPartPtrTy, LoadBasePtr->getName() + "."), getAdjustedAlignment(LI, PartOffset), /*IsVolatile*/ false, LI->getName()); } // And store this partition. IRB.SetInsertPoint(SI); auto AS = SI->getPointerAddressSpace(); StoreInst *PStore = IRB.CreateAlignedStore( PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, APInt(DL.getIndexSizeInBits(AS), PartOffset), StorePartPtrTy, StoreBasePtr->getName() + "."), getAdjustedAlignment(SI, PartOffset), /*IsVolatile*/ false); // Now build a new slice for the alloca. NewSlices.push_back( Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, &PStore->getOperandUse(PStore->getPointerOperandIndex()), /*IsSplittable*/ false)); LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() << ", " << NewSlices.back().endOffset() << "): " << *PStore << "\n"); if (!SplitLoads) { LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); } // See if we've finished all the splits. if (Idx >= Size) break; // Setup the next partition. PartOffset = Offsets.Splits[Idx]; ++Idx; PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; } // We want to immediately iterate on any allocas impacted by splitting // this load, which is only relevant if it isn't a load of this alloca and // thus we didn't already split the loads above. We also have to keep track // of any promotable allocas we split loads on as they can no longer be // promoted. if (!SplitLoads) { if (AllocaInst *OtherAI = dyn_cast(LoadBasePtr)) { assert(OtherAI != &AI && "We can't re-split our own alloca!"); ResplitPromotableAllocas.insert(OtherAI); Worklist.insert(OtherAI); } else if (AllocaInst *OtherAI = dyn_cast( LoadBasePtr->stripInBoundsOffsets())) { assert(OtherAI != &AI && "We can't re-split our own alloca!"); Worklist.insert(OtherAI); } } // Mark the original store as dead now that we've split it up and kill its // slice. Note that we leave the original load in place unless this store // was its only use. It may in turn be split up if it is an alloca load // for some other alloca, but it may be a normal load. This may introduce // redundant loads, but where those can be merged the rest of the optimizer // should handle the merging, and this uncovers SSA splits which is more // important. In practice, the original loads will almost always be fully // split and removed eventually, and the splits will be merged by any // trivial CSE, including instcombine. if (LI->hasOneUse()) { assert(*LI->user_begin() == SI && "Single use isn't this store!"); DeadInsts.insert(LI); } DeadInsts.insert(SI); Offsets.S->kill(); } // Remove the killed slices that have ben pre-split. AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }), AS.end()); // Insert our new slices. This will sort and merge them into the sorted // sequence. AS.insert(NewSlices); LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); #ifndef NDEBUG for (auto I = AS.begin(), E = AS.end(); I != E; ++I) LLVM_DEBUG(AS.print(dbgs(), I, " ")); #endif // Finally, don't try to promote any allocas that new require re-splitting. // They have already been added to the worklist above. PromotableAllocas.erase( llvm::remove_if( PromotableAllocas, [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), PromotableAllocas.end()); return true; } /// Rewrite an alloca partition's users. /// /// This routine drives both of the rewriting goals of the SROA pass. It tries /// to rewrite uses of an alloca partition to be conducive for SSA value /// promotion. If the partition needs a new, more refined alloca, this will /// build that new alloca, preserving as much type information as possible, and /// rewrite the uses of the old alloca to point at the new one and have the /// appropriate new offsets. It also evaluates how successful the rewrite was /// at enabling promotion and if it was successful queues the alloca to be /// promoted. AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P) { // Try to compute a friendly type for this partition of the alloca. This // won't always succeed, in which case we fall back to a legal integer type // or an i8 array of an appropriate size. Type *SliceTy = nullptr; const DataLayout &DL = AI.getModule()->getDataLayout(); std::pair CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()); // Do all uses operate on the same type? if (CommonUseTy.first) if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) SliceTy = CommonUseTy.first; // If not, can we find an appropriate subtype in the original allocated type? if (!SliceTy) if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), P.beginOffset(), P.size())) SliceTy = TypePartitionTy; // If still not, can we use the largest bitwidth integer type used? if (!SliceTy && CommonUseTy.second) if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) SliceTy = CommonUseTy.second; if ((!SliceTy || (SliceTy->isArrayTy() && SliceTy->getArrayElementType()->isIntegerTy())) && DL.isLegalInteger(P.size() * 8)) SliceTy = Type::getIntNTy(*C, P.size() * 8); if (!SliceTy) SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); VectorType *VecTy = IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); if (VecTy) SliceTy = VecTy; // Check for the case where we're going to rewrite to a new alloca of the // exact same type as the original, and with the same access offsets. In that // case, re-use the existing alloca, but still run through the rewriter to // perform phi and select speculation. // P.beginOffset() can be non-zero even with the same type in a case with // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). AllocaInst *NewAI; if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { NewAI = &AI; // FIXME: We should be able to bail at this point with "nothing changed". // FIXME: We might want to defer PHI speculation until after here. // FIXME: return nullptr; } else { // Make sure the alignment is compatible with P.beginOffset(). const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); // If we will get at least this much alignment from the type alone, leave // the alloca's alignment unconstrained. const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); NewAI = new AllocaInst( SliceTy, AI.getType()->getAddressSpace(), nullptr, IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); // Copy the old AI debug location over to the new one. NewAI->setDebugLoc(AI.getDebugLoc()); ++NumNewAllocas; } LLVM_DEBUG(dbgs() << "Rewriting alloca partition " << "[" << P.beginOffset() << "," << P.endOffset() << ") to: " << *NewAI << "\n"); // Track the high watermark on the worklist as it is only relevant for // promoted allocas. We will reset it to this point if the alloca is not in // fact scheduled for promotion. unsigned PPWOldSize = PostPromotionWorklist.size(); unsigned NumUses = 0; SmallSetVector PHIUsers; SmallSetVector SelectUsers; AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), P.endOffset(), IsIntegerPromotable, VecTy, PHIUsers, SelectUsers); bool Promotable = true; for (Slice *S : P.splitSliceTails()) { Promotable &= Rewriter.visit(S); ++NumUses; } for (Slice &S : P) { Promotable &= Rewriter.visit(&S); ++NumUses; } NumAllocaPartitionUses += NumUses; MaxUsesPerAllocaPartition.updateMax(NumUses); // Now that we've processed all the slices in the new partition, check if any // PHIs or Selects would block promotion. for (PHINode *PHI : PHIUsers) if (!isSafePHIToSpeculate(*PHI)) { Promotable = false; PHIUsers.clear(); SelectUsers.clear(); break; } for (SelectInst *Sel : SelectUsers) if (!isSafeSelectToSpeculate(*Sel)) { Promotable = false; PHIUsers.clear(); SelectUsers.clear(); break; } if (Promotable) { for (Use *U : AS.getDeadUsesIfPromotable()) { auto *OldInst = dyn_cast(U->get()); Value::dropDroppableUse(*U); if (OldInst) if (isInstructionTriviallyDead(OldInst)) DeadInsts.insert(OldInst); } if (PHIUsers.empty() && SelectUsers.empty()) { // Promote the alloca. PromotableAllocas.push_back(NewAI); } else { // If we have either PHIs or Selects to speculate, add them to those // worklists and re-queue the new alloca so that we promote in on the // next iteration. for (PHINode *PHIUser : PHIUsers) SpeculatablePHIs.insert(PHIUser); for (SelectInst *SelectUser : SelectUsers) SpeculatableSelects.insert(SelectUser); Worklist.insert(NewAI); } } else { // Drop any post-promotion work items if promotion didn't happen. while (PostPromotionWorklist.size() > PPWOldSize) PostPromotionWorklist.pop_back(); // We couldn't promote and we didn't create a new partition, nothing // happened. if (NewAI == &AI) return nullptr; // If we can't promote the alloca, iterate on it to check for new // refinements exposed by splitting the current alloca. Don't iterate on an // alloca which didn't actually change and didn't get promoted. Worklist.insert(NewAI); } return NewAI; } /// Walks the slices of an alloca and form partitions based on them, /// rewriting each of their uses. bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { if (AS.begin() == AS.end()) return false; unsigned NumPartitions = 0; bool Changed = false; const DataLayout &DL = AI.getModule()->getDataLayout(); // First try to pre-split loads and stores. Changed |= presplitLoadsAndStores(AI, AS); // Now that we have identified any pre-splitting opportunities, // mark loads and stores unsplittable except for the following case. // We leave a slice splittable if all other slices are disjoint or fully // included in the slice, such as whole-alloca loads and stores. // If we fail to split these during pre-splitting, we want to force them // to be rewritten into a partition. bool IsSorted = true; uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); const uint64_t MaxBitVectorSize = 1024; if (AllocaSize <= MaxBitVectorSize) { // If a byte boundary is included in any load or store, a slice starting or // ending at the boundary is not splittable. SmallBitVector SplittableOffset(AllocaSize + 1, true); for (Slice &S : AS) for (unsigned O = S.beginOffset() + 1; O < S.endOffset() && O < AllocaSize; O++) SplittableOffset.reset(O); for (Slice &S : AS) { if (!S.isSplittable()) continue; if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) continue; if (isa(S.getUse()->getUser()) || isa(S.getUse()->getUser())) { S.makeUnsplittable(); IsSorted = false; } } } else { // We only allow whole-alloca splittable loads and stores // for a large alloca to avoid creating too large BitVector. for (Slice &S : AS) { if (!S.isSplittable()) continue; if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) continue; if (isa(S.getUse()->getUser()) || isa(S.getUse()->getUser())) { S.makeUnsplittable(); IsSorted = false; } } } if (!IsSorted) llvm::sort(AS); /// Describes the allocas introduced by rewritePartition in order to migrate /// the debug info. struct Fragment { AllocaInst *Alloca; uint64_t Offset; uint64_t Size; Fragment(AllocaInst *AI, uint64_t O, uint64_t S) : Alloca(AI), Offset(O), Size(S) {} }; SmallVector Fragments; // Rewrite each partition. for (auto &P : AS.partitions()) { if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { Changed = true; if (NewAI != &AI) { uint64_t SizeOfByte = 8; uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); // Don't include any padding. uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); } } ++NumPartitions; } NumAllocaPartitions += NumPartitions; MaxPartitionsPerAlloca.updateMax(NumPartitions); // Migrate debug information from the old alloca to the new alloca(s) // and the individual partitions. TinyPtrVector DbgDeclares = FindDbgAddrUses(&AI); for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { auto *Expr = DbgDeclare->getExpression(); DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); for (auto Fragment : Fragments) { // Create a fragment expression describing the new partition or reuse AI's // expression if there is only one partition. auto *FragmentExpr = Expr; if (Fragment.Size < AllocaSize || Expr->isFragment()) { // If this alloca is already a scalar replacement of a larger aggregate, // Fragment.Offset describes the offset inside the scalar. auto ExprFragment = Expr->getFragmentInfo(); uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; uint64_t Start = Offset + Fragment.Offset; uint64_t Size = Fragment.Size; if (ExprFragment) { uint64_t AbsEnd = ExprFragment->OffsetInBits + ExprFragment->SizeInBits; if (Start >= AbsEnd) // No need to describe a SROAed padding. continue; Size = std::min(Size, AbsEnd - Start); } // The new, smaller fragment is stenciled out from the old fragment. if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { assert(Start >= OrigFragment->OffsetInBits && "new fragment is outside of original fragment"); Start -= OrigFragment->OffsetInBits; } // The alloca may be larger than the variable. auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); if (VarSize) { if (Size > *VarSize) Size = *VarSize; if (Size == 0 || Start + Size > *VarSize) continue; } // Avoid creating a fragment expression that covers the entire variable. if (!VarSize || *VarSize != Size) { if (auto E = DIExpression::createFragmentExpression(Expr, Start, Size)) FragmentExpr = *E; else continue; } } // Remove any existing intrinsics on the new alloca describing // the variable fragment. for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, const DbgVariableIntrinsic *RHS) { return LHS->getVariable() == RHS->getVariable() && LHS->getDebugLoc()->getInlinedAt() == RHS->getDebugLoc()->getInlinedAt(); }; if (SameVariableFragment(OldDII, DbgDeclare)) OldDII->eraseFromParent(); } DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, DbgDeclare->getDebugLoc(), &AI); } } return Changed; } /// Clobber a use with undef, deleting the used value if it becomes dead. void SROA::clobberUse(Use &U) { Value *OldV = U; // Replace the use with an undef value. U = UndefValue::get(OldV->getType()); // Check for this making an instruction dead. We have to garbage collect // all the dead instructions to ensure the uses of any alloca end up being // minimal. if (Instruction *OldI = dyn_cast(OldV)) if (isInstructionTriviallyDead(OldI)) { DeadInsts.insert(OldI); } } /// Analyze an alloca for SROA. /// /// This analyzes the alloca to ensure we can reason about it, builds /// the slices of the alloca, and then hands it off to be split and /// rewritten as needed. bool SROA::runOnAlloca(AllocaInst &AI) { LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); ++NumAllocasAnalyzed; // Special case dead allocas, as they're trivial. if (AI.use_empty()) { AI.eraseFromParent(); return true; } const DataLayout &DL = AI.getModule()->getDataLayout(); // Skip alloca forms that this analysis can't handle. auto *AT = AI.getAllocatedType(); if (AI.isArrayAllocation() || !AT->isSized() || isa(AT) || DL.getTypeAllocSize(AT).getFixedSize() == 0) return false; bool Changed = false; // First, split any FCA loads and stores touching this alloca to promote // better splitting and promotion opportunities. AggLoadStoreRewriter AggRewriter(DL); Changed |= AggRewriter.rewrite(AI); // Build the slices using a recursive instruction-visiting builder. AllocaSlices AS(DL, AI); LLVM_DEBUG(AS.print(dbgs())); if (AS.isEscaped()) return Changed; // Delete all the dead users of this alloca before splitting and rewriting it. for (Instruction *DeadUser : AS.getDeadUsers()) { // Free up everything used by this instruction. for (Use &DeadOp : DeadUser->operands()) clobberUse(DeadOp); // Now replace the uses of this instruction. DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); // And mark it for deletion. DeadInsts.insert(DeadUser); Changed = true; } for (Use *DeadOp : AS.getDeadOperands()) { clobberUse(*DeadOp); Changed = true; } // No slices to split. Leave the dead alloca for a later pass to clean up. if (AS.begin() == AS.end()) return Changed; Changed |= splitAlloca(AI, AS); LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); while (!SpeculatablePHIs.empty()) speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); LLVM_DEBUG(dbgs() << " Speculating Selects\n"); while (!SpeculatableSelects.empty()) speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); return Changed; } /// Delete the dead instructions accumulated in this run. /// /// Recursively deletes the dead instructions we've accumulated. This is done /// at the very end to maximize locality of the recursive delete and to /// minimize the problems of invalidated instruction pointers as such pointers /// are used heavily in the intermediate stages of the algorithm. /// /// We also record the alloca instructions deleted here so that they aren't /// subsequently handed to mem2reg to promote. bool SROA::deleteDeadInstructions( SmallPtrSetImpl &DeletedAllocas) { bool Changed = false; while (!DeadInsts.empty()) { Instruction *I = DeadInsts.pop_back_val(); LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); // If the instruction is an alloca, find the possible dbg.declare connected // to it, and remove it too. We must do this before calling RAUW or we will // not be able to find it. if (AllocaInst *AI = dyn_cast(I)) { DeletedAllocas.insert(AI); for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) OldDII->eraseFromParent(); } I->replaceAllUsesWith(UndefValue::get(I->getType())); for (Use &Operand : I->operands()) if (Instruction *U = dyn_cast(Operand)) { // Zero out the operand and see if it becomes trivially dead. Operand = nullptr; if (isInstructionTriviallyDead(U)) DeadInsts.insert(U); } ++NumDeleted; I->eraseFromParent(); Changed = true; } return Changed; } /// Promote the allocas, using the best available technique. /// /// This attempts to promote whatever allocas have been identified as viable in /// the PromotableAllocas list. If that list is empty, there is nothing to do. /// This function returns whether any promotion occurred. bool SROA::promoteAllocas(Function &F) { if (PromotableAllocas.empty()) return false; NumPromoted += PromotableAllocas.size(); LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); PromoteMemToReg(PromotableAllocas, *DT, AC); PromotableAllocas.clear(); return true; } PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, AssumptionCache &RunAC) { LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); C = &F.getContext(); DT = &RunDT; AC = &RunAC; BasicBlock &EntryBB = F.getEntryBlock(); for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); I != E; ++I) { if (AllocaInst *AI = dyn_cast(I)) { if (isa(AI->getAllocatedType())) { if (isAllocaPromotable(AI)) PromotableAllocas.push_back(AI); } else { Worklist.insert(AI); } } } bool Changed = false; // A set of deleted alloca instruction pointers which should be removed from // the list of promotable allocas. SmallPtrSet DeletedAllocas; do { while (!Worklist.empty()) { Changed |= runOnAlloca(*Worklist.pop_back_val()); Changed |= deleteDeadInstructions(DeletedAllocas); // Remove the deleted allocas from various lists so that we don't try to // continue processing them. if (!DeletedAllocas.empty()) { auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; Worklist.remove_if(IsInSet); PostPromotionWorklist.remove_if(IsInSet); PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet), PromotableAllocas.end()); DeletedAllocas.clear(); } } Changed |= promoteAllocas(F); Worklist = PostPromotionWorklist; PostPromotionWorklist.clear(); } while (!Worklist.empty()); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; } PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { return runImpl(F, AM.getResult(F), AM.getResult(F)); } /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. /// /// This is in the llvm namespace purely to allow it to be a friend of the \c /// SROA pass. class llvm::sroa::SROALegacyPass : public FunctionPass { /// The SROA implementation. SROA Impl; public: static char ID; SROALegacyPass() : FunctionPass(ID) { initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto PA = Impl.runImpl( F, getAnalysis().getDomTree(), getAnalysis().getAssumptionCache(F)); return !PA.areAllPreserved(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } StringRef getPassName() const override { return "SROA"; } }; char SROALegacyPass::ID = 0; FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", false, false)