//===- RISCVCompressInstEmitter.cpp - Generator for RISCV Compression -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // RISCVCompressInstEmitter implements a tablegen-driven CompressPat based // RISCV Instruction Compression mechanism. // //===--------------------------------------------------------------===// // // RISCVCompressInstEmitter implements a tablegen-driven CompressPat Instruction // Compression mechanism for generating RISCV compressed instructions // (C ISA Extension) from the expanded instruction form. // This tablegen backend processes CompressPat declarations in a // td file and generates all the required checks to validate the pattern // declarations; validate the input and output operands to generate the correct // compressed instructions. The checks include validating different types of // operands; register operands, immediate operands, fixed register and fixed // immediate inputs. // // Example: // class CompressPat { // dag Input = input; // dag Output = output; // list Predicates = []; // } // // let Predicates = [HasStdExtC] in { // def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2), // (C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>; // } // // The result is an auto-generated header file // 'RISCVGenCompressInstEmitter.inc' which exports two functions for // compressing/uncompressing MCInst instructions, plus // some helper functions: // // bool compressInst(MCInst &OutInst, const MCInst &MI, // const MCSubtargetInfo &STI, // MCContext &Context); // // bool uncompressInst(MCInst &OutInst, const MCInst &MI, // const MCRegisterInfo &MRI, // const MCSubtargetInfo &STI); // // In addition, it exports a function for checking whether // an instruction is compressable: // // bool isCompressibleInst(const MachineInstr& MI, // const RISCVSubtarget *Subtarget, // const MCRegisterInfo &MRI, // const MCSubtargetInfo &STI); // // The clients that include this auto-generated header file and // invoke these functions can compress an instruction before emitting // it in the target-specific ASM or ELF streamer or can uncompress // an instruction before printing it when the expanded instruction // format aliases is favored. //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include using namespace llvm; #define DEBUG_TYPE "compress-inst-emitter" namespace { class RISCVCompressInstEmitter { struct OpData { enum MapKind { Operand, Imm, Reg }; MapKind Kind; union { unsigned Operand; // Operand number mapped to. int64_t Imm; // Integer immediate value. Record *Reg; // Physical register. } Data; int TiedOpIdx = -1; // Tied operand index within the instruction. }; struct CompressPat { CodeGenInstruction Source; // The source instruction definition. CodeGenInstruction Dest; // The destination instruction to transform to. std::vector PatReqFeatures; // Required target features to enable pattern. IndexedMap SourceOperandMap; // Maps operands in the Source Instruction to // the corresponding Dest instruction operand. IndexedMap DestOperandMap; // Maps operands in the Dest Instruction // to the corresponding Source instruction operand. CompressPat(CodeGenInstruction &S, CodeGenInstruction &D, std::vector RF, IndexedMap &SourceMap, IndexedMap &DestMap) : Source(S), Dest(D), PatReqFeatures(RF), SourceOperandMap(SourceMap), DestOperandMap(DestMap) {} }; enum EmitterType { Compress, Uncompress, CheckCompress }; RecordKeeper &Records; CodeGenTarget Target; SmallVector CompressPatterns; void addDagOperandMapping(Record *Rec, DagInit *Dag, CodeGenInstruction &Inst, IndexedMap &OperandMap, bool IsSourceInst); void evaluateCompressPat(Record *Compress); void emitCompressInstEmitter(raw_ostream &o, EmitterType EType); bool validateTypes(Record *SubType, Record *Type, bool IsSourceInst); bool validateRegister(Record *Reg, Record *RegClass); void createDagOperandMapping(Record *Rec, StringMap &SourceOperands, StringMap &DestOperands, DagInit *SourceDag, DagInit *DestDag, IndexedMap &SourceOperandMap); void createInstOperandMapping(Record *Rec, DagInit *SourceDag, DagInit *DestDag, IndexedMap &SourceOperandMap, IndexedMap &DestOperandMap, StringMap &SourceOperands, CodeGenInstruction &DestInst); public: RISCVCompressInstEmitter(RecordKeeper &R) : Records(R), Target(R) {} void run(raw_ostream &o); }; } // End anonymous namespace. bool RISCVCompressInstEmitter::validateRegister(Record *Reg, Record *RegClass) { assert(Reg->isSubClassOf("Register") && "Reg record should be a Register\n"); assert(RegClass->isSubClassOf("RegisterClass") && "RegClass record should be" " a RegisterClass\n"); const CodeGenRegisterClass &RC = Target.getRegisterClass(RegClass); const CodeGenRegister *R = Target.getRegisterByName(Reg->getName().lower()); assert((R != nullptr) && ("Register" + Reg->getName().str() + " not defined!!\n").c_str()); return RC.contains(R); } bool RISCVCompressInstEmitter::validateTypes(Record *DagOpType, Record *InstOpType, bool IsSourceInst) { if (DagOpType == InstOpType) return true; // Only source instruction operands are allowed to not match Input Dag // operands. if (!IsSourceInst) return false; if (DagOpType->isSubClassOf("RegisterClass") && InstOpType->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = Target.getRegisterClass(InstOpType); const CodeGenRegisterClass &SubRC = Target.getRegisterClass(DagOpType); return RC.hasSubClass(&SubRC); } // At this point either or both types are not registers, reject the pattern. if (DagOpType->isSubClassOf("RegisterClass") || InstOpType->isSubClassOf("RegisterClass")) return false; // Let further validation happen when compress()/uncompress() functions are // invoked. LLVM_DEBUG(dbgs() << (IsSourceInst ? "Input" : "Output") << " Dag Operand Type: '" << DagOpType->getName() << "' and " << "Instruction Operand Type: '" << InstOpType->getName() << "' can't be checked at pattern validation time!\n"); return true; } /// The patterns in the Dag contain different types of operands: /// Register operands, e.g.: GPRC:$rs1; Fixed registers, e.g: X1; Immediate /// operands, e.g.: simm6:$imm; Fixed immediate operands, e.g.: 0. This function /// maps Dag operands to its corresponding instruction operands. For register /// operands and fixed registers it expects the Dag operand type to be contained /// in the instantiated instruction operand type. For immediate operands and /// immediates no validation checks are enforced at pattern validation time. void RISCVCompressInstEmitter::addDagOperandMapping( Record *Rec, DagInit *Dag, CodeGenInstruction &Inst, IndexedMap &OperandMap, bool IsSourceInst) { // TiedCount keeps track of the number of operands skipped in Inst // operands list to get to the corresponding Dag operand. This is // necessary because the number of operands in Inst might be greater // than number of operands in the Dag due to how tied operands // are represented. unsigned TiedCount = 0; for (unsigned i = 0, e = Inst.Operands.size(); i != e; ++i) { int TiedOpIdx = Inst.Operands[i].getTiedRegister(); if (-1 != TiedOpIdx) { // Set the entry in OperandMap for the tied operand we're skipping. OperandMap[i].Kind = OperandMap[TiedOpIdx].Kind; OperandMap[i].Data = OperandMap[TiedOpIdx].Data; TiedCount++; continue; } if (DefInit *DI = dyn_cast(Dag->getArg(i - TiedCount))) { if (DI->getDef()->isSubClassOf("Register")) { // Check if the fixed register belongs to the Register class. if (!validateRegister(DI->getDef(), Inst.Operands[i].Rec)) PrintFatalError(Rec->getLoc(), "Error in Dag '" + Dag->getAsString() + "'Register: '" + DI->getDef()->getName() + "' is not in register class '" + Inst.Operands[i].Rec->getName() + "'"); OperandMap[i].Kind = OpData::Reg; OperandMap[i].Data.Reg = DI->getDef(); continue; } // Validate that Dag operand type matches the type defined in the // corresponding instruction. Operands in the input Dag pattern are // allowed to be a subclass of the type specified in corresponding // instruction operand instead of being an exact match. if (!validateTypes(DI->getDef(), Inst.Operands[i].Rec, IsSourceInst)) PrintFatalError(Rec->getLoc(), "Error in Dag '" + Dag->getAsString() + "'. Operand '" + Dag->getArgNameStr(i - TiedCount) + "' has type '" + DI->getDef()->getName() + "' which does not match the type '" + Inst.Operands[i].Rec->getName() + "' in the corresponding instruction operand!"); OperandMap[i].Kind = OpData::Operand; } else if (IntInit *II = dyn_cast(Dag->getArg(i - TiedCount))) { // Validate that corresponding instruction operand expects an immediate. if (Inst.Operands[i].Rec->isSubClassOf("RegisterClass")) PrintFatalError( Rec->getLoc(), ("Error in Dag '" + Dag->getAsString() + "' Found immediate: '" + II->getAsString() + "' but corresponding instruction operand expected a register!")); // No pattern validation check possible for values of fixed immediate. OperandMap[i].Kind = OpData::Imm; OperandMap[i].Data.Imm = II->getValue(); LLVM_DEBUG( dbgs() << " Found immediate '" << II->getValue() << "' at " << (IsSourceInst ? "input " : "output ") << "Dag. No validation time check possible for values of " "fixed immediate.\n"); } else llvm_unreachable("Unhandled CompressPat argument type!"); } } // Verify the Dag operand count is enough to build an instruction. static bool verifyDagOpCount(CodeGenInstruction &Inst, DagInit *Dag, bool IsSource) { if (Dag->getNumArgs() == Inst.Operands.size()) return true; // Source instructions are non compressed instructions and don't have tied // operands. if (IsSource) PrintFatalError(Inst.TheDef->getLoc(), "Input operands for Inst '" + Inst.TheDef->getName() + "' and input Dag operand count mismatch"); // The Dag can't have more arguments than the Instruction. if (Dag->getNumArgs() > Inst.Operands.size()) PrintFatalError(Inst.TheDef->getLoc(), "Inst '" + Inst.TheDef->getName() + "' and Dag operand count mismatch"); // The Instruction might have tied operands so the Dag might have // a fewer operand count. unsigned RealCount = Inst.Operands.size(); for (unsigned i = 0; i < Inst.Operands.size(); i++) if (Inst.Operands[i].getTiedRegister() != -1) --RealCount; if (Dag->getNumArgs() != RealCount) PrintFatalError(Inst.TheDef->getLoc(), "Inst '" + Inst.TheDef->getName() + "' and Dag operand count mismatch"); return true; } static bool validateArgsTypes(Init *Arg1, Init *Arg2) { DefInit *Type1 = dyn_cast(Arg1); DefInit *Type2 = dyn_cast(Arg2); assert(Type1 && ("Arg1 type not found\n")); assert(Type2 && ("Arg2 type not found\n")); return Type1->getDef() == Type2->getDef(); } // Creates a mapping between the operand name in the Dag (e.g. $rs1) and // its index in the list of Dag operands and checks that operands with the same // name have the same types. For example in 'C_ADD $rs1, $rs2' we generate the // mapping $rs1 --> 0, $rs2 ---> 1. If the operand appears twice in the (tied) // same Dag we use the last occurrence for indexing. void RISCVCompressInstEmitter::createDagOperandMapping( Record *Rec, StringMap &SourceOperands, StringMap &DestOperands, DagInit *SourceDag, DagInit *DestDag, IndexedMap &SourceOperandMap) { for (unsigned i = 0; i < DestDag->getNumArgs(); ++i) { // Skip fixed immediates and registers, they were handled in // addDagOperandMapping. if ("" == DestDag->getArgNameStr(i)) continue; DestOperands[DestDag->getArgNameStr(i)] = i; } for (unsigned i = 0; i < SourceDag->getNumArgs(); ++i) { // Skip fixed immediates and registers, they were handled in // addDagOperandMapping. if ("" == SourceDag->getArgNameStr(i)) continue; StringMap::iterator it = SourceOperands.find(SourceDag->getArgNameStr(i)); if (it != SourceOperands.end()) { // Operand sharing the same name in the Dag should be mapped as tied. SourceOperandMap[i].TiedOpIdx = it->getValue(); if (!validateArgsTypes(SourceDag->getArg(it->getValue()), SourceDag->getArg(i))) PrintFatalError(Rec->getLoc(), "Input Operand '" + SourceDag->getArgNameStr(i) + "' has a mismatched tied operand!\n"); } it = DestOperands.find(SourceDag->getArgNameStr(i)); if (it == DestOperands.end()) PrintFatalError(Rec->getLoc(), "Operand " + SourceDag->getArgNameStr(i) + " defined in Input Dag but not used in" " Output Dag!\n"); // Input Dag operand types must match output Dag operand type. if (!validateArgsTypes(DestDag->getArg(it->getValue()), SourceDag->getArg(i))) PrintFatalError(Rec->getLoc(), "Type mismatch between Input and " "Output Dag operand '" + SourceDag->getArgNameStr(i) + "'!"); SourceOperands[SourceDag->getArgNameStr(i)] = i; } } /// Map operand names in the Dag to their index in both corresponding input and /// output instructions. Validate that operands defined in the input are /// used in the output pattern while populating the maps. void RISCVCompressInstEmitter::createInstOperandMapping( Record *Rec, DagInit *SourceDag, DagInit *DestDag, IndexedMap &SourceOperandMap, IndexedMap &DestOperandMap, StringMap &SourceOperands, CodeGenInstruction &DestInst) { // TiedCount keeps track of the number of operands skipped in Inst // operands list to get to the corresponding Dag operand. unsigned TiedCount = 0; LLVM_DEBUG(dbgs() << " Operand mapping:\n Source Dest\n"); for (unsigned i = 0, e = DestInst.Operands.size(); i != e; ++i) { int TiedInstOpIdx = DestInst.Operands[i].getTiedRegister(); if (TiedInstOpIdx != -1) { ++TiedCount; DestOperandMap[i].Data = DestOperandMap[TiedInstOpIdx].Data; DestOperandMap[i].Kind = DestOperandMap[TiedInstOpIdx].Kind; if (DestOperandMap[i].Kind == OpData::Operand) // No need to fill the SourceOperandMap here since it was mapped to // destination operand 'TiedInstOpIdx' in a previous iteration. LLVM_DEBUG(dbgs() << " " << DestOperandMap[i].Data.Operand << " ====> " << i << " Dest operand tied with operand '" << TiedInstOpIdx << "'\n"); continue; } // Skip fixed immediates and registers, they were handled in // addDagOperandMapping. if (DestOperandMap[i].Kind != OpData::Operand) continue; unsigned DagArgIdx = i - TiedCount; StringMap::iterator SourceOp = SourceOperands.find(DestDag->getArgNameStr(DagArgIdx)); if (SourceOp == SourceOperands.end()) PrintFatalError(Rec->getLoc(), "Output Dag operand '" + DestDag->getArgNameStr(DagArgIdx) + "' has no matching input Dag operand."); assert(DestDag->getArgNameStr(DagArgIdx) == SourceDag->getArgNameStr(SourceOp->getValue()) && "Incorrect operand mapping detected!\n"); DestOperandMap[i].Data.Operand = SourceOp->getValue(); SourceOperandMap[SourceOp->getValue()].Data.Operand = i; LLVM_DEBUG(dbgs() << " " << SourceOp->getValue() << " ====> " << i << "\n"); } } /// Validates the CompressPattern and create operand mapping. /// These are the checks to validate a CompressPat pattern declarations. /// Error out with message under these conditions: /// - Dag Input opcode is an expanded instruction and Dag Output opcode is a /// compressed instruction. /// - Operands in Dag Input must be all used in Dag Output. /// Register Operand type in Dag Input Type must be contained in the /// corresponding Source Instruction type. /// - Register Operand type in Dag Input must be the same as in Dag Ouput. /// - Register Operand type in Dag Output must be the same as the /// corresponding Destination Inst type. /// - Immediate Operand type in Dag Input must be the same as in Dag Ouput. /// - Immediate Operand type in Dag Ouput must be the same as the corresponding /// Destination Instruction type. /// - Fixed register must be contained in the corresponding Source Instruction /// type. /// - Fixed register must be contained in the corresponding Destination /// Instruction type. Warning message printed under these conditions: /// - Fixed immediate in Dag Input or Dag Ouput cannot be checked at this time /// and generate warning. /// - Immediate operand type in Dag Input differs from the corresponding Source /// Instruction type and generate a warning. void RISCVCompressInstEmitter::evaluateCompressPat(Record *Rec) { // Validate input Dag operands. DagInit *SourceDag = Rec->getValueAsDag("Input"); assert(SourceDag && "Missing 'Input' in compress pattern!"); LLVM_DEBUG(dbgs() << "Input: " << *SourceDag << "\n"); // Checking we are transforming from compressed to uncompressed instructions. Record *Operator = SourceDag->getOperatorAsDef(Rec->getLoc()); if (!Operator->isSubClassOf("RVInst")) PrintFatalError(Rec->getLoc(), "Input instruction '" + Operator->getName() + "' is not a 32 bit wide instruction!"); CodeGenInstruction SourceInst(Operator); verifyDagOpCount(SourceInst, SourceDag, true); // Validate output Dag operands. DagInit *DestDag = Rec->getValueAsDag("Output"); assert(DestDag && "Missing 'Output' in compress pattern!"); LLVM_DEBUG(dbgs() << "Output: " << *DestDag << "\n"); Record *DestOperator = DestDag->getOperatorAsDef(Rec->getLoc()); if (!DestOperator->isSubClassOf("RVInst16")) PrintFatalError(Rec->getLoc(), "Output instruction '" + DestOperator->getName() + "' is not a 16 bit wide instruction!"); CodeGenInstruction DestInst(DestOperator); verifyDagOpCount(DestInst, DestDag, false); // Fill the mapping from the source to destination instructions. IndexedMap SourceOperandMap; SourceOperandMap.grow(SourceInst.Operands.size()); // Create a mapping between source Dag operands and source Inst operands. addDagOperandMapping(Rec, SourceDag, SourceInst, SourceOperandMap, /*IsSourceInst*/ true); IndexedMap DestOperandMap; DestOperandMap.grow(DestInst.Operands.size()); // Create a mapping between destination Dag operands and destination Inst // operands. addDagOperandMapping(Rec, DestDag, DestInst, DestOperandMap, /*IsSourceInst*/ false); StringMap SourceOperands; StringMap DestOperands; createDagOperandMapping(Rec, SourceOperands, DestOperands, SourceDag, DestDag, SourceOperandMap); // Create operand mapping between the source and destination instructions. createInstOperandMapping(Rec, SourceDag, DestDag, SourceOperandMap, DestOperandMap, SourceOperands, DestInst); // Get the target features for the CompressPat. std::vector PatReqFeatures; std::vector RF = Rec->getValueAsListOfDefs("Predicates"); copy_if(RF, std::back_inserter(PatReqFeatures), [](Record *R) { return R->getValueAsBit("AssemblerMatcherPredicate"); }); CompressPatterns.push_back(CompressPat(SourceInst, DestInst, PatReqFeatures, SourceOperandMap, DestOperandMap)); } static void getReqFeatures(std::set> &FeaturesSet, std::set>> &AnyOfFeatureSets, const std::vector &ReqFeatures) { for (auto &R : ReqFeatures) { const DagInit *D = R->getValueAsDag("AssemblerCondDag"); std::string CombineType = D->getOperator()->getAsString(); if (CombineType != "any_of" && CombineType != "all_of") PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); if (D->getNumArgs() == 0) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); bool IsOr = CombineType == "any_of"; std::set> AnyOfSet; for (auto *Arg : D->getArgs()) { bool IsNot = false; if (auto *NotArg = dyn_cast(Arg)) { if (NotArg->getOperator()->getAsString() != "not" || NotArg->getNumArgs() != 1) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); Arg = NotArg->getArg(0); IsNot = true; } if (!isa(Arg) || !cast(Arg)->getDef()->isSubClassOf("SubtargetFeature")) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); if (IsOr) AnyOfSet.insert({IsNot, cast(Arg)->getDef()->getName()}); else FeaturesSet.insert({IsNot, cast(Arg)->getDef()->getName()}); } if (IsOr) AnyOfFeatureSets.insert(AnyOfSet); } } static unsigned getPredicates(DenseMap &PredicateMap, std::vector &Predicates, Record *Rec, StringRef Name) { unsigned Entry = PredicateMap[Rec]; if (Entry) return Entry; if (!Rec->isValueUnset(Name)) { Predicates.push_back(Rec); Entry = Predicates.size(); PredicateMap[Rec] = Entry; return Entry; } PrintFatalError(Rec->getLoc(), "No " + Name + " predicate on this operand at all: '" + Rec->getName().str() + "'"); return 0; } static void printPredicates(std::vector &Predicates, StringRef Name, raw_ostream &o) { for (unsigned i = 0; i < Predicates.size(); ++i) { StringRef Pred = Predicates[i]->getValueAsString(Name); o << " case " << i + 1 << ": {\n" << " // " << Predicates[i]->getName().str() << "\n" << " " << Pred.data() << "\n" << " }\n"; } } static std::string mergeCondAndCode(raw_string_ostream &CondStream, raw_string_ostream &CodeStream) { std::string S; raw_string_ostream CombinedStream(S); CombinedStream.indent(4) << "if (" << CondStream.str().substr( 6, CondStream.str().length() - 10) // remove first indentation and last '&&'. << ") {\n"; CombinedStream << CodeStream.str(); CombinedStream.indent(4) << " return true;\n"; CombinedStream.indent(4) << "} // if\n"; return CombinedStream.str(); } void RISCVCompressInstEmitter::emitCompressInstEmitter(raw_ostream &o, EmitterType EType) { Record *AsmWriter = Target.getAsmWriter(); if (!AsmWriter->getValueAsInt("PassSubtarget")) PrintFatalError(AsmWriter->getLoc(), "'PassSubtarget' is false. SubTargetInfo object is needed " "for target features.\n"); std::string Namespace = std::string(Target.getName()); // Sort entries in CompressPatterns to handle instructions that can have more // than one candidate for compression\uncompression, e.g ADD can be // transformed to a C_ADD or a C_MV. When emitting 'uncompress()' function the // source and destination are flipped and the sort key needs to change // accordingly. llvm::stable_sort(CompressPatterns, [EType](const CompressPat &LHS, const CompressPat &RHS) { if (EType == EmitterType::Compress || EType == EmitterType::CheckCompress) return (LHS.Source.TheDef->getName().str() < RHS.Source.TheDef->getName().str()); else return (LHS.Dest.TheDef->getName().str() < RHS.Dest.TheDef->getName().str()); }); // A list of MCOperandPredicates for all operands in use, and the reverse map. std::vector MCOpPredicates; DenseMap MCOpPredicateMap; // A list of ImmLeaf Predicates for all operands in use, and the reverse map. std::vector ImmLeafPredicates; DenseMap ImmLeafPredicateMap; std::string F; std::string FH; raw_string_ostream Func(F); raw_string_ostream FuncH(FH); bool NeedMRI = false; if (EType == EmitterType::Compress) o << "\n#ifdef GEN_COMPRESS_INSTR\n" << "#undef GEN_COMPRESS_INSTR\n\n"; else if (EType == EmitterType::Uncompress) o << "\n#ifdef GEN_UNCOMPRESS_INSTR\n" << "#undef GEN_UNCOMPRESS_INSTR\n\n"; else if (EType == EmitterType::CheckCompress) o << "\n#ifdef GEN_CHECK_COMPRESS_INSTR\n" << "#undef GEN_CHECK_COMPRESS_INSTR\n\n"; if (EType == EmitterType::Compress) { FuncH << "static bool compressInst(MCInst &OutInst,\n"; FuncH.indent(25) << "const MCInst &MI,\n"; FuncH.indent(25) << "const MCSubtargetInfo &STI,\n"; FuncH.indent(25) << "MCContext &Context) {\n"; } else if (EType == EmitterType::Uncompress){ FuncH << "static bool uncompressInst(MCInst &OutInst,\n"; FuncH.indent(27) << "const MCInst &MI,\n"; FuncH.indent(27) << "const MCRegisterInfo &MRI,\n"; FuncH.indent(27) << "const MCSubtargetInfo &STI) {\n"; } else if (EType == EmitterType::CheckCompress) { FuncH << "static bool isCompressibleInst(const MachineInstr &MI,\n"; FuncH.indent(27) << "const RISCVSubtarget *Subtarget,\n"; FuncH.indent(27) << "const MCRegisterInfo &MRI,\n"; FuncH.indent(27) << "const MCSubtargetInfo &STI) {\n"; } if (CompressPatterns.empty()) { o << FuncH.str(); o.indent(2) << "return false;\n}\n"; if (EType == EmitterType::Compress) o << "\n#endif //GEN_COMPRESS_INSTR\n"; else if (EType == EmitterType::Uncompress) o << "\n#endif //GEN_UNCOMPRESS_INSTR\n\n"; else if (EType == EmitterType::CheckCompress) o << "\n#endif //GEN_CHECK_COMPRESS_INSTR\n\n"; return; } std::string CaseString(""); raw_string_ostream CaseStream(CaseString); std::string PrevOp(""); std::string CurOp(""); CaseStream << " switch (MI.getOpcode()) {\n"; CaseStream << " default: return false;\n"; bool CompressOrCheck = EType == EmitterType::Compress || EType == EmitterType::CheckCompress; bool CompressOrUncompress = EType == EmitterType::Compress || EType == EmitterType::Uncompress; for (auto &CompressPat : CompressPatterns) { std::string CondString; std::string CodeString; raw_string_ostream CondStream(CondString); raw_string_ostream CodeStream(CodeString); CodeGenInstruction &Source = CompressOrCheck ? CompressPat.Source : CompressPat.Dest; CodeGenInstruction &Dest = CompressOrCheck ? CompressPat.Dest : CompressPat.Source; IndexedMap SourceOperandMap = CompressOrCheck ? CompressPat.SourceOperandMap : CompressPat.DestOperandMap; IndexedMap &DestOperandMap = CompressOrCheck ? CompressPat.DestOperandMap : CompressPat.SourceOperandMap; CurOp = Source.TheDef->getName().str(); // Check current and previous opcode to decide to continue or end a case. if (CurOp != PrevOp) { if (PrevOp != "") CaseStream.indent(6) << "break;\n } // case " + PrevOp + "\n"; CaseStream.indent(4) << "case " + Namespace + "::" + CurOp + ": {\n"; } std::set> FeaturesSet; std::set>> AnyOfFeatureSets; // Add CompressPat required features. getReqFeatures(FeaturesSet, AnyOfFeatureSets, CompressPat.PatReqFeatures); // Add Dest instruction required features. std::vector ReqFeatures; std::vector RF = Dest.TheDef->getValueAsListOfDefs("Predicates"); copy_if(RF, std::back_inserter(ReqFeatures), [](Record *R) { return R->getValueAsBit("AssemblerMatcherPredicate"); }); getReqFeatures(FeaturesSet, AnyOfFeatureSets, ReqFeatures); // Emit checks for all required features. for (auto &Op : FeaturesSet) { StringRef Not = Op.first ? "!" : ""; CondStream.indent(6) << Not << ("STI.getFeatureBits()[" + Namespace + "::" + Op.second + "]").str() + " &&\n"; } // Emit checks for all required feature groups. for (auto &Set : AnyOfFeatureSets) { CondStream.indent(6) << "("; for (auto &Op : Set) { bool isLast = &Op == &*Set.rbegin(); StringRef Not = Op.first ? "!" : ""; CondStream << Not << ("STI.getFeatureBits()[" + Namespace + "::" + Op.second + "]").str(); if (!isLast) CondStream << " || "; } CondStream << ") &&\n"; } // Start Source Inst operands validation. unsigned OpNo = 0; for (OpNo = 0; OpNo < Source.Operands.size(); ++OpNo) { if (SourceOperandMap[OpNo].TiedOpIdx != -1) { if (Source.Operands[OpNo].Rec->isSubClassOf("RegisterClass")) CondStream.indent(6) << "(MI.getOperand(" << std::to_string(OpNo) + ").getReg() == MI.getOperand(" << std::to_string(SourceOperandMap[OpNo].TiedOpIdx) << ").getReg()) &&\n"; else PrintFatalError("Unexpected tied operand types!\n"); } // Check for fixed immediates\registers in the source instruction. switch (SourceOperandMap[OpNo].Kind) { case OpData::Operand: // We don't need to do anything for source instruction operand checks. break; case OpData::Imm: CondStream.indent(6) << "(MI.getOperand(" + std::to_string(OpNo) + ").isImm()) &&\n" + " (MI.getOperand(" + std::to_string(OpNo) + ").getImm() == " + std::to_string(SourceOperandMap[OpNo].Data.Imm) + ") &&\n"; break; case OpData::Reg: { Record *Reg = SourceOperandMap[OpNo].Data.Reg; CondStream.indent(6) << "(MI.getOperand(" + std::to_string(OpNo) + ").getReg() == " + Namespace + "::" + Reg->getName().str() + ") &&\n"; break; } } } CodeStream.indent(6) << "// " + Dest.AsmString + "\n"; if (CompressOrUncompress) CodeStream.indent(6) << "OutInst.setOpcode(" + Namespace + "::" + Dest.TheDef->getName().str() + ");\n"; OpNo = 0; for (const auto &DestOperand : Dest.Operands) { CodeStream.indent(6) << "// Operand: " + DestOperand.Name + "\n"; switch (DestOperandMap[OpNo].Kind) { case OpData::Operand: { unsigned OpIdx = DestOperandMap[OpNo].Data.Operand; // Check that the operand in the Source instruction fits // the type for the Dest instruction. if (DestOperand.Rec->isSubClassOf("RegisterClass")) { NeedMRI = true; // This is a register operand. Check the register class. // Don't check register class if this is a tied operand, it was done // for the operand its tied to. if (DestOperand.getTiedRegister() == -1) CondStream.indent(6) << "(MRI.getRegClass(" + Namespace + "::" + DestOperand.Rec->getName().str() + "RegClassID).contains(" + "MI.getOperand(" + std::to_string(OpIdx) + ").getReg())) &&\n"; if (CompressOrUncompress) CodeStream.indent(6) << "OutInst.addOperand(MI.getOperand(" + std::to_string(OpIdx) + "));\n"; } else { // Handling immediate operands. if (CompressOrUncompress) { unsigned Entry = getPredicates(MCOpPredicateMap, MCOpPredicates, DestOperand.Rec, StringRef("MCOperandPredicate")); CondStream.indent(6) << Namespace + "ValidateMCOperand(" + "MI.getOperand(" + std::to_string(OpIdx) + "), STI, " + std::to_string(Entry) + ") &&\n"; } else { unsigned Entry = getPredicates(ImmLeafPredicateMap, ImmLeafPredicates, DestOperand.Rec, StringRef("ImmediateCode")); CondStream.indent(6) << "MI.getOperand(" + std::to_string(OpIdx) + ").isImm() &&\n"; CondStream.indent(6) << Namespace + "ValidateMachineOperand(" + "MI.getOperand(" + std::to_string(OpIdx) + "), Subtarget, " + std::to_string(Entry) + ") &&\n"; } if (CompressOrUncompress) CodeStream.indent(6) << "OutInst.addOperand(MI.getOperand(" + std::to_string(OpIdx) + "));\n"; } break; } case OpData::Imm: { if (CompressOrUncompress) { unsigned Entry = getPredicates(MCOpPredicateMap, MCOpPredicates, DestOperand.Rec, StringRef("MCOperandPredicate")); CondStream.indent(6) << Namespace + "ValidateMCOperand(" + "MCOperand::createImm(" + std::to_string(DestOperandMap[OpNo].Data.Imm) + "), STI, " + std::to_string(Entry) + ") &&\n"; } else { unsigned Entry = getPredicates(ImmLeafPredicateMap, ImmLeafPredicates, DestOperand.Rec, StringRef("ImmediateCode")); CondStream.indent(6) << Namespace + "ValidateMachineOperand(" + "MachineOperand::CreateImm(" + std::to_string(DestOperandMap[OpNo].Data.Imm) + "), SubTarget, " + std::to_string(Entry) + ") &&\n"; } if (CompressOrUncompress) CodeStream.indent(6) << "OutInst.addOperand(MCOperand::createImm(" + std::to_string(DestOperandMap[OpNo].Data.Imm) + "));\n"; } break; case OpData::Reg: { if (CompressOrUncompress) { // Fixed register has been validated at pattern validation time. Record *Reg = DestOperandMap[OpNo].Data.Reg; CodeStream.indent(6) << "OutInst.addOperand(MCOperand::createReg(" + Namespace + "::" + Reg->getName().str() + "));\n"; } } break; } ++OpNo; } if (CompressOrUncompress) CodeStream.indent(6) << "OutInst.setLoc(MI.getLoc());\n"; CaseStream << mergeCondAndCode(CondStream, CodeStream); PrevOp = CurOp; } Func << CaseStream.str() << "\n"; // Close brace for the last case. Func.indent(4) << "} // case " + CurOp + "\n"; Func.indent(2) << "} // switch\n"; Func.indent(2) << "return false;\n}\n"; if (!MCOpPredicates.empty()) { o << "static bool " << Namespace << "ValidateMCOperand(const MCOperand &MCOp,\n" << " const MCSubtargetInfo &STI,\n" << " unsigned PredicateIndex) {\n" << " switch (PredicateIndex) {\n" << " default:\n" << " llvm_unreachable(\"Unknown MCOperandPredicate kind\");\n" << " break;\n"; printPredicates(MCOpPredicates, "MCOperandPredicate", o); o << " }\n" << "}\n\n"; } if (!ImmLeafPredicates.empty()) { o << "static bool " << Namespace << "ValidateMachineOperand(const MachineOperand &MO,\n" << " const RISCVSubtarget *Subtarget,\n" << " unsigned PredicateIndex) {\n" << " int64_t Imm = MO.getImm();\n" << " switch (PredicateIndex) {\n" << " default:\n" << " llvm_unreachable(\"Unknown ImmLeaf Predicate kind\");\n" << " break;\n"; printPredicates(ImmLeafPredicates, "ImmediateCode", o); o << " }\n" << "}\n\n"; } o << FuncH.str(); if (NeedMRI && EType == EmitterType::Compress) o.indent(2) << "const MCRegisterInfo &MRI = *Context.getRegisterInfo();\n"; o << Func.str(); if (EType == EmitterType::Compress) o << "\n#endif //GEN_COMPRESS_INSTR\n"; else if (EType == EmitterType::Uncompress) o << "\n#endif //GEN_UNCOMPRESS_INSTR\n\n"; else if (EType == EmitterType::CheckCompress) o << "\n#endif //GEN_CHECK_COMPRESS_INSTR\n\n"; } void RISCVCompressInstEmitter::run(raw_ostream &o) { std::vector Insts = Records.getAllDerivedDefinitions("CompressPat"); // Process the CompressPat definitions, validating them as we do so. for (unsigned i = 0, e = Insts.size(); i != e; ++i) evaluateCompressPat(Insts[i]); // Emit file header. emitSourceFileHeader("Compress instruction Source Fragment", o); // Generate compressInst() function. emitCompressInstEmitter(o, EmitterType::Compress); // Generate uncompressInst() function. emitCompressInstEmitter(o, EmitterType::Uncompress); // Generate isCompressibleInst() function. emitCompressInstEmitter(o, EmitterType::CheckCompress); } namespace llvm { void EmitCompressInst(RecordKeeper &RK, raw_ostream &OS) { RISCVCompressInstEmitter(RK).run(OS); } } // namespace llvm