; RUN: llc -aarch64-sve-vector-bits-min=128 -asm-verbose=0 < %s | FileCheck %s -check-prefix=NO_SVE ; RUN: llc -aarch64-sve-vector-bits-min=256 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_EQ_256 ; RUN: llc -aarch64-sve-vector-bits-min=384 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK ; RUN: llc -aarch64-sve-vector-bits-min=512 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=640 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=768 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=896 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=1024 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1152 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1280 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1408 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1536 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1664 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1792 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1920 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=2048 -asm-verbose=0 < %s | FileCheck %s -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024,VBITS_GE_2048 target triple = "aarch64-unknown-linux-gnu" ; Don't use SVE when its registers are no bigger than NEON. ; NO_SVE-NOT: ptrue ; ; FMAXNM ; ; Don't use SVE for 64-bit vectors. define <4 x half> @fmaxnm_v4f16(<4 x half> %op1, <4 x half> %op2) #0 { ; CHECK-LABEL: fmaxnm_v4f16: ; CHECK: fmaxnm v0.4h, v0.4h, v1.4h ; CHECK-NEXT: ret %res = call <4 x half> @llvm.maxnum.v4f16(<4 x half> %op1, <4 x half> %op2) ret <4 x half> %res } ; Don't use SVE for 128-bit vectors. define <8 x half> @fmaxnm_v8f16(<8 x half> %op1, <8 x half> %op2) #0 { ; CHECK-LABEL: fmaxnm_v8f16: ; CHECK: fmaxnm v0.8h, v0.8h, v1.8h ; CHECK-NEXT: ret %res = call <8 x half> @llvm.maxnum.v8f16(<8 x half> %op1, <8 x half> %op2) ret <8 x half> %res } define void @fmaxnm_v16f16(<16 x half>* %a, <16 x half>* %b) #0 { ; CHECK-LABEL: fmaxnm_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; CHECK-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <16 x half>, <16 x half>* %a %op2 = load <16 x half>, <16 x half>* %b %res = call <16 x half> @llvm.maxnum.v16f16(<16 x half> %op1, <16 x half> %op2) store <16 x half> %res, <16 x half>* %a ret void } define void @fmaxnm_v32f16(<32 x half>* %a, <32 x half>* %b) #0 { ; CHECK-LABEL: fmaxnm_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_512-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1h { [[OP1_LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[OP1_HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1h { [[OP2_LO:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1h { [[OP2_HI:z[0-9]+]].h }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].h, [[PG]]/m, [[OP1_LO]].h, [[OP2_LO]].h ; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].h, [[PG]]/m, [[OP1_HI]].h, [[OP2_HI]].h ; VBITS_EQ_256-DAG: st1h { [[RES_LO]].h }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1h { [[RES_HI]].h }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <32 x half>, <32 x half>* %a %op2 = load <32 x half>, <32 x half>* %b %res = call <32 x half> @llvm.maxnum.v32f16(<32 x half> %op1, <32 x half> %op2) store <32 x half> %res, <32 x half>* %a ret void } define void @fmaxnm_v64f16(<64 x half>* %a, <64 x half>* %b) #0 { ; CHECK-LABEL: fmaxnm_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_1024-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <64 x half>, <64 x half>* %a %op2 = load <64 x half>, <64 x half>* %b %res = call <64 x half> @llvm.maxnum.v64f16(<64 x half> %op1, <64 x half> %op2) store <64 x half> %res, <64 x half>* %a ret void } define void @fmaxnm_v128f16(<128 x half>* %a, <128 x half>* %b) #0 { ; CHECK-LABEL: fmaxnm_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_2048-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <128 x half>, <128 x half>* %a %op2 = load <128 x half>, <128 x half>* %b %res = call <128 x half> @llvm.maxnum.v128f16(<128 x half> %op1, <128 x half> %op2) store <128 x half> %res, <128 x half>* %a ret void } ; Don't use SVE for 64-bit vectors. define <2 x float> @fmaxnm_v2f32(<2 x float> %op1, <2 x float> %op2) #0 { ; CHECK-LABEL: fmaxnm_v2f32: ; CHECK: fmaxnm v0.2s, v0.2s, v1.2s ; CHECK-NEXT: ret %res = call <2 x float> @llvm.maxnum.v2f32(<2 x float> %op1, <2 x float> %op2) ret <2 x float> %res } ; Don't use SVE for 128-bit vectors. define <4 x float> @fmaxnm_v4f32(<4 x float> %op1, <4 x float> %op2) #0 { ; CHECK-LABEL: fmaxnm_v4f32: ; CHECK: fmaxnm v0.4s, v0.4s, v1.4s ; CHECK-NEXT: ret %res = call <4 x float> @llvm.maxnum.v4f32(<4 x float> %op1, <4 x float> %op2) ret <4 x float> %res } define void @fmaxnm_v8f32(<8 x float>* %a, <8 x float>* %b) #0 { ; CHECK-LABEL: fmaxnm_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; CHECK-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <8 x float>, <8 x float>* %a %op2 = load <8 x float>, <8 x float>* %b %res = call <8 x float> @llvm.maxnum.v8f32(<8 x float> %op1, <8 x float> %op2) store <8 x float> %res, <8 x float>* %a ret void } define void @fmaxnm_v16f32(<16 x float>* %a, <16 x float>* %b) #0 { ; CHECK-LABEL: fmaxnm_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_512-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1w { [[OP1_LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[OP1_HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1w { [[OP2_LO:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1w { [[OP2_HI:z[0-9]+]].s }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].s, [[PG]]/m, [[OP1_LO]].s, [[OP2_LO]].s ; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].s, [[PG]]/m, [[OP1_HI]].s, [[OP2_HI]].s ; VBITS_EQ_256-DAG: st1w { [[RES_LO]].s }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1w { [[RES_HI]].s }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <16 x float>, <16 x float>* %a %op2 = load <16 x float>, <16 x float>* %b %res = call <16 x float> @llvm.maxnum.v16f32(<16 x float> %op1, <16 x float> %op2) store <16 x float> %res, <16 x float>* %a ret void } define void @fmaxnm_v32f32(<32 x float>* %a, <32 x float>* %b) #0 { ; CHECK-LABEL: fmaxnm_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_1024-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <32 x float>, <32 x float>* %a %op2 = load <32 x float>, <32 x float>* %b %res = call <32 x float> @llvm.maxnum.v32f32(<32 x float> %op1, <32 x float> %op2) store <32 x float> %res, <32 x float>* %a ret void } define void @fmaxnm_v64f32(<64 x float>* %a, <64 x float>* %b) #0 { ; CHECK-LABEL: fmaxnm_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_2048-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <64 x float>, <64 x float>* %a %op2 = load <64 x float>, <64 x float>* %b %res = call <64 x float> @llvm.maxnum.v64f32(<64 x float> %op1, <64 x float> %op2) store <64 x float> %res, <64 x float>* %a ret void } ; Don't use SVE for 64-bit vectors. define <1 x double> @fmaxnm_v1f64(<1 x double> %op1, <1 x double> %op2) #0 { ; CHECK-LABEL: fmaxnm_v1f64: ; CHECK: fmaxnm d0, d0, d1 ; CHECK-NEXT: ret %res = call <1 x double> @llvm.maxnum.v1f64(<1 x double> %op1, <1 x double> %op2) ret <1 x double> %res } ; Don't use SVE for 128-bit vectors. define <2 x double> @fmaxnm_v2f64(<2 x double> %op1, <2 x double> %op2) #0 { ; CHECK-LABEL: fmaxnm_v2f64: ; CHECK: fmaxnm v0.2d, v0.2d, v1.2d ; CHECK-NEXT: ret %res = call <2 x double> @llvm.maxnum.v2f64(<2 x double> %op1, <2 x double> %op2) ret <2 x double> %res } define void @fmaxnm_v4f64(<4 x double>* %a, <4 x double>* %b) #0 { ; CHECK-LABEL: fmaxnm_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; CHECK-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; CHECK-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <4 x double>, <4 x double>* %a %op2 = load <4 x double>, <4 x double>* %b %res = call <4 x double> @llvm.maxnum.v4f64(<4 x double> %op1, <4 x double> %op2) store <4 x double> %res, <4 x double>* %a ret void } define void @fmaxnm_v8f64(<8 x double>* %a, <8 x double>* %b) #0 { ; CHECK-LABEL: fmaxnm_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_512-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1d { [[OP1_LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[OP1_HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1d { [[OP2_LO:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1d { [[OP2_HI:z[0-9]+]].d }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[RES_LO:z[0-9]+]].d, [[PG]]/m, [[OP1_LO]].d, [[OP2_LO]].d ; VBITS_EQ_256-DAG: fmaxnm [[RES_HI:z[0-9]+]].d, [[PG]]/m, [[OP1_HI]].d, [[OP2_HI]].d ; VBITS_EQ_256-DAG: st1d { [[RES_LO]].d }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1d { [[RES_HI]].d }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <8 x double>, <8 x double>* %a %op2 = load <8 x double>, <8 x double>* %b %res = call <8 x double> @llvm.maxnum.v8f64(<8 x double> %op1, <8 x double> %op2) store <8 x double> %res, <8 x double>* %a ret void } define void @fmaxnm_v16f64(<16 x double>* %a, <16 x double>* %b) #0 { ; CHECK-LABEL: fmaxnm_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_1024-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <16 x double>, <16 x double>* %a %op2 = load <16 x double>, <16 x double>* %b %res = call <16 x double> @llvm.maxnum.v16f64(<16 x double> %op1, <16 x double> %op2) store <16 x double> %res, <16 x double>* %a ret void } define void @fmaxnm_v32f64(<32 x double>* %a, <32 x double>* %b) #0 { ; CHECK-LABEL: fmaxnm_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fmaxnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_2048-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <32 x double>, <32 x double>* %a %op2 = load <32 x double>, <32 x double>* %b %res = call <32 x double> @llvm.maxnum.v32f64(<32 x double> %op1, <32 x double> %op2) store <32 x double> %res, <32 x double>* %a ret void } ; ; FMINNM ; ; Don't use SVE for 64-bit vectors. define <4 x half> @fminnm_v4f16(<4 x half> %op1, <4 x half> %op2) #0 { ; CHECK-LABEL: fminnm_v4f16: ; CHECK: fminnm v0.4h, v0.4h, v1.4h ; CHECK-NEXT: ret %res = call <4 x half> @llvm.minnum.v4f16(<4 x half> %op1, <4 x half> %op2) ret <4 x half> %res } ; Don't use SVE for 128-bit vectors. define <8 x half> @fminnm_v8f16(<8 x half> %op1, <8 x half> %op2) #0 { ; CHECK-LABEL: fminnm_v8f16: ; CHECK: fminnm v0.8h, v0.8h, v1.8h ; CHECK-NEXT: ret %res = call <8 x half> @llvm.minnum.v8f16(<8 x half> %op1, <8 x half> %op2) ret <8 x half> %res } define void @fminnm_v16f16(<16 x half>* %a, <16 x half>* %b) #0 { ; CHECK-LABEL: fminnm_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; CHECK-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; CHECK-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <16 x half>, <16 x half>* %a %op2 = load <16 x half>, <16 x half>* %b %res = call <16 x half> @llvm.minnum.v16f16(<16 x half> %op1, <16 x half> %op2) store <16 x half> %res, <16 x half>* %a ret void } define void @fminnm_v32f16(<32 x half>* %a, <32 x half>* %b) #0 { ; CHECK-LABEL: fminnm_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_512-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1h { [[OP1_LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[OP1_HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1h { [[OP2_LO:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1h { [[OP2_HI:z[0-9]+]].h }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].h, [[PG]]/m, [[OP1_LO]].h, [[OP2_LO]].h ; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].h, [[PG]]/m, [[OP1_HI]].h, [[OP2_HI]].h ; VBITS_EQ_256-DAG: st1h { [[RES_LO]].h }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1h { [[RES_HI]].h }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <32 x half>, <32 x half>* %a %op2 = load <32 x half>, <32 x half>* %b %res = call <32 x half> @llvm.minnum.v32f16(<32 x half> %op1, <32 x half> %op2) store <32 x half> %res, <32 x half>* %a ret void } define void @fminnm_v64f16(<64 x half>* %a, <64 x half>* %b) #0 { ; CHECK-LABEL: fminnm_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_1024-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <64 x half>, <64 x half>* %a %op2 = load <64 x half>, <64 x half>* %b %res = call <64 x half> @llvm.minnum.v64f16(<64 x half> %op1, <64 x half> %op2) store <64 x half> %res, <64 x half>* %a ret void } define void @fminnm_v128f16(<128 x half>* %a, <128 x half>* %b) #0 { ; CHECK-LABEL: fminnm_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-DAG: ld1h { [[OP1:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1h { [[OP2:z[0-9]+]].h }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].h, [[PG]]/m, [[OP1]].h, [[OP2]].h ; VBITS_GE_2048-NEXT: st1h { [[RES]].h }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <128 x half>, <128 x half>* %a %op2 = load <128 x half>, <128 x half>* %b %res = call <128 x half> @llvm.minnum.v128f16(<128 x half> %op1, <128 x half> %op2) store <128 x half> %res, <128 x half>* %a ret void } ; Don't use SVE for 64-bit vectors. define <2 x float> @fminnm_v2f32(<2 x float> %op1, <2 x float> %op2) #0 { ; CHECK-LABEL: fminnm_v2f32: ; CHECK: fminnm v0.2s, v0.2s, v1.2s ; CHECK-NEXT: ret %res = call <2 x float> @llvm.minnum.v2f32(<2 x float> %op1, <2 x float> %op2) ret <2 x float> %res } ; Don't use SVE for 128-bit vectors. define <4 x float> @fminnm_v4f32(<4 x float> %op1, <4 x float> %op2) #0 { ; CHECK-LABEL: fminnm_v4f32: ; CHECK: fminnm v0.4s, v0.4s, v1.4s ; CHECK-NEXT: ret %res = call <4 x float> @llvm.minnum.v4f32(<4 x float> %op1, <4 x float> %op2) ret <4 x float> %res } define void @fminnm_v8f32(<8 x float>* %a, <8 x float>* %b) #0 { ; CHECK-LABEL: fminnm_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; CHECK-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; CHECK-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <8 x float>, <8 x float>* %a %op2 = load <8 x float>, <8 x float>* %b %res = call <8 x float> @llvm.minnum.v8f32(<8 x float> %op1, <8 x float> %op2) store <8 x float> %res, <8 x float>* %a ret void } define void @fminnm_v16f32(<16 x float>* %a, <16 x float>* %b) #0 { ; CHECK-LABEL: fminnm_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_512-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1w { [[OP1_LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[OP1_HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1w { [[OP2_LO:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1w { [[OP2_HI:z[0-9]+]].s }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].s, [[PG]]/m, [[OP1_LO]].s, [[OP2_LO]].s ; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].s, [[PG]]/m, [[OP1_HI]].s, [[OP2_HI]].s ; VBITS_EQ_256-DAG: st1w { [[RES_LO]].s }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1w { [[RES_HI]].s }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <16 x float>, <16 x float>* %a %op2 = load <16 x float>, <16 x float>* %b %res = call <16 x float> @llvm.minnum.v16f32(<16 x float> %op1, <16 x float> %op2) store <16 x float> %res, <16 x float>* %a ret void } define void @fminnm_v32f32(<32 x float>* %a, <32 x float>* %b) #0 { ; CHECK-LABEL: fminnm_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_1024-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <32 x float>, <32 x float>* %a %op2 = load <32 x float>, <32 x float>* %b %res = call <32 x float> @llvm.minnum.v32f32(<32 x float> %op1, <32 x float> %op2) store <32 x float> %res, <32 x float>* %a ret void } define void @fminnm_v64f32(<64 x float>* %a, <64 x float>* %b) #0 { ; CHECK-LABEL: fminnm_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-DAG: ld1w { [[OP1:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1w { [[OP2:z[0-9]+]].s }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].s, [[PG]]/m, [[OP1]].s, [[OP2]].s ; VBITS_GE_2048-NEXT: st1w { [[RES]].s }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <64 x float>, <64 x float>* %a %op2 = load <64 x float>, <64 x float>* %b %res = call <64 x float> @llvm.minnum.v64f32(<64 x float> %op1, <64 x float> %op2) store <64 x float> %res, <64 x float>* %a ret void } ; Don't use SVE for 64-bit vectors. define <1 x double> @fminnm_v1f64(<1 x double> %op1, <1 x double> %op2) #0 { ; CHECK-LABEL: fminnm_v1f64: ; CHECK: fminnm d0, d0, d1 ; CHECK-NEXT: ret %res = call <1 x double> @llvm.minnum.v1f64(<1 x double> %op1, <1 x double> %op2) ret <1 x double> %res } ; Don't use SVE for 128-bit vectors. define <2 x double> @fminnm_v2f64(<2 x double> %op1, <2 x double> %op2) #0 { ; CHECK-LABEL: fminnm_v2f64: ; CHECK: fminnm v0.2d, v0.2d, v1.2d ; CHECK-NEXT: ret %res = call <2 x double> @llvm.minnum.v2f64(<2 x double> %op1, <2 x double> %op2) ret <2 x double> %res } define void @fminnm_v4f64(<4 x double>* %a, <4 x double>* %b) #0 { ; CHECK-LABEL: fminnm_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; CHECK-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; CHECK-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; CHECK-NEXT: ret %op1 = load <4 x double>, <4 x double>* %a %op2 = load <4 x double>, <4 x double>* %b %res = call <4 x double> @llvm.minnum.v4f64(<4 x double> %op1, <4 x double> %op2) store <4 x double> %res, <4 x double>* %a ret void } define void @fminnm_v8f64(<8 x double>* %a, <8 x double>* %b) #0 { ; CHECK-LABEL: fminnm_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_512-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_512-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: add x[[B_HI:[0-9]+]], x1, #32 ; VBITS_EQ_256-DAG: ld1d { [[OP1_LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[OP1_HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: ld1d { [[OP2_LO:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_EQ_256-DAG: ld1d { [[OP2_HI:z[0-9]+]].d }, [[PG]]/z, [x[[B_HI]]] ; VBITS_EQ_256-DAG: fminnm [[RES_LO:z[0-9]+]].d, [[PG]]/m, [[OP1_LO]].d, [[OP2_LO]].d ; VBITS_EQ_256-DAG: fminnm [[RES_HI:z[0-9]+]].d, [[PG]]/m, [[OP1_HI]].d, [[OP2_HI]].d ; VBITS_EQ_256-DAG: st1d { [[RES_LO]].d }, [[PG]], [x0] ; VBITS_EQ_256-DAG: st1d { [[RES_HI]].d }, [[PG]], [x[[A_HI]] ; VBITS_EQ_256-NEXT: ret %op1 = load <8 x double>, <8 x double>* %a %op2 = load <8 x double>, <8 x double>* %b %res = call <8 x double> @llvm.minnum.v8f64(<8 x double> %op1, <8 x double> %op2) store <8 x double> %res, <8 x double>* %a ret void } define void @fminnm_v16f64(<16 x double>* %a, <16 x double>* %b) #0 { ; CHECK-LABEL: fminnm_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_1024-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_1024-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_1024-NEXT: ret %op1 = load <16 x double>, <16 x double>* %a %op2 = load <16 x double>, <16 x double>* %b %res = call <16 x double> @llvm.minnum.v16f64(<16 x double> %op1, <16 x double> %op2) store <16 x double> %res, <16 x double>* %a ret void } define void @fminnm_v32f64(<32 x double>* %a, <32 x double>* %b) #0 { ; CHECK-LABEL: fminnm_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-DAG: ld1d { [[OP1:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-DAG: ld1d { [[OP2:z[0-9]+]].d }, [[PG]]/z, [x1] ; VBITS_GE_2048-NEXT: fminnm [[RES:z[0-9]+]].d, [[PG]]/m, [[OP1]].d, [[OP2]].d ; VBITS_GE_2048-NEXT: st1d { [[RES]].d }, [[PG]], [x0] ; VBITS_GE_2048-NEXT: ret %op1 = load <32 x double>, <32 x double>* %a %op2 = load <32 x double>, <32 x double>* %b %res = call <32 x double> @llvm.minnum.v32f64(<32 x double> %op1, <32 x double> %op2) store <32 x double> %res, <32 x double>* %a ret void } attributes #0 = { "target-features"="+sve" } declare <4 x half> @llvm.minnum.v4f16(<4 x half>, <4 x half>) declare <8 x half> @llvm.minnum.v8f16(<8 x half>, <8 x half>) declare <16 x half> @llvm.minnum.v16f16(<16 x half>, <16 x half>) declare <32 x half> @llvm.minnum.v32f16(<32 x half>, <32 x half>) declare <64 x half> @llvm.minnum.v64f16(<64 x half>, <64 x half>) declare <128 x half> @llvm.minnum.v128f16(<128 x half>, <128 x half>) declare <2 x float> @llvm.minnum.v2f32(<2 x float>, <2 x float>) declare <4 x float> @llvm.minnum.v4f32(<4 x float>, <4 x float>) declare <8 x float> @llvm.minnum.v8f32(<8 x float>, <8 x float>) declare <16 x float> @llvm.minnum.v16f32(<16 x float>, <16 x float>) declare <32 x float> @llvm.minnum.v32f32(<32 x float>, <32 x float>) declare <64 x float> @llvm.minnum.v64f32(<64 x float>, <64 x float>) declare <1 x double> @llvm.minnum.v1f64(<1 x double>, <1 x double>) declare <2 x double> @llvm.minnum.v2f64(<2 x double>, <2 x double>) declare <4 x double> @llvm.minnum.v4f64(<4 x double>, <4 x double>) declare <8 x double> @llvm.minnum.v8f64(<8 x double>, <8 x double>) declare <16 x double> @llvm.minnum.v16f64(<16 x double>, <16 x double>) declare <32 x double> @llvm.minnum.v32f64(<32 x double>, <32 x double>) declare <4 x half> @llvm.maxnum.v4f16(<4 x half>, <4 x half>) declare <8 x half> @llvm.maxnum.v8f16(<8 x half>, <8 x half>) declare <16 x half> @llvm.maxnum.v16f16(<16 x half>, <16 x half>) declare <32 x half> @llvm.maxnum.v32f16(<32 x half>, <32 x half>) declare <64 x half> @llvm.maxnum.v64f16(<64 x half>, <64 x half>) declare <128 x half> @llvm.maxnum.v128f16(<128 x half>, <128 x half>) declare <2 x float> @llvm.maxnum.v2f32(<2 x float>, <2 x float>) declare <4 x float> @llvm.maxnum.v4f32(<4 x float>, <4 x float>) declare <8 x float> @llvm.maxnum.v8f32(<8 x float>, <8 x float>) declare <16 x float> @llvm.maxnum.v16f32(<16 x float>, <16 x float>) declare <32 x float> @llvm.maxnum.v32f32(<32 x float>, <32 x float>) declare <64 x float> @llvm.maxnum.v64f32(<64 x float>, <64 x float>) declare <1 x double> @llvm.maxnum.v1f64(<1 x double>, <1 x double>) declare <2 x double> @llvm.maxnum.v2f64(<2 x double>, <2 x double>) declare <4 x double> @llvm.maxnum.v4f64(<4 x double>, <4 x double>) declare <8 x double> @llvm.maxnum.v8f64(<8 x double>, <8 x double>) declare <16 x double> @llvm.maxnum.v16f64(<16 x double>, <16 x double>) declare <32 x double> @llvm.maxnum.v32f64(<32 x double>, <32 x double>)