//===- InlineFunction.cpp - Code to perform function inlining -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements inlining of a function into a call site, resolving // parameters and the return value as appropriate. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include #include #include #include using namespace llvm; using ProfileCount = Function::ProfileCount; static cl::opt EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), cl::Hidden, cl::desc("Convert noalias attributes to metadata during inlining.")); // Disabled by default, because the added alignment assumptions may increase // compile-time and block optimizations. This option is not suitable for use // with frontends that emit comprehensive parameter alignment annotations. static cl::opt PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", cl::init(false), cl::Hidden, cl::desc("Convert align attributes to assumptions during inlining.")); static cl::opt UpdateReturnAttributes( "update-return-attrs", cl::init(true), cl::Hidden, cl::desc("Update return attributes on calls within inlined body")); static cl::opt InlinerAttributeWindow( "max-inst-checked-for-throw-during-inlining", cl::Hidden, cl::desc("the maximum number of instructions analyzed for may throw during " "attribute inference in inlined body"), cl::init(4)); namespace { /// A class for recording information about inlining a landing pad. class LandingPadInliningInfo { /// Destination of the invoke's unwind. BasicBlock *OuterResumeDest; /// Destination for the callee's resume. BasicBlock *InnerResumeDest = nullptr; /// LandingPadInst associated with the invoke. LandingPadInst *CallerLPad = nullptr; /// PHI for EH values from landingpad insts. PHINode *InnerEHValuesPHI = nullptr; SmallVector UnwindDestPHIValues; public: LandingPadInliningInfo(InvokeInst *II) : OuterResumeDest(II->getUnwindDest()) { // If there are PHI nodes in the unwind destination block, we need to keep // track of which values came into them from the invoke before removing // the edge from this block. BasicBlock *InvokeBB = II->getParent(); BasicBlock::iterator I = OuterResumeDest->begin(); for (; isa(I); ++I) { // Save the value to use for this edge. PHINode *PHI = cast(I); UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); } CallerLPad = cast(I); } /// The outer unwind destination is the target of /// unwind edges introduced for calls within the inlined function. BasicBlock *getOuterResumeDest() const { return OuterResumeDest; } BasicBlock *getInnerResumeDest(); LandingPadInst *getLandingPadInst() const { return CallerLPad; } /// Forward the 'resume' instruction to the caller's landing pad block. /// When the landing pad block has only one predecessor, this is /// a simple branch. When there is more than one predecessor, we need to /// split the landing pad block after the landingpad instruction and jump /// to there. void forwardResume(ResumeInst *RI, SmallPtrSetImpl &InlinedLPads); /// Add incoming-PHI values to the unwind destination block for the given /// basic block, using the values for the original invoke's source block. void addIncomingPHIValuesFor(BasicBlock *BB) const { addIncomingPHIValuesForInto(BB, OuterResumeDest); } void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { BasicBlock::iterator I = dest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *phi = cast(I); phi->addIncoming(UnwindDestPHIValues[i], src); } } }; } // end anonymous namespace /// Get or create a target for the branch from ResumeInsts. BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { if (InnerResumeDest) return InnerResumeDest; // Split the landing pad. BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); InnerResumeDest = OuterResumeDest->splitBasicBlock(SplitPoint, OuterResumeDest->getName() + ".body"); // The number of incoming edges we expect to the inner landing pad. const unsigned PHICapacity = 2; // Create corresponding new PHIs for all the PHIs in the outer landing pad. Instruction *InsertPoint = &InnerResumeDest->front(); BasicBlock::iterator I = OuterResumeDest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *OuterPHI = cast(I); PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, OuterPHI->getName() + ".lpad-body", InsertPoint); OuterPHI->replaceAllUsesWith(InnerPHI); InnerPHI->addIncoming(OuterPHI, OuterResumeDest); } // Create a PHI for the exception values. InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body", InsertPoint); CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); // All done. return InnerResumeDest; } /// Forward the 'resume' instruction to the caller's landing pad block. /// When the landing pad block has only one predecessor, this is a simple /// branch. When there is more than one predecessor, we need to split the /// landing pad block after the landingpad instruction and jump to there. void LandingPadInliningInfo::forwardResume( ResumeInst *RI, SmallPtrSetImpl &InlinedLPads) { BasicBlock *Dest = getInnerResumeDest(); BasicBlock *Src = RI->getParent(); BranchInst::Create(Dest, Src); // Update the PHIs in the destination. They were inserted in an order which // makes this work. addIncomingPHIValuesForInto(Src, Dest); InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); RI->eraseFromParent(); } /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. static Value *getParentPad(Value *EHPad) { if (auto *FPI = dyn_cast(EHPad)) return FPI->getParentPad(); return cast(EHPad)->getParentPad(); } using UnwindDestMemoTy = DenseMap; /// Helper for getUnwindDestToken that does the descendant-ward part of /// the search. static Value *getUnwindDestTokenHelper(Instruction *EHPad, UnwindDestMemoTy &MemoMap) { SmallVector Worklist(1, EHPad); while (!Worklist.empty()) { Instruction *CurrentPad = Worklist.pop_back_val(); // We only put pads on the worklist that aren't in the MemoMap. When // we find an unwind dest for a pad we may update its ancestors, but // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, // so they should never get updated while queued on the worklist. assert(!MemoMap.count(CurrentPad)); Value *UnwindDestToken = nullptr; if (auto *CatchSwitch = dyn_cast(CurrentPad)) { if (CatchSwitch->hasUnwindDest()) { UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); } else { // Catchswitch doesn't have a 'nounwind' variant, and one might be // annotated as "unwinds to caller" when really it's nounwind (see // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the // parent's unwind dest from this. We can check its catchpads' // descendants, since they might include a cleanuppad with an // "unwinds to caller" cleanupret, which can be trusted. for (auto HI = CatchSwitch->handler_begin(), HE = CatchSwitch->handler_end(); HI != HE && !UnwindDestToken; ++HI) { BasicBlock *HandlerBlock = *HI; auto *CatchPad = cast(HandlerBlock->getFirstNonPHI()); for (User *Child : CatchPad->users()) { // Intentionally ignore invokes here -- since the catchswitch is // marked "unwind to caller", it would be a verifier error if it // contained an invoke which unwinds out of it, so any invoke we'd // encounter must unwind to some child of the catch. if (!isa(Child) && !isa(Child)) continue; Instruction *ChildPad = cast(Child); auto Memo = MemoMap.find(ChildPad); if (Memo == MemoMap.end()) { // Haven't figured out this child pad yet; queue it. Worklist.push_back(ChildPad); continue; } // We've already checked this child, but might have found that // it offers no proof either way. Value *ChildUnwindDestToken = Memo->second; if (!ChildUnwindDestToken) continue; // We already know the child's unwind dest, which can either // be ConstantTokenNone to indicate unwind to caller, or can // be another child of the catchpad. Only the former indicates // the unwind dest of the catchswitch. if (isa(ChildUnwindDestToken)) { UnwindDestToken = ChildUnwindDestToken; break; } assert(getParentPad(ChildUnwindDestToken) == CatchPad); } } } } else { auto *CleanupPad = cast(CurrentPad); for (User *U : CleanupPad->users()) { if (auto *CleanupRet = dyn_cast(U)) { if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) UnwindDestToken = RetUnwindDest->getFirstNonPHI(); else UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); break; } Value *ChildUnwindDestToken; if (auto *Invoke = dyn_cast(U)) { ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); } else if (isa(U) || isa(U)) { Instruction *ChildPad = cast(U); auto Memo = MemoMap.find(ChildPad); if (Memo == MemoMap.end()) { // Haven't resolved this child yet; queue it and keep searching. Worklist.push_back(ChildPad); continue; } // We've checked this child, but still need to ignore it if it // had no proof either way. ChildUnwindDestToken = Memo->second; if (!ChildUnwindDestToken) continue; } else { // Not a relevant user of the cleanuppad continue; } // In a well-formed program, the child/invoke must either unwind to // an(other) child of the cleanup, or exit the cleanup. In the // first case, continue searching. if (isa(ChildUnwindDestToken) && getParentPad(ChildUnwindDestToken) == CleanupPad) continue; UnwindDestToken = ChildUnwindDestToken; break; } } // If we haven't found an unwind dest for CurrentPad, we may have queued its // children, so move on to the next in the worklist. if (!UnwindDestToken) continue; // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits // any ancestors of CurrentPad up to but not including UnwindDestToken's // parent pad. Record this in the memo map, and check to see if the // original EHPad being queried is one of the ones exited. Value *UnwindParent; if (auto *UnwindPad = dyn_cast(UnwindDestToken)) UnwindParent = getParentPad(UnwindPad); else UnwindParent = nullptr; bool ExitedOriginalPad = false; for (Instruction *ExitedPad = CurrentPad; ExitedPad && ExitedPad != UnwindParent; ExitedPad = dyn_cast(getParentPad(ExitedPad))) { // Skip over catchpads since they just follow their catchswitches. if (isa(ExitedPad)) continue; MemoMap[ExitedPad] = UnwindDestToken; ExitedOriginalPad |= (ExitedPad == EHPad); } if (ExitedOriginalPad) return UnwindDestToken; // Continue the search. } // No definitive information is contained within this funclet. return nullptr; } /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, /// return that pad instruction. If it unwinds to caller, return /// ConstantTokenNone. If it does not have a definitive unwind destination, /// return nullptr. /// /// This routine gets invoked for calls in funclets in inlinees when inlining /// an invoke. Since many funclets don't have calls inside them, it's queried /// on-demand rather than building a map of pads to unwind dests up front. /// Determining a funclet's unwind dest may require recursively searching its /// descendants, and also ancestors and cousins if the descendants don't provide /// an answer. Since most funclets will have their unwind dest immediately /// available as the unwind dest of a catchswitch or cleanupret, this routine /// searches top-down from the given pad and then up. To avoid worst-case /// quadratic run-time given that approach, it uses a memo map to avoid /// re-processing funclet trees. The callers that rewrite the IR as they go /// take advantage of this, for correctness, by checking/forcing rewritten /// pads' entries to match the original callee view. static Value *getUnwindDestToken(Instruction *EHPad, UnwindDestMemoTy &MemoMap) { // Catchpads unwind to the same place as their catchswitch; // redirct any queries on catchpads so the code below can // deal with just catchswitches and cleanuppads. if (auto *CPI = dyn_cast(EHPad)) EHPad = CPI->getCatchSwitch(); // Check if we've already determined the unwind dest for this pad. auto Memo = MemoMap.find(EHPad); if (Memo != MemoMap.end()) return Memo->second; // Search EHPad and, if necessary, its descendants. Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); if (UnwindDestToken) return UnwindDestToken; // No information is available for this EHPad from itself or any of its // descendants. An unwind all the way out to a pad in the caller would // need also to agree with the unwind dest of the parent funclet, so // search up the chain to try to find a funclet with information. Put // null entries in the memo map to avoid re-processing as we go up. MemoMap[EHPad] = nullptr; #ifndef NDEBUG SmallPtrSet TempMemos; TempMemos.insert(EHPad); #endif Instruction *LastUselessPad = EHPad; Value *AncestorToken; for (AncestorToken = getParentPad(EHPad); auto *AncestorPad = dyn_cast(AncestorToken); AncestorToken = getParentPad(AncestorToken)) { // Skip over catchpads since they just follow their catchswitches. if (isa(AncestorPad)) continue; // If the MemoMap had an entry mapping AncestorPad to nullptr, since we // haven't yet called getUnwindDestTokenHelper for AncestorPad in this // call to getUnwindDestToken, that would mean that AncestorPad had no // information in itself, its descendants, or its ancestors. If that // were the case, then we should also have recorded the lack of information // for the descendant that we're coming from. So assert that we don't // find a null entry in the MemoMap for AncestorPad. assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); auto AncestorMemo = MemoMap.find(AncestorPad); if (AncestorMemo == MemoMap.end()) { UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); } else { UnwindDestToken = AncestorMemo->second; } if (UnwindDestToken) break; LastUselessPad = AncestorPad; MemoMap[LastUselessPad] = nullptr; #ifndef NDEBUG TempMemos.insert(LastUselessPad); #endif } // We know that getUnwindDestTokenHelper was called on LastUselessPad and // returned nullptr (and likewise for EHPad and any of its ancestors up to // LastUselessPad), so LastUselessPad has no information from below. Since // getUnwindDestTokenHelper must investigate all downward paths through // no-information nodes to prove that a node has no information like this, // and since any time it finds information it records it in the MemoMap for // not just the immediately-containing funclet but also any ancestors also // exited, it must be the case that, walking downward from LastUselessPad, // visiting just those nodes which have not been mapped to an unwind dest // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since // they are just used to keep getUnwindDestTokenHelper from repeating work), // any node visited must have been exhaustively searched with no information // for it found. SmallVector Worklist(1, LastUselessPad); while (!Worklist.empty()) { Instruction *UselessPad = Worklist.pop_back_val(); auto Memo = MemoMap.find(UselessPad); if (Memo != MemoMap.end() && Memo->second) { // Here the name 'UselessPad' is a bit of a misnomer, because we've found // that it is a funclet that does have information about unwinding to // a particular destination; its parent was a useless pad. // Since its parent has no information, the unwind edge must not escape // the parent, and must target a sibling of this pad. This local unwind // gives us no information about EHPad. Leave it and the subtree rooted // at it alone. assert(getParentPad(Memo->second) == getParentPad(UselessPad)); continue; } // We know we don't have information for UselesPad. If it has an entry in // the MemoMap (mapping it to nullptr), it must be one of the TempMemos // added on this invocation of getUnwindDestToken; if a previous invocation // recorded nullptr, it would have had to prove that the ancestors of // UselessPad, which include LastUselessPad, had no information, and that // in turn would have required proving that the descendants of // LastUselesPad, which include EHPad, have no information about // LastUselessPad, which would imply that EHPad was mapped to nullptr in // the MemoMap on that invocation, which isn't the case if we got here. assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); // Assert as we enumerate users that 'UselessPad' doesn't have any unwind // information that we'd be contradicting by making a map entry for it // (which is something that getUnwindDestTokenHelper must have proved for // us to get here). Just assert on is direct users here; the checks in // this downward walk at its descendants will verify that they don't have // any unwind edges that exit 'UselessPad' either (i.e. they either have no // unwind edges or unwind to a sibling). MemoMap[UselessPad] = UnwindDestToken; if (auto *CatchSwitch = dyn_cast(UselessPad)) { assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { auto *CatchPad = HandlerBlock->getFirstNonPHI(); for (User *U : CatchPad->users()) { assert( (!isa(U) || (getParentPad( cast(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && "Expected useless pad"); if (isa(U) || isa(U)) Worklist.push_back(cast(U)); } } } else { assert(isa(UselessPad)); for (User *U : UselessPad->users()) { assert(!isa(U) && "Expected useless pad"); assert((!isa(U) || (getParentPad( cast(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && "Expected useless pad"); if (isa(U) || isa(U)) Worklist.push_back(cast(U)); } } } return UnwindDestToken; } /// When we inline a basic block into an invoke, /// we have to turn all of the calls that can throw into invokes. /// This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( BasicBlock *BB, BasicBlock *UnwindEdge, UnwindDestMemoTy *FuncletUnwindMap = nullptr) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = &*BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast(I); if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) continue; // We do not need to (and in fact, cannot) convert possibly throwing calls // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into // invokes. The caller's "segment" of the deoptimization continuation // attached to the newly inlined @llvm.experimental_deoptimize // (resp. @llvm.experimental.guard) call should contain the exception // handling logic, if any. if (auto *F = CI->getCalledFunction()) if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || F->getIntrinsicID() == Intrinsic::experimental_guard) continue; if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { // This call is nested inside a funclet. If that funclet has an unwind // destination within the inlinee, then unwinding out of this call would // be UB. Rewriting this call to an invoke which targets the inlined // invoke's unwind dest would give the call's parent funclet multiple // unwind destinations, which is something that subsequent EH table // generation can't handle and that the veirifer rejects. So when we // see such a call, leave it as a call. auto *FuncletPad = cast(FuncletBundle->Inputs[0]); Value *UnwindDestToken = getUnwindDestToken(FuncletPad, *FuncletUnwindMap); if (UnwindDestToken && !isa(UnwindDestToken)) continue; #ifndef NDEBUG Instruction *MemoKey; if (auto *CatchPad = dyn_cast(FuncletPad)) MemoKey = CatchPad->getCatchSwitch(); else MemoKey = FuncletPad; assert(FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && "must get memoized to avoid confusing later searches"); #endif // NDEBUG } changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); return BB; } return nullptr; } /// If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. LandingPadInliningInfo Invoke(II); // Get all of the inlined landing pad instructions. SmallPtrSet InlinedLPads; for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); I != E; ++I) if (InvokeInst *II = dyn_cast(I->getTerminator())) InlinedLPads.insert(II->getLandingPadInst()); // Append the clauses from the outer landing pad instruction into the inlined // landing pad instructions. LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); for (LandingPadInst *InlinedLPad : InlinedLPads) { unsigned OuterNum = OuterLPad->getNumClauses(); InlinedLPad->reserveClauses(OuterNum); for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); if (OuterLPad->isCleanup()) InlinedLPad->setCleanup(true); } for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( &*BB, Invoke.getOuterResumeDest())) // Update any PHI nodes in the exceptional block to indicate that there // is now a new entry in them. Invoke.addIncomingPHIValuesFor(NewBB); // Forward any resumes that are remaining here. if (ResumeInst *RI = dyn_cast(BB->getTerminator())) Invoke.forwardResume(RI, InlinedLPads); } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); } /// If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *UnwindDest = II->getUnwindDest(); Function *Caller = FirstNewBlock->getParent(); assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); // If there are PHI nodes in the unwind destination block, we need to keep // track of which values came into them from the invoke before removing the // edge from this block. SmallVector UnwindDestPHIValues; BasicBlock *InvokeBB = II->getParent(); for (Instruction &I : *UnwindDest) { // Save the value to use for this edge. PHINode *PHI = dyn_cast(&I); if (!PHI) break; UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); } // Add incoming-PHI values to the unwind destination block for the given basic // block, using the values for the original invoke's source block. auto UpdatePHINodes = [&](BasicBlock *Src) { BasicBlock::iterator I = UnwindDest->begin(); for (Value *V : UnwindDestPHIValues) { PHINode *PHI = cast(I); PHI->addIncoming(V, Src); ++I; } }; // This connects all the instructions which 'unwind to caller' to the invoke // destination. UnwindDestMemoTy FuncletUnwindMap; for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { if (auto *CRI = dyn_cast(BB->getTerminator())) { if (CRI->unwindsToCaller()) { auto *CleanupPad = CRI->getCleanupPad(); CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); CRI->eraseFromParent(); UpdatePHINodes(&*BB); // Finding a cleanupret with an unwind destination would confuse // subsequent calls to getUnwindDestToken, so map the cleanuppad // to short-circuit any such calls and recognize this as an "unwind // to caller" cleanup. assert(!FuncletUnwindMap.count(CleanupPad) || isa(FuncletUnwindMap[CleanupPad])); FuncletUnwindMap[CleanupPad] = ConstantTokenNone::get(Caller->getContext()); } } Instruction *I = BB->getFirstNonPHI(); if (!I->isEHPad()) continue; Instruction *Replacement = nullptr; if (auto *CatchSwitch = dyn_cast(I)) { if (CatchSwitch->unwindsToCaller()) { Value *UnwindDestToken; if (auto *ParentPad = dyn_cast(CatchSwitch->getParentPad())) { // This catchswitch is nested inside another funclet. If that // funclet has an unwind destination within the inlinee, then // unwinding out of this catchswitch would be UB. Rewriting this // catchswitch to unwind to the inlined invoke's unwind dest would // give the parent funclet multiple unwind destinations, which is // something that subsequent EH table generation can't handle and // that the veirifer rejects. So when we see such a call, leave it // as "unwind to caller". UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); if (UnwindDestToken && !isa(UnwindDestToken)) continue; } else { // This catchswitch has no parent to inherit constraints from, and // none of its descendants can have an unwind edge that exits it and // targets another funclet in the inlinee. It may or may not have a // descendant that definitively has an unwind to caller. In either // case, we'll have to assume that any unwinds out of it may need to // be routed to the caller, so treat it as though it has a definitive // unwind to caller. UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); } auto *NewCatchSwitch = CatchSwitchInst::Create( CatchSwitch->getParentPad(), UnwindDest, CatchSwitch->getNumHandlers(), CatchSwitch->getName(), CatchSwitch); for (BasicBlock *PadBB : CatchSwitch->handlers()) NewCatchSwitch->addHandler(PadBB); // Propagate info for the old catchswitch over to the new one in // the unwind map. This also serves to short-circuit any subsequent // checks for the unwind dest of this catchswitch, which would get // confused if they found the outer handler in the callee. FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; Replacement = NewCatchSwitch; } } else if (!isa(I)) { llvm_unreachable("unexpected EHPad!"); } if (Replacement) { Replacement->takeName(I); I->replaceAllUsesWith(Replacement); I->eraseFromParent(); UpdatePHINodes(&*BB); } } if (InlinedCodeInfo.ContainsCalls) for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( &*BB, UnwindDest, &FuncletUnwindMap)) // Update any PHI nodes in the exceptional block to indicate that there // is now a new entry in them. UpdatePHINodes(NewBB); // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. UnwindDest->removePredecessor(InvokeBB); } /// When inlining a call site that has !llvm.mem.parallel_loop_access, /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should /// be propagated to all memory-accessing cloned instructions. static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) { MDNode *MemParallelLoopAccess = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) return; for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); VMI != VMIE; ++VMI) { // Check that key is an instruction, to skip the Argument mapping, which // points to an instruction in the original function, not the inlined one. if (!VMI->second || !isa(VMI->first)) continue; Instruction *NI = dyn_cast(VMI->second); if (!NI) continue; // This metadata is only relevant for instructions that access memory. if (!NI->mayReadOrWriteMemory()) continue; if (MemParallelLoopAccess) { // TODO: This probably should not overwrite MemParalleLoopAccess. MemParallelLoopAccess = MDNode::concatenate( NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access), MemParallelLoopAccess); NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, MemParallelLoopAccess); } if (AccessGroup) NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( NI->getMetadata(LLVMContext::MD_access_group), AccessGroup)); if (AliasScope) NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope)); if (NoAlias) NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( NI->getMetadata(LLVMContext::MD_noalias), NoAlias)); } } /// When inlining a function that contains noalias scope metadata, /// this metadata needs to be cloned so that the inlined blocks /// have different "unique scopes" at every call site. Were this not done, then /// aliasing scopes from a function inlined into a caller multiple times could /// not be differentiated (and this would lead to miscompiles because the /// non-aliasing property communicated by the metadata could have /// call-site-specific control dependencies). static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) { const Function *CalledFunc = CB.getCalledFunction(); SetVector MD; // Note: We could only clone the metadata if it is already used in the // caller. I'm omitting that check here because it might confuse // inter-procedural alias analysis passes. We can revisit this if it becomes // an efficiency or overhead problem. for (const BasicBlock &I : *CalledFunc) for (const Instruction &J : I) { if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) MD.insert(M); if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) MD.insert(M); } if (MD.empty()) return; // Walk the existing metadata, adding the complete (perhaps cyclic) chain to // the set. SmallVector Queue(MD.begin(), MD.end()); while (!Queue.empty()) { const MDNode *M = cast(Queue.pop_back_val()); for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) if (const MDNode *M1 = dyn_cast(M->getOperand(i))) if (MD.insert(M1)) Queue.push_back(M1); } // Now we have a complete set of all metadata in the chains used to specify // the noalias scopes and the lists of those scopes. SmallVector DummyNodes; DenseMap MDMap; for (const MDNode *I : MD) { DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); MDMap[I].reset(DummyNodes.back().get()); } // Create new metadata nodes to replace the dummy nodes, replacing old // metadata references with either a dummy node or an already-created new // node. for (const MDNode *I : MD) { SmallVector NewOps; for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { const Metadata *V = I->getOperand(i); if (const MDNode *M = dyn_cast(V)) NewOps.push_back(MDMap[M]); else NewOps.push_back(const_cast(V)); } MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); MDTuple *TempM = cast(MDMap[I]); assert(TempM->isTemporary() && "Expected temporary node"); TempM->replaceAllUsesWith(NewM); } // Now replace the metadata in the new inlined instructions with the // repacements from the map. for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); VMI != VMIE; ++VMI) { // Check that key is an instruction, to skip the Argument mapping, which // points to an instruction in the original function, not the inlined one. if (!VMI->second || !isa(VMI->first)) continue; Instruction *NI = dyn_cast(VMI->second); if (!NI) continue; if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) NI->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) NI->setMetadata(LLVMContext::MD_noalias, MDMap[M]); } } /// If the inlined function has noalias arguments, /// then add new alias scopes for each noalias argument, tag the mapped noalias /// parameters with noalias metadata specifying the new scope, and tag all /// non-derived loads, stores and memory intrinsics with the new alias scopes. static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, const DataLayout &DL, AAResults *CalleeAAR) { if (!EnableNoAliasConversion) return; const Function *CalledFunc = CB.getCalledFunction(); SmallVector NoAliasArgs; for (const Argument &Arg : CalledFunc->args()) if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) NoAliasArgs.push_back(&Arg); if (NoAliasArgs.empty()) return; // To do a good job, if a noalias variable is captured, we need to know if // the capture point dominates the particular use we're considering. DominatorTree DT; DT.recalculate(const_cast(*CalledFunc)); // noalias indicates that pointer values based on the argument do not alias // pointer values which are not based on it. So we add a new "scope" for each // noalias function argument. Accesses using pointers based on that argument // become part of that alias scope, accesses using pointers not based on that // argument are tagged as noalias with that scope. DenseMap NewScopes; MDBuilder MDB(CalledFunc->getContext()); // Create a new scope domain for this function. MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { const Argument *A = NoAliasArgs[i]; std::string Name = std::string(CalledFunc->getName()); if (A->hasName()) { Name += ": %"; Name += A->getName(); } else { Name += ": argument "; Name += utostr(i); } // Note: We always create a new anonymous root here. This is true regardless // of the linkage of the callee because the aliasing "scope" is not just a // property of the callee, but also all control dependencies in the caller. MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); NewScopes.insert(std::make_pair(A, NewScope)); } // Iterate over all new instructions in the map; for all memory-access // instructions, add the alias scope metadata. for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); VMI != VMIE; ++VMI) { if (const Instruction *I = dyn_cast(VMI->first)) { if (!VMI->second) continue; Instruction *NI = dyn_cast(VMI->second); if (!NI) continue; bool IsArgMemOnlyCall = false, IsFuncCall = false; SmallVector PtrArgs; if (const LoadInst *LI = dyn_cast(I)) PtrArgs.push_back(LI->getPointerOperand()); else if (const StoreInst *SI = dyn_cast(I)) PtrArgs.push_back(SI->getPointerOperand()); else if (const VAArgInst *VAAI = dyn_cast(I)) PtrArgs.push_back(VAAI->getPointerOperand()); else if (const AtomicCmpXchgInst *CXI = dyn_cast(I)) PtrArgs.push_back(CXI->getPointerOperand()); else if (const AtomicRMWInst *RMWI = dyn_cast(I)) PtrArgs.push_back(RMWI->getPointerOperand()); else if (const auto *Call = dyn_cast(I)) { // If we know that the call does not access memory, then we'll still // know that about the inlined clone of this call site, and we don't // need to add metadata. if (Call->doesNotAccessMemory()) continue; IsFuncCall = true; if (CalleeAAR) { FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); if (AAResults::onlyAccessesArgPointees(MRB)) IsArgMemOnlyCall = true; } for (Value *Arg : Call->args()) { // We need to check the underlying objects of all arguments, not just // the pointer arguments, because we might be passing pointers as // integers, etc. // However, if we know that the call only accesses pointer arguments, // then we only need to check the pointer arguments. if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) continue; PtrArgs.push_back(Arg); } } // If we found no pointers, then this instruction is not suitable for // pairing with an instruction to receive aliasing metadata. // However, if this is a call, this we might just alias with none of the // noalias arguments. if (PtrArgs.empty() && !IsFuncCall) continue; // It is possible that there is only one underlying object, but you // need to go through several PHIs to see it, and thus could be // repeated in the Objects list. SmallPtrSet ObjSet; SmallVector Scopes, NoAliases; SmallSetVector NAPtrArgs; for (const Value *V : PtrArgs) { SmallVector Objects; getUnderlyingObjects(V, Objects, /* LI = */ nullptr); for (const Value *O : Objects) ObjSet.insert(O); } // Figure out if we're derived from anything that is not a noalias // argument. bool CanDeriveViaCapture = false, UsesAliasingPtr = false; for (const Value *V : ObjSet) { // Is this value a constant that cannot be derived from any pointer // value (we need to exclude constant expressions, for example, that // are formed from arithmetic on global symbols). bool IsNonPtrConst = isa(V) || isa(V) || isa(V) || isa(V) || isa(V); if (IsNonPtrConst) continue; // If this is anything other than a noalias argument, then we cannot // completely describe the aliasing properties using alias.scope // metadata (and, thus, won't add any). if (const Argument *A = dyn_cast(V)) { if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) UsesAliasingPtr = true; } else { UsesAliasingPtr = true; } // If this is not some identified function-local object (which cannot // directly alias a noalias argument), or some other argument (which, // by definition, also cannot alias a noalias argument), then we could // alias a noalias argument that has been captured). if (!isa(V) && !isIdentifiedFunctionLocal(const_cast(V))) CanDeriveViaCapture = true; } // A function call can always get captured noalias pointers (via other // parameters, globals, etc.). if (IsFuncCall && !IsArgMemOnlyCall) CanDeriveViaCapture = true; // First, we want to figure out all of the sets with which we definitely // don't alias. Iterate over all noalias set, and add those for which: // 1. The noalias argument is not in the set of objects from which we // definitely derive. // 2. The noalias argument has not yet been captured. // An arbitrary function that might load pointers could see captured // noalias arguments via other noalias arguments or globals, and so we // must always check for prior capture. for (const Argument *A : NoAliasArgs) { if (!ObjSet.count(A) && (!CanDeriveViaCapture || // It might be tempting to skip the // PointerMayBeCapturedBefore check if // A->hasNoCaptureAttr() is true, but this is // incorrect because nocapture only guarantees // that no copies outlive the function, not // that the value cannot be locally captured. !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false, /* StoreCaptures */ false, I, &DT))) NoAliases.push_back(NewScopes[A]); } if (!NoAliases.empty()) NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( NI->getMetadata(LLVMContext::MD_noalias), MDNode::get(CalledFunc->getContext(), NoAliases))); // Next, we want to figure out all of the sets to which we might belong. // We might belong to a set if the noalias argument is in the set of // underlying objects. If there is some non-noalias argument in our list // of underlying objects, then we cannot add a scope because the fact // that some access does not alias with any set of our noalias arguments // cannot itself guarantee that it does not alias with this access // (because there is some pointer of unknown origin involved and the // other access might also depend on this pointer). We also cannot add // scopes to arbitrary functions unless we know they don't access any // non-parameter pointer-values. bool CanAddScopes = !UsesAliasingPtr; if (CanAddScopes && IsFuncCall) CanAddScopes = IsArgMemOnlyCall; if (CanAddScopes) for (const Argument *A : NoAliasArgs) { if (ObjSet.count(A)) Scopes.push_back(NewScopes[A]); } if (!Scopes.empty()) NI->setMetadata( LLVMContext::MD_alias_scope, MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), MDNode::get(CalledFunc->getContext(), Scopes))); } } } static bool MayContainThrowingOrExitingCall(Instruction *Begin, Instruction *End) { assert(Begin->getParent() == End->getParent() && "Expected to be in same basic block!"); unsigned NumInstChecked = 0; // Check that all instructions in the range [Begin, End) are guaranteed to // transfer execution to successor. for (auto &I : make_range(Begin->getIterator(), End->getIterator())) if (NumInstChecked++ > InlinerAttributeWindow || !isGuaranteedToTransferExecutionToSuccessor(&I)) return true; return false; } static AttrBuilder IdentifyValidAttributes(CallBase &CB) { AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); if (AB.empty()) return AB; AttrBuilder Valid; // Only allow these white listed attributes to be propagated back to the // callee. This is because other attributes may only be valid on the call // itself, i.e. attributes such as signext and zeroext. if (auto DerefBytes = AB.getDereferenceableBytes()) Valid.addDereferenceableAttr(DerefBytes); if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); if (AB.contains(Attribute::NoAlias)) Valid.addAttribute(Attribute::NoAlias); if (AB.contains(Attribute::NonNull)) Valid.addAttribute(Attribute::NonNull); return Valid; } static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { if (!UpdateReturnAttributes) return; AttrBuilder Valid = IdentifyValidAttributes(CB); if (Valid.empty()) return; auto *CalledFunction = CB.getCalledFunction(); auto &Context = CalledFunction->getContext(); for (auto &BB : *CalledFunction) { auto *RI = dyn_cast(BB.getTerminator()); if (!RI || !isa(RI->getOperand(0))) continue; auto *RetVal = cast(RI->getOperand(0)); // Sanity check that the cloned RetVal exists and is a call, otherwise we // cannot add the attributes on the cloned RetVal. // Simplification during inlining could have transformed the cloned // instruction. auto *NewRetVal = dyn_cast_or_null(VMap.lookup(RetVal)); if (!NewRetVal) continue; // Backward propagation of attributes to the returned value may be incorrect // if it is control flow dependent. // Consider: // @callee { // %rv = call @foo() // %rv2 = call @bar() // if (%rv2 != null) // return %rv2 // if (%rv == null) // exit() // return %rv // } // caller() { // %val = call nonnull @callee() // } // Here we cannot add the nonnull attribute on either foo or bar. So, we // limit the check to both RetVal and RI are in the same basic block and // there are no throwing/exiting instructions between these instructions. if (RI->getParent() != RetVal->getParent() || MayContainThrowingOrExitingCall(RetVal, RI)) continue; // Add to the existing attributes of NewRetVal, i.e. the cloned call // instruction. // NB! When we have the same attribute already existing on NewRetVal, but // with a differing value, the AttributeList's merge API honours the already // existing attribute value (i.e. attributes such as dereferenceable, // dereferenceable_or_null etc). See AttrBuilder::merge for more details. AttributeList AL = NewRetVal->getAttributes(); AttributeList NewAL = AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); NewRetVal->setAttributes(NewAL); } } /// If the inlined function has non-byval align arguments, then /// add @llvm.assume-based alignment assumptions to preserve this information. static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) return; AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); auto &DL = CB.getCaller()->getParent()->getDataLayout(); // To avoid inserting redundant assumptions, we should check for assumptions // already in the caller. To do this, we might need a DT of the caller. DominatorTree DT; bool DTCalculated = false; Function *CalledFunc = CB.getCalledFunction(); for (Argument &Arg : CalledFunc->args()) { unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { if (!DTCalculated) { DT.recalculate(*CB.getCaller()); DTCalculated = true; } // If we can already prove the asserted alignment in the context of the // caller, then don't bother inserting the assumption. Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) continue; CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); AC->registerAssumption(NewAsmp); } } } /// Once we have cloned code over from a callee into the caller, /// update the specified callgraph to reflect the changes we made. /// Note that it's possible that not all code was copied over, so only /// some edges of the callgraph may remain. static void UpdateCallGraphAfterInlining(CallBase &CB, Function::iterator FirstNewBlock, ValueToValueMapTy &VMap, InlineFunctionInfo &IFI) { CallGraph &CG = *IFI.CG; const Function *Caller = CB.getCaller(); const Function *Callee = CB.getCalledFunction(); CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); // Consider the case where CalleeNode == CallerNode. CallGraphNode::CalledFunctionsVector CallCache; if (CalleeNode == CallerNode) { CallCache.assign(I, E); I = CallCache.begin(); E = CallCache.end(); } for (; I != E; ++I) { // Skip 'refererence' call records. if (!I->first) continue; const Value *OrigCall = *I->first; ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI == VMap.end() || VMI->second == nullptr) continue; // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. auto *NewCall = dyn_cast(VMI->second); if (!NewCall) continue; // We do not treat intrinsic calls like real function calls because we // expect them to become inline code; do not add an edge for an intrinsic. if (NewCall->getCalledFunction() && NewCall->getCalledFunction()->isIntrinsic()) continue; // Remember that this call site got inlined for the client of // InlineFunction. IFI.InlinedCalls.push_back(NewCall); // It's possible that inlining the callsite will cause it to go from an // indirect to a direct call by resolving a function pointer. If this // happens, set the callee of the new call site to a more precise // destination. This can also happen if the call graph node of the caller // was just unnecessarily imprecise. if (!I->second->getFunction()) if (Function *F = NewCall->getCalledFunction()) { // Indirect call site resolved to direct call. CallerNode->addCalledFunction(NewCall, CG[F]); continue; } CallerNode->addCalledFunction(NewCall, I->second); } // Update the call graph by deleting the edge from Callee to Caller. We must // do this after the loop above in case Caller and Callee are the same. CallerNode->removeCallEdgeFor(*cast(&CB)); } static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, BasicBlock *InsertBlock, InlineFunctionInfo &IFI) { Type *AggTy = cast(Src->getType())->getElementType(); IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); // Always generate a memcpy of alignment 1 here because we don't know // the alignment of the src pointer. Other optimizations can infer // better alignment. Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, /*SrcAlign*/ Align(1), Size); } /// When inlining a call site that has a byval argument, /// we have to make the implicit memcpy explicit by adding it. static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, const Function *CalledFunc, InlineFunctionInfo &IFI, unsigned ByValAlignment) { PointerType *ArgTy = cast(Arg->getType()); Type *AggTy = ArgTy->getElementType(); Function *Caller = TheCall->getFunction(); const DataLayout &DL = Caller->getParent()->getDataLayout(); // If the called function is readonly, then it could not mutate the caller's // copy of the byval'd memory. In this case, it is safe to elide the copy and // temporary. if (CalledFunc->onlyReadsMemory()) { // If the byval argument has a specified alignment that is greater than the // passed in pointer, then we either have to round up the input pointer or // give up on this transformation. if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. return Arg; AssumptionCache *AC = IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; // If the pointer is already known to be sufficiently aligned, or if we can // round it up to a larger alignment, then we don't need a temporary. if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, AC) >= ByValAlignment) return Arg; // Otherwise, we have to make a memcpy to get a safe alignment. This is bad // for code quality, but rarely happens and is required for correctness. } // Create the alloca. If we have DataLayout, use nice alignment. Align Alignment(DL.getPrefTypeAlignment(AggTy)); // If the byval had an alignment specified, we *must* use at least that // alignment, as it is required by the byval argument (and uses of the // pointer inside the callee). Alignment = max(Alignment, MaybeAlign(ByValAlignment)); Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, Arg->getName(), &*Caller->begin()->begin()); IFI.StaticAllocas.push_back(cast(NewAlloca)); // Uses of the argument in the function should use our new alloca // instead. return NewAlloca; } // Check whether this Value is used by a lifetime intrinsic. static bool isUsedByLifetimeMarker(Value *V) { for (User *U : V->users()) if (IntrinsicInst *II = dyn_cast(U)) if (II->isLifetimeStartOrEnd()) return true; return false; } // Check whether the given alloca already has // lifetime.start or lifetime.end intrinsics. static bool hasLifetimeMarkers(AllocaInst *AI) { Type *Ty = AI->getType(); Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), Ty->getPointerAddressSpace()); if (Ty == Int8PtrTy) return isUsedByLifetimeMarker(AI); // Do a scan to find all the casts to i8*. for (User *U : AI->users()) { if (U->getType() != Int8PtrTy) continue; if (U->stripPointerCasts() != AI) continue; if (isUsedByLifetimeMarker(U)) return true; } return false; } /// Return the result of AI->isStaticAlloca() if AI were moved to the entry /// block. Allocas used in inalloca calls and allocas of dynamic array size /// cannot be static. static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { return isa(AI->getArraySize()) && !AI->isUsedWithInAlloca(); } /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, LLVMContext &Ctx, DenseMap &IANodes) { auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), IA); } /// Update inlined instructions' line numbers to /// to encode location where these instructions are inlined. static void fixupLineNumbers(Function *Fn, Function::iterator FI, Instruction *TheCall, bool CalleeHasDebugInfo) { const DebugLoc &TheCallDL = TheCall->getDebugLoc(); if (!TheCallDL) return; auto &Ctx = Fn->getContext(); DILocation *InlinedAtNode = TheCallDL; // Create a unique call site, not to be confused with any other call from the // same location. InlinedAtNode = DILocation::getDistinct( Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); // Cache the inlined-at nodes as they're built so they are reused, without // this every instruction's inlined-at chain would become distinct from each // other. DenseMap IANodes; // Check if we are not generating inline line tables and want to use // the call site location instead. bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); for (; FI != Fn->end(); ++FI) { for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { // Loop metadata needs to be updated so that the start and end locs // reference inlined-at locations. auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( const DILocation &Loc) -> DILocation * { return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); }; updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); if (!NoInlineLineTables) if (DebugLoc DL = BI->getDebugLoc()) { DebugLoc IDL = inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); BI->setDebugLoc(IDL); continue; } if (CalleeHasDebugInfo && !NoInlineLineTables) continue; // If the inlined instruction has no line number, or if inline info // is not being generated, make it look as if it originates from the call // location. This is important for ((__always_inline, __nodebug__)) // functions which must use caller location for all instructions in their // function body. // Don't update static allocas, as they may get moved later. if (auto *AI = dyn_cast(BI)) if (allocaWouldBeStaticInEntry(AI)) continue; BI->setDebugLoc(TheCallDL); } // Remove debug info intrinsics if we're not keeping inline info. if (NoInlineLineTables) { BasicBlock::iterator BI = FI->begin(); while (BI != FI->end()) { if (isa(BI)) { BI = BI->eraseFromParent(); continue; } ++BI; } } } } /// Update the block frequencies of the caller after a callee has been inlined. /// /// Each block cloned into the caller has its block frequency scaled by the /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of /// callee's entry block gets the same frequency as the callsite block and the /// relative frequencies of all cloned blocks remain the same after cloning. static void updateCallerBFI(BasicBlock *CallSiteBlock, const ValueToValueMapTy &VMap, BlockFrequencyInfo *CallerBFI, BlockFrequencyInfo *CalleeBFI, const BasicBlock &CalleeEntryBlock) { SmallPtrSet ClonedBBs; for (auto Entry : VMap) { if (!isa(Entry.first) || !Entry.second) continue; auto *OrigBB = cast(Entry.first); auto *ClonedBB = cast(Entry.second); uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); if (!ClonedBBs.insert(ClonedBB).second) { // Multiple blocks in the callee might get mapped to one cloned block in // the caller since we prune the callee as we clone it. When that happens, // we want to use the maximum among the original blocks' frequencies. uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); if (NewFreq > Freq) Freq = NewFreq; } CallerBFI->setBlockFreq(ClonedBB, Freq); } BasicBlock *EntryClone = cast(VMap.lookup(&CalleeEntryBlock)); CallerBFI->setBlockFreqAndScale( EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), ClonedBBs); } /// Update the branch metadata for cloned call instructions. static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, const ProfileCount &CalleeEntryCount, const CallBase &TheCall, ProfileSummaryInfo *PSI, BlockFrequencyInfo *CallerBFI) { if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) return; auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; int64_t CallCount = std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, CalleeEntryCount.getCount()); updateProfileCallee(Callee, -CallCount, &VMap); } void llvm::updateProfileCallee( Function *Callee, int64_t entryDelta, const ValueMap *VMap) { auto CalleeCount = Callee->getEntryCount(); if (!CalleeCount.hasValue()) return; uint64_t priorEntryCount = CalleeCount.getCount(); uint64_t newEntryCount; // Since CallSiteCount is an estimate, it could exceed the original callee // count and has to be set to 0 so guard against underflow. if (entryDelta < 0 && static_cast(-entryDelta) > priorEntryCount) newEntryCount = 0; else newEntryCount = priorEntryCount + entryDelta; // During inlining ? if (VMap) { uint64_t cloneEntryCount = priorEntryCount - newEntryCount; for (auto Entry : *VMap) if (isa(Entry.first)) if (auto *CI = dyn_cast_or_null(Entry.second)) CI->updateProfWeight(cloneEntryCount, priorEntryCount); } if (entryDelta) { Callee->setEntryCount(newEntryCount); for (BasicBlock &BB : *Callee) // No need to update the callsite if it is pruned during inlining. if (!VMap || VMap->count(&BB)) for (Instruction &I : BB) if (CallInst *CI = dyn_cast(&I)) CI->updateProfWeight(newEntryCount, priorEntryCount); } } /// This function inlines the called function into the basic block of the /// caller. This returns false if it is not possible to inline this call. /// The program is still in a well defined state if this occurs though. /// /// Note that this only does one level of inlining. For example, if the /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now /// exists in the instruction stream. Similarly this will inline a recursive /// function by one level. llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, AAResults *CalleeAAR, bool InsertLifetime, Function *ForwardVarArgsTo) { assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); // FIXME: we don't inline callbr yet. if (isa(CB)) return InlineResult::failure("We don't inline callbr yet."); // If IFI has any state in it, zap it before we fill it in. IFI.reset(); Function *CalledFunc = CB.getCalledFunction(); if (!CalledFunc || // Can't inline external function or indirect CalledFunc->isDeclaration()) // call! return InlineResult::failure("external or indirect"); // The inliner does not know how to inline through calls with operand bundles // in general ... if (CB.hasOperandBundles()) { for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); // ... but it knows how to inline through "deopt" operand bundles ... if (Tag == LLVMContext::OB_deopt) continue; // ... and "funclet" operand bundles. if (Tag == LLVMContext::OB_funclet) continue; return InlineResult::failure("unsupported operand bundle"); } } // If the call to the callee cannot throw, set the 'nounwind' flag on any // calls that we inline. bool MarkNoUnwind = CB.doesNotThrow(); BasicBlock *OrigBB = CB.getParent(); Function *Caller = OrigBB->getParent(); // GC poses two hazards to inlining, which only occur when the callee has GC: // 1. If the caller has no GC, then the callee's GC must be propagated to the // caller. // 2. If the caller has a differing GC, it is invalid to inline. if (CalledFunc->hasGC()) { if (!Caller->hasGC()) Caller->setGC(CalledFunc->getGC()); else if (CalledFunc->getGC() != Caller->getGC()) return InlineResult::failure("incompatible GC"); } // Get the personality function from the callee if it contains a landing pad. Constant *CalledPersonality = CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn()->stripPointerCasts() : nullptr; // Find the personality function used by the landing pads of the caller. If it // exists, then check to see that it matches the personality function used in // the callee. Constant *CallerPersonality = Caller->hasPersonalityFn() ? Caller->getPersonalityFn()->stripPointerCasts() : nullptr; if (CalledPersonality) { if (!CallerPersonality) Caller->setPersonalityFn(CalledPersonality); // If the personality functions match, then we can perform the // inlining. Otherwise, we can't inline. // TODO: This isn't 100% true. Some personality functions are proper // supersets of others and can be used in place of the other. else if (CalledPersonality != CallerPersonality) return InlineResult::failure("incompatible personality"); } // We need to figure out which funclet the callsite was in so that we may // properly nest the callee. Instruction *CallSiteEHPad = nullptr; if (CallerPersonality) { EHPersonality Personality = classifyEHPersonality(CallerPersonality); if (isScopedEHPersonality(Personality)) { Optional ParentFunclet = CB.getOperandBundle(LLVMContext::OB_funclet); if (ParentFunclet) CallSiteEHPad = cast(ParentFunclet->Inputs.front()); // OK, the inlining site is legal. What about the target function? if (CallSiteEHPad) { if (Personality == EHPersonality::MSVC_CXX) { // The MSVC personality cannot tolerate catches getting inlined into // cleanup funclets. if (isa(CallSiteEHPad)) { // Ok, the call site is within a cleanuppad. Let's check the callee // for catchpads. for (const BasicBlock &CalledBB : *CalledFunc) { if (isa(CalledBB.getFirstNonPHI())) return InlineResult::failure("catch in cleanup funclet"); } } } else if (isAsynchronousEHPersonality(Personality)) { // SEH is even less tolerant, there may not be any sort of exceptional // funclet in the callee. for (const BasicBlock &CalledBB : *CalledFunc) { if (CalledBB.isEHPad()) return InlineResult::failure("SEH in cleanup funclet"); } } } } } // Determine if we are dealing with a call in an EHPad which does not unwind // to caller. bool EHPadForCallUnwindsLocally = false; if (CallSiteEHPad && isa(CB)) { UnwindDestMemoTy FuncletUnwindMap; Value *CallSiteUnwindDestToken = getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); EHPadForCallUnwindsLocally = CallSiteUnwindDestToken && !isa(CallSiteUnwindDestToken); } // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. Function::iterator LastBlock = --Caller->end(); // Make sure to capture all of the return instructions from the cloned // function. SmallVector Returns; ClonedCodeInfo InlinedFunctionInfo; Function::iterator FirstNewBlock; { // Scope to destroy VMap after cloning. ValueToValueMapTy VMap; // Keep a list of pair (dst, src) to emit byval initializations. SmallVector, 4> ByValInit; auto &DL = Caller->getParent()->getDataLayout(); // Calculate the vector of arguments to pass into the function cloner, which // matches up the formal to the actual argument values. auto AI = CB.arg_begin(); unsigned ArgNo = 0; for (Function::arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { Value *ActualArg = *AI; // When byval arguments actually inlined, we need to make the copy implied // by them explicit. However, we don't do this if the callee is readonly // or readnone, because the copy would be unneeded: the callee doesn't // modify the struct. if (CB.isByValArgument(ArgNo)) { ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, CalledFunc->getParamAlignment(ArgNo)); if (ActualArg != *AI) ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); } VMap[&*I] = ActualArg; } // TODO: Remove this when users have been updated to the assume bundles. // Add alignment assumptions if necessary. We do this before the inlined // instructions are actually cloned into the caller so that we can easily // check what will be known at the start of the inlined code. AddAlignmentAssumptions(CB, IFI); AssumptionCache *AC = IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; /// Preserve all attributes on of the call and its parameters. salvageKnowledge(&CB, AC); // We want the inliner to prune the code as it copies. We would LOVE to // have no dead or constant instructions leftover after inlining occurs // (which can happen, e.g., because an argument was constant), but we'll be // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, /*ModuleLevelChanges=*/false, Returns, ".i", &InlinedFunctionInfo, &CB); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) // Update the BFI of blocks cloned into the caller. updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, CalledFunc->front()); updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, IFI.PSI, IFI.CallerBFI); // Inject byval arguments initialization. for (std::pair &Init : ByValInit) HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), &*FirstNewBlock, IFI); Optional ParentDeopt = CB.getOperandBundle(LLVMContext::OB_deopt); if (ParentDeopt) { SmallVector OpDefs; for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { CallBase *ICS = dyn_cast_or_null(VH); if (!ICS) continue; // instruction was DCE'd or RAUW'ed to undef OpDefs.clear(); OpDefs.reserve(ICS->getNumOperandBundles()); for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; ++COBi) { auto ChildOB = ICS->getOperandBundleAt(COBi); if (ChildOB.getTagID() != LLVMContext::OB_deopt) { // If the inlined call has other operand bundles, let them be OpDefs.emplace_back(ChildOB); continue; } // It may be useful to separate this logic (of handling operand // bundles) out to a separate "policy" component if this gets crowded. // Prepend the parent's deoptimization continuation to the newly // inlined call's deoptimization continuation. std::vector MergedDeoptArgs; MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + ChildOB.Inputs.size()); MergedDeoptArgs.insert(MergedDeoptArgs.end(), ParentDeopt->Inputs.begin(), ParentDeopt->Inputs.end()); MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), ChildOB.Inputs.end()); OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); } Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); // Note: the RAUW does the appropriate fixup in VMap, so we need to do // this even if the call returns void. ICS->replaceAllUsesWith(NewI); VH = nullptr; ICS->eraseFromParent(); } } // Update the callgraph if requested. if (IFI.CG) UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); // For 'nodebug' functions, the associated DISubprogram is always null. // Conservatively avoid propagating the callsite debug location to // instructions inlined from a function whose DISubprogram is not null. fixupLineNumbers(Caller, FirstNewBlock, &CB, CalledFunc->getSubprogram() != nullptr); // Clone existing noalias metadata if necessary. CloneAliasScopeMetadata(CB, VMap); // Add noalias metadata if necessary. AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); // Clone return attributes on the callsite into the calls within the inlined // function which feed into its return value. AddReturnAttributes(CB, VMap); // Propagate metadata on the callsite if necessary. PropagateCallSiteMetadata(CB, VMap); // Register any cloned assumptions. if (IFI.GetAssumptionCache) for (BasicBlock &NewBlock : make_range(FirstNewBlock->getIterator(), Caller->end())) for (Instruction &I : NewBlock) if (auto *II = dyn_cast(&I)) if (II->getIntrinsicID() == Intrinsic::assume) IFI.GetAssumptionCache(*Caller).registerAssumption(II); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) { AllocaInst *AI = dyn_cast(I++); if (!AI) continue; // If the alloca is now dead, remove it. This often occurs due to code // specialization. if (AI->use_empty()) { AI->eraseFromParent(); continue; } if (!allocaWouldBeStaticInEntry(AI)) continue; // Keep track of the static allocas that we inline into the caller. IFI.StaticAllocas.push_back(AI); // Scan for the block of allocas that we can move over, and move them // all at once. while (isa(I) && !cast(I)->use_empty() && allocaWouldBeStaticInEntry(cast(I))) { IFI.StaticAllocas.push_back(cast(I)); ++I; } // Transfer all of the allocas over in a block. Using splice means // that the instructions aren't removed from the symbol table, then // reinserted. Caller->getEntryBlock().getInstList().splice( InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); } } SmallVector VarArgsToForward; SmallVector VarArgsAttrs; for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); i < CB.getNumArgOperands(); i++) { VarArgsToForward.push_back(CB.getArgOperand(i)); VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); } bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; if (InlinedFunctionInfo.ContainsCalls) { CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; if (CallInst *CI = dyn_cast(&CB)) CallSiteTailKind = CI->getTailCallKind(); // For inlining purposes, the "notail" marker is the same as no marker. if (CallSiteTailKind == CallInst::TCK_NoTail) CallSiteTailKind = CallInst::TCK_None; for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { for (auto II = BB->begin(); II != BB->end();) { Instruction &I = *II++; CallInst *CI = dyn_cast(&I); if (!CI) continue; // Forward varargs from inlined call site to calls to the // ForwardVarArgsTo function, if requested, and to musttail calls. if (!VarArgsToForward.empty() && ((ForwardVarArgsTo && CI->getCalledFunction() == ForwardVarArgsTo) || CI->isMustTailCall())) { // Collect attributes for non-vararg parameters. AttributeList Attrs = CI->getAttributes(); SmallVector ArgAttrs; if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { for (unsigned ArgNo = 0; ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); } // Add VarArg attributes. ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), Attrs.getRetAttributes(), ArgAttrs); // Add VarArgs to existing parameters. SmallVector Params(CI->arg_operands()); Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); CallInst *NewCI = CallInst::Create( CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); NewCI->setDebugLoc(CI->getDebugLoc()); NewCI->setAttributes(Attrs); NewCI->setCallingConv(CI->getCallingConv()); CI->replaceAllUsesWith(NewCI); CI->eraseFromParent(); CI = NewCI; } if (Function *F = CI->getCalledFunction()) InlinedDeoptimizeCalls |= F->getIntrinsicID() == Intrinsic::experimental_deoptimize; // We need to reduce the strength of any inlined tail calls. For // musttail, we have to avoid introducing potential unbounded stack // growth. For example, if functions 'f' and 'g' are mutually recursive // with musttail, we can inline 'g' into 'f' so long as we preserve // musttail on the cloned call to 'f'. If either the inlined call site // or the cloned call site is *not* musttail, the program already has // one frame of stack growth, so it's safe to remove musttail. Here is // a table of example transformations: // // f -> musttail g -> musttail f ==> f -> musttail f // f -> musttail g -> tail f ==> f -> tail f // f -> g -> musttail f ==> f -> f // f -> g -> tail f ==> f -> f // // Inlined notail calls should remain notail calls. CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); if (ChildTCK != CallInst::TCK_NoTail) ChildTCK = std::min(CallSiteTailKind, ChildTCK); CI->setTailCallKind(ChildTCK); InlinedMustTailCalls |= CI->isMustTailCall(); // Calls inlined through a 'nounwind' call site should be marked // 'nounwind'. if (MarkNoUnwind) CI->setDoesNotThrow(); } } } // Leave lifetime markers for the static alloca's, scoping them to the // function we just inlined. if (InsertLifetime && !IFI.StaticAllocas.empty()) { IRBuilder<> builder(&FirstNewBlock->front()); for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { AllocaInst *AI = IFI.StaticAllocas[ai]; // Don't mark swifterror allocas. They can't have bitcast uses. if (AI->isSwiftError()) continue; // If the alloca is already scoped to something smaller than the whole // function then there's no need to add redundant, less accurate markers. if (hasLifetimeMarkers(AI)) continue; // Try to determine the size of the allocation. ConstantInt *AllocaSize = nullptr; if (ConstantInt *AIArraySize = dyn_cast(AI->getArraySize())) { auto &DL = Caller->getParent()->getDataLayout(); Type *AllocaType = AI->getAllocatedType(); TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); // Don't add markers for zero-sized allocas. if (AllocaArraySize == 0) continue; // Check that array size doesn't saturate uint64_t and doesn't // overflow when it's multiplied by type size. if (!AllocaTypeSize.isScalable() && AllocaArraySize != std::numeric_limits::max() && std::numeric_limits::max() / AllocaArraySize >= AllocaTypeSize.getFixedSize()) { AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), AllocaArraySize * AllocaTypeSize); } } builder.CreateLifetimeStart(AI, AllocaSize); for (ReturnInst *RI : Returns) { // Don't insert llvm.lifetime.end calls between a musttail or deoptimize // call and a return. The return kills all local allocas. if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) continue; if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) continue; IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); } } } // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { Module *M = Caller->getParent(); // Get the two intrinsics we care about. Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); // Insert the llvm.stacksave. CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) .CreateCall(StackSave, {}, "savedstack"); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. for (ReturnInst *RI : Returns) { // Don't insert llvm.stackrestore calls between a musttail or deoptimize // call and a return. The return will restore the stack pointer. if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) continue; if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) continue; IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); } } // If we are inlining for an invoke instruction, we must make sure to rewrite // any call instructions into invoke instructions. This is sensitive to which // funclet pads were top-level in the inlinee, so must be done before // rewriting the "parent pad" links. if (auto *II = dyn_cast(&CB)) { BasicBlock *UnwindDest = II->getUnwindDest(); Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); if (isa(FirstNonPHI)) { HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); } else { HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); } } // Update the lexical scopes of the new funclets and callsites. // Anything that had 'none' as its parent is now nested inside the callsite's // EHPad. if (CallSiteEHPad) { for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { // Add bundle operands to any top-level call sites. SmallVector OpBundles; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { CallBase *I = dyn_cast(&*BBI++); if (!I) continue; // Skip call sites which are nounwind intrinsics. auto *CalledFn = dyn_cast(I->getCalledOperand()->stripPointerCasts()); if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) continue; // Skip call sites which already have a "funclet" bundle. if (I->getOperandBundle(LLVMContext::OB_funclet)) continue; I->getOperandBundlesAsDefs(OpBundles); OpBundles.emplace_back("funclet", CallSiteEHPad); Instruction *NewInst = CallBase::Create(I, OpBundles, I); NewInst->takeName(I); I->replaceAllUsesWith(NewInst); I->eraseFromParent(); OpBundles.clear(); } // It is problematic if the inlinee has a cleanupret which unwinds to // caller and we inline it into a call site which doesn't unwind but into // an EH pad that does. Such an edge must be dynamically unreachable. // As such, we replace the cleanupret with unreachable. if (auto *CleanupRet = dyn_cast(BB->getTerminator())) if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); Instruction *I = BB->getFirstNonPHI(); if (!I->isEHPad()) continue; if (auto *CatchSwitch = dyn_cast(I)) { if (isa(CatchSwitch->getParentPad())) CatchSwitch->setParentPad(CallSiteEHPad); } else { auto *FPI = cast(I); if (isa(FPI->getParentPad())) FPI->setParentPad(CallSiteEHPad); } } } if (InlinedDeoptimizeCalls) { // We need to at least remove the deoptimizing returns from the Return set, // so that the control flow from those returns does not get merged into the // caller (but terminate it instead). If the caller's return type does not // match the callee's return type, we also need to change the return type of // the intrinsic. if (Caller->getReturnType() == CB.getType()) { auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; }); Returns.erase(NewEnd, Returns.end()); } else { SmallVector NormalReturns; Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( Caller->getParent(), Intrinsic::experimental_deoptimize, {Caller->getReturnType()}); for (ReturnInst *RI : Returns) { CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); if (!DeoptCall) { NormalReturns.push_back(RI); continue; } // The calling convention on the deoptimize call itself may be bogus, // since the code we're inlining may have undefined behavior (and may // never actually execute at runtime); but all // @llvm.experimental.deoptimize declarations have to have the same // calling convention in a well-formed module. auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); NewDeoptIntrinsic->setCallingConv(CallingConv); auto *CurBB = RI->getParent(); RI->eraseFromParent(); SmallVector CallArgs(DeoptCall->arg_begin(), DeoptCall->arg_end()); SmallVector OpBundles; DeoptCall->getOperandBundlesAsDefs(OpBundles); DeoptCall->eraseFromParent(); assert(!OpBundles.empty() && "Expected at least the deopt operand bundle"); IRBuilder<> Builder(CurBB); CallInst *NewDeoptCall = Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); NewDeoptCall->setCallingConv(CallingConv); if (NewDeoptCall->getType()->isVoidTy()) Builder.CreateRetVoid(); else Builder.CreateRet(NewDeoptCall); } // Leave behind the normal returns so we can merge control flow. std::swap(Returns, NormalReturns); } } // Handle any inlined musttail call sites. In order for a new call site to be // musttail, the source of the clone and the inlined call site must have been // musttail. Therefore it's safe to return without merging control into the // phi below. if (InlinedMustTailCalls) { // Check if we need to bitcast the result of any musttail calls. Type *NewRetTy = Caller->getReturnType(); bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; // Handle the returns preceded by musttail calls separately. SmallVector NormalReturns; for (ReturnInst *RI : Returns) { CallInst *ReturnedMustTail = RI->getParent()->getTerminatingMustTailCall(); if (!ReturnedMustTail) { NormalReturns.push_back(RI); continue; } if (!NeedBitCast) continue; // Delete the old return and any preceding bitcast. BasicBlock *CurBB = RI->getParent(); auto *OldCast = dyn_cast_or_null(RI->getReturnValue()); RI->eraseFromParent(); if (OldCast) OldCast->eraseFromParent(); // Insert a new bitcast and return with the right type. IRBuilder<> Builder(CurBB); Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); } // Leave behind the normal returns so we can merge control flow. std::swap(Returns, NormalReturns); } // Now that all of the transforms on the inlined code have taken place but // before we splice the inlined code into the CFG and lose track of which // blocks were actually inlined, collect the call sites. We only do this if // call graph updates weren't requested, as those provide value handle based // tracking of inlined call sites instead. if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { // Otherwise just collect the raw call sites that were inlined. for (BasicBlock &NewBB : make_range(FirstNewBlock->getIterator(), Caller->end())) for (Instruction &I : NewBB) if (auto *CB = dyn_cast(&I)) IFI.InlinedCallSites.push_back(CB); } // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into // the calling basic block. if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { // Move all of the instructions right before the call. OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), FirstNewBlock->begin(), FirstNewBlock->end()); // Remove the cloned basic block. Caller->getBasicBlockList().pop_back(); // If the call site was an invoke instruction, add a branch to the normal // destination. if (InvokeInst *II = dyn_cast(&CB)) { BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); NewBr->setDebugLoc(Returns[0]->getDebugLoc()); } // If the return instruction returned a value, replace uses of the call with // uses of the returned value. if (!CB.use_empty()) { ReturnInst *R = Returns[0]; if (&CB == R->getReturnValue()) CB.replaceAllUsesWith(UndefValue::get(CB.getType())); else CB.replaceAllUsesWith(R->getReturnValue()); } // Since we are now done with the Call/Invoke, we can delete it. CB.eraseFromParent(); // Since we are now done with the return instruction, delete it also. Returns[0]->eraseFromParent(); // We are now done with the inlining. return InlineResult::success(); } // Otherwise, we have the normal case, of more than one block to inline or // multiple return sites. // We want to clone the entire callee function into the hole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; BranchInst *CreatedBranchToNormalDest = nullptr; if (InvokeInst *II = dyn_cast(&CB)) { // Add an unconditional branch to make this look like the CallInst case... CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), CalledFunc->getName() + ".exit"); } else { // It's a call // If this is a call instruction, we need to split the basic block that // the call lives in. // AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), CalledFunc->getName() + ".exit"); } if (IFI.CallerBFI) { // Copy original BB's block frequency to AfterCallBB IFI.CallerBFI->setBlockFreq( AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // Instruction *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, &*FirstNewBlock); // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), Caller->getBasicBlockList(), FirstNewBlock, Caller->end()); // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. Type *RTy = CalledFunc->getReturnType(); PHINode *PHI = nullptr; if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. if (!CB.use_empty()) { PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), &AfterCallBB->front()); // Anything that used the result of the function call should now use the // PHI node as their operand. CB.replaceAllUsesWith(PHI); } // Loop over all of the return instructions adding entries to the PHI node // as appropriate. if (PHI) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), RI->getParent()); } } // Add a branch to the merge points and remove return instructions. DebugLoc Loc; for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; BranchInst* BI = BranchInst::Create(AfterCallBB, RI); Loc = RI->getDebugLoc(); BI->setDebugLoc(Loc); RI->eraseFromParent(); } // We need to set the debug location to *somewhere* inside the // inlined function. The line number may be nonsensical, but the // instruction will at least be associated with the right // function. if (CreatedBranchToNormalDest) CreatedBranchToNormalDest->setDebugLoc(Loc); } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. if (!CB.use_empty()) { if (&CB == Returns[0]->getReturnValue()) CB.replaceAllUsesWith(UndefValue::get(CB.getType())); else CB.replaceAllUsesWith(Returns[0]->getReturnValue()); } // Update PHI nodes that use the ReturnBB to use the AfterCallBB. BasicBlock *ReturnBB = Returns[0]->getParent(); ReturnBB->replaceAllUsesWith(AfterCallBB); // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); if (CreatedBranchToNormalDest) CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); ReturnBB->eraseFromParent(); } else if (!CB.use_empty()) { // No returns, but something is using the return value of the call. Just // nuke the result. CB.replaceAllUsesWith(UndefValue::get(CB.getType())); } // Since we are now done with the Call/Invoke, we can delete it. CB.eraseFromParent(); // If we inlined any musttail calls and the original return is now // unreachable, delete it. It can only contain a bitcast and ret. if (InlinedMustTailCalls && pred_empty(AfterCallBB)) AfterCallBB->eraseFromParent(); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast(Br)->getSuccessor(0); // Splice the code entry block into calling block, right before the // unconditional branch. CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); // Remove the unconditional branch. OrigBB->getInstList().erase(Br); // Now we can remove the CalleeEntry block, which is now empty. Caller->getBasicBlockList().erase(CalleeEntry); // If we inserted a phi node, check to see if it has a single value (e.g. all // the entries are the same or undef). If so, remove the PHI so it doesn't // block other optimizations. if (PHI) { AssumptionCache *AC = IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; auto &DL = Caller->getParent()->getDataLayout(); if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { PHI->replaceAllUsesWith(V); PHI->eraseFromParent(); } } return InlineResult::success(); }