//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to convert gpu.launch_func op into a sequence of // GPU runtime calls. As most of GPU runtimes does not have a stable published // ABI, this pass uses a slim runtime layer that builds on top of the public // API from GPU runtime headers. // //===----------------------------------------------------------------------===// #include "mlir/Conversion/GPUCommon/GPUCommonPass.h" #include "../PassDetail.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" using namespace mlir; static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst"; namespace { class GpuToLLVMConversionPass : public GpuToLLVMConversionPassBase { public: GpuToLLVMConversionPass(StringRef gpuBinaryAnnotation) { if (!gpuBinaryAnnotation.empty()) this->gpuBinaryAnnotation = gpuBinaryAnnotation.str(); } // Run the dialect converter on the module. void runOnOperation() override; }; class FunctionCallBuilder { public: FunctionCallBuilder(StringRef functionName, LLVM::LLVMType returnType, ArrayRef argumentTypes) : functionName(functionName), functionType(LLVM::LLVMType::getFunctionTy(returnType, argumentTypes, /*isVarArg=*/false)) {} LLVM::CallOp create(Location loc, OpBuilder &builder, ArrayRef arguments) const; private: StringRef functionName; LLVM::LLVMType functionType; }; template class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern { public: explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToLLVMPattern(typeConverter) {} protected: MLIRContext *context = &this->getTypeConverter()->getContext(); LLVM::LLVMType llvmVoidType = LLVM::LLVMType::getVoidTy(context); LLVM::LLVMType llvmPointerType = LLVM::LLVMType::getInt8PtrTy(context); LLVM::LLVMType llvmPointerPointerType = llvmPointerType.getPointerTo(); LLVM::LLVMType llvmInt8Type = LLVM::LLVMType::getInt8Ty(context); LLVM::LLVMType llvmInt32Type = LLVM::LLVMType::getInt32Ty(context); LLVM::LLVMType llvmInt64Type = LLVM::LLVMType::getInt64Ty(context); LLVM::LLVMType llvmIntPtrType = LLVM::LLVMType::getIntNTy( context, this->getTypeConverter()->getPointerBitwidth(0)); FunctionCallBuilder moduleLoadCallBuilder = { "mgpuModuleLoad", llvmPointerType /* void *module */, {llvmPointerType /* void *cubin */}}; FunctionCallBuilder moduleUnloadCallBuilder = { "mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}}; FunctionCallBuilder moduleGetFunctionCallBuilder = { "mgpuModuleGetFunction", llvmPointerType /* void *function */, { llvmPointerType, /* void *module */ llvmPointerType /* char *name */ }}; FunctionCallBuilder launchKernelCallBuilder = { "mgpuLaunchKernel", llvmVoidType, { llvmPointerType, /* void* f */ llvmIntPtrType, /* intptr_t gridXDim */ llvmIntPtrType, /* intptr_t gridyDim */ llvmIntPtrType, /* intptr_t gridZDim */ llvmIntPtrType, /* intptr_t blockXDim */ llvmIntPtrType, /* intptr_t blockYDim */ llvmIntPtrType, /* intptr_t blockZDim */ llvmInt32Type, /* unsigned int sharedMemBytes */ llvmPointerType, /* void *hstream */ llvmPointerPointerType, /* void **kernelParams */ llvmPointerPointerType /* void **extra */ }}; FunctionCallBuilder streamCreateCallBuilder = { "mgpuStreamCreate", llvmPointerType /* void *stream */, {}}; FunctionCallBuilder streamDestroyCallBuilder = { "mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}}; FunctionCallBuilder streamSynchronizeCallBuilder = { "mgpuStreamSynchronize", llvmVoidType, {llvmPointerType /* void *stream */}}; FunctionCallBuilder streamWaitEventCallBuilder = { "mgpuStreamWaitEvent", llvmVoidType, {llvmPointerType /* void *stream */, llvmPointerType /* void *event */}}; FunctionCallBuilder eventCreateCallBuilder = { "mgpuEventCreate", llvmPointerType /* void *event */, {}}; FunctionCallBuilder eventDestroyCallBuilder = { "mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}}; FunctionCallBuilder eventSynchronizeCallBuilder = { "mgpuEventSynchronize", llvmVoidType, {llvmPointerType /* void *event */}}; FunctionCallBuilder eventRecordCallBuilder = { "mgpuEventRecord", llvmVoidType, {llvmPointerType /* void *event */, llvmPointerType /* void *stream */}}; FunctionCallBuilder hostRegisterCallBuilder = { "mgpuMemHostRegisterMemRef", llvmVoidType, {llvmIntPtrType /* intptr_t rank */, llvmPointerType /* void *memrefDesc */, llvmIntPtrType /* intptr_t elementSizeBytes */}}; FunctionCallBuilder allocCallBuilder = { "mgpuMemAlloc", llvmPointerType /* void * */, {llvmIntPtrType /* intptr_t sizeBytes */, llvmPointerType /* void *stream */}}; FunctionCallBuilder deallocCallBuilder = { "mgpuMemFree", llvmVoidType, {llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}}; }; /// A rewrite pattern to convert gpu.host_register operations into a GPU runtime /// call. Currently it supports CUDA and ROCm (HIP). class ConvertHostRegisterOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToGpuRuntimeCallPattern(typeConverter) {} private: LogicalResult matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// A rewrite pattern to convert gpu.alloc operations into a GPU runtime /// call. Currently it supports CUDA and ROCm (HIP). class ConvertAllocOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToGpuRuntimeCallPattern(typeConverter) {} private: LogicalResult matchAndRewrite(gpu::AllocOp allocOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime /// call. Currently it supports CUDA and ROCm (HIP). class ConvertDeallocOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToGpuRuntimeCallPattern(typeConverter) {} private: LogicalResult matchAndRewrite(gpu::DeallocOp deallocOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// A rewrite pattern to convert gpu.wait operations into a GPU runtime /// call. Currently it supports CUDA and ROCm (HIP). class ConvertWaitOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToGpuRuntimeCallPattern(typeConverter) {} private: LogicalResult matchAndRewrite(gpu::WaitOp waitOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// A rewrite pattern to convert gpu.wait async operations into a GPU runtime /// call. Currently it supports CUDA and ROCm (HIP). class ConvertWaitAsyncOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter) : ConvertOpToGpuRuntimeCallPattern(typeConverter) {} private: LogicalResult matchAndRewrite(gpu::WaitOp waitOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// A rewrite patter to convert gpu.launch_func operations into a sequence of /// GPU runtime calls. Currently it supports CUDA and ROCm (HIP). /// /// In essence, a gpu.launch_func operations gets compiled into the following /// sequence of runtime calls: /// /// * moduleLoad -- loads the module given the cubin / hsaco data /// * moduleGetFunction -- gets a handle to the actual kernel function /// * getStreamHelper -- initializes a new compute stream on GPU /// * launchKernel -- launches the kernel on a stream /// * streamSynchronize -- waits for operations on the stream to finish /// /// Intermediate data structures are allocated on the stack. class ConvertLaunchFuncOpToGpuRuntimeCallPattern : public ConvertOpToGpuRuntimeCallPattern { public: ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter, StringRef gpuBinaryAnnotation) : ConvertOpToGpuRuntimeCallPattern(typeConverter), gpuBinaryAnnotation(gpuBinaryAnnotation) {} private: Value generateParamsArray(gpu::LaunchFuncOp launchOp, ArrayRef operands, OpBuilder &builder) const; Value generateKernelNameConstant(StringRef moduleName, StringRef name, Location loc, OpBuilder &builder) const; LogicalResult matchAndRewrite(gpu::LaunchFuncOp launchOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; llvm::SmallString<32> gpuBinaryAnnotation; }; class EraseGpuModuleOpPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(gpu::GPUModuleOp op, PatternRewriter &rewriter) const override { // GPU kernel modules are no longer necessary since we have a global // constant with the CUBIN, or HSACO data. rewriter.eraseOp(op); return success(); } }; } // namespace void GpuToLLVMConversionPass::runOnOperation() { LLVMTypeConverter converter(&getContext()); OwningRewritePatternList patterns; populateStdToLLVMConversionPatterns(converter, patterns); populateGpuToLLVMConversionPatterns(converter, patterns, gpuBinaryAnnotation); LLVMConversionTarget target(getContext()); if (failed( applyPartialConversion(getOperation(), target, std::move(patterns)))) signalPassFailure(); } LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder, ArrayRef arguments) const { auto module = builder.getBlock()->getParent()->getParentOfType(); auto function = [&] { if (auto function = module.lookupSymbol(functionName)) return function; return OpBuilder(module.getBody()->getTerminator()) .create(loc, functionName, functionType); }(); return builder.create( loc, const_cast(functionType).getFunctionResultType(), builder.getSymbolRefAttr(function), arguments); } // Returns whether all operands are of LLVM type. static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands, ConversionPatternRewriter &rewriter) { if (!llvm::all_of(operands, [](Value value) { return value.getType().isa(); })) return rewriter.notifyMatchFailure( op, "Cannot convert if operands aren't of LLVM type."); return success(); } static LogicalResult isAsyncWithOneDependency(ConversionPatternRewriter &rewriter, gpu::AsyncOpInterface op) { if (op.getAsyncDependencies().size() != 1) return rewriter.notifyMatchFailure( op, "Can only convert with exactly one async dependency."); if (!op.getAsyncToken()) return rewriter.notifyMatchFailure(op, "Can convert only async version."); return success(); } LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::HostRegisterOp hostRegisterOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { auto *op = hostRegisterOp.getOperation(); if (failed(areAllLLVMTypes(op, operands, rewriter))) return failure(); Location loc = op->getLoc(); auto memRefType = hostRegisterOp.value().getType(); auto elementType = memRefType.cast().getElementType(); auto elementSize = getSizeInBytes(loc, elementType, rewriter); auto arguments = getTypeConverter()->promoteOperands(loc, op->getOperands(), operands, rewriter); arguments.push_back(elementSize); hostRegisterCallBuilder.create(loc, rewriter, arguments); rewriter.eraseOp(op); return success(); } LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::AllocOp allocOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { MemRefType memRefType = allocOp.getType(); if (failed(areAllLLVMTypes(allocOp, operands, rewriter)) || !isSupportedMemRefType(memRefType) || failed(isAsyncWithOneDependency(rewriter, allocOp))) return failure(); auto loc = allocOp.getLoc(); // Get shape of the memref as values: static sizes are constant // values and dynamic sizes are passed to 'alloc' as operands. SmallVector shape; SmallVector strides; Value sizeBytes; getMemRefDescriptorSizes(loc, memRefType, operands, rewriter, shape, strides, sizeBytes); // Allocate the underlying buffer and store a pointer to it in the MemRef // descriptor. Type elementPtrType = this->getElementPtrType(memRefType); auto adaptor = gpu::AllocOpAdaptor(operands, allocOp->getAttrDictionary()); auto stream = adaptor.asyncDependencies().front(); Value allocatedPtr = allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult(0); allocatedPtr = rewriter.create(loc, elementPtrType, allocatedPtr); // No alignment. Value alignedPtr = allocatedPtr; // Create the MemRef descriptor. auto memRefDescriptor = this->createMemRefDescriptor( loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter); rewriter.replaceOp(allocOp, {memRefDescriptor, stream}); return success(); } LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::DeallocOp deallocOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (failed(areAllLLVMTypes(deallocOp, operands, rewriter)) || failed(isAsyncWithOneDependency(rewriter, deallocOp))) return failure(); Location loc = deallocOp.getLoc(); auto adaptor = gpu::DeallocOpAdaptor(operands, deallocOp->getAttrDictionary()); Value pointer = MemRefDescriptor(adaptor.memref()).allocatedPtr(rewriter, loc); auto casted = rewriter.create(loc, llvmPointerType, pointer); Value stream = adaptor.asyncDependencies().front(); deallocCallBuilder.create(loc, rewriter, {casted, stream}); rewriter.replaceOp(deallocOp, {stream}); return success(); } // Converts `gpu.wait` to runtime calls. The operands are all CUDA or ROCm // streams (i.e. void*). The converted op synchronizes the host with every // stream and then destroys it. That is, it assumes that the stream is not used // afterwards. In case this isn't correct, we will get a runtime error. // Eventually, we will have a pass that guarantees this property. LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::WaitOp waitOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (waitOp.asyncToken()) return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op."); Location loc = waitOp.getLoc(); for (auto asyncDependency : operands) streamSynchronizeCallBuilder.create(loc, rewriter, {asyncDependency}); for (auto asyncDependency : operands) streamDestroyCallBuilder.create(loc, rewriter, {asyncDependency}); rewriter.eraseOp(waitOp); return success(); } // Converts `gpu.wait async` to runtime calls. The result is a new stream that // is synchronized with all operands, which are CUDA or ROCm streams (i.e. // void*). We create and record an event after the definition of the stream // and make the new stream wait on that event before destroying it again. This // assumes that there is no other use between the definition and this op, and // the plan is to have a pass that guarantees this property. LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::WaitOp waitOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (!waitOp.asyncToken()) return rewriter.notifyMatchFailure(waitOp, "Can only convert async op."); Location loc = waitOp.getLoc(); auto insertionPoint = rewriter.saveInsertionPoint(); SmallVector events; for (auto pair : llvm::zip(waitOp.asyncDependencies(), operands)) { auto token = std::get<0>(pair); if (auto *defOp = token.getDefiningOp()) { rewriter.setInsertionPointAfter(defOp); } else { // If we can't find the defining op, we record the event at block start, // which is late and therefore misses parallelism, but still valid. rewriter.setInsertionPointToStart(waitOp->getBlock()); } auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult(0); auto stream = std::get<1>(pair); eventRecordCallBuilder.create(loc, rewriter, {event, stream}); events.push_back(event); } rewriter.restoreInsertionPoint(insertionPoint); auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0); for (auto event : events) streamWaitEventCallBuilder.create(loc, rewriter, {stream, event}); for (auto event : events) eventDestroyCallBuilder.create(loc, rewriter, {event}); rewriter.replaceOp(waitOp, {stream}); return success(); } // Creates a struct containing all kernel parameters on the stack and returns // an array of type-erased pointers to the fields of the struct. The array can // then be passed to the CUDA / ROCm (HIP) kernel launch calls. // The generated code is essentially as follows: // // %struct = alloca(sizeof(struct { Parameters... })) // %array = alloca(NumParameters * sizeof(void *)) // for (i : [0, NumParameters)) // %fieldPtr = llvm.getelementptr %struct[0, i] // llvm.store parameters[i], %fieldPtr // %elementPtr = llvm.getelementptr %array[i] // llvm.store %fieldPtr, %elementPtr // return %array Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray( gpu::LaunchFuncOp launchOp, ArrayRef operands, OpBuilder &builder) const { auto loc = launchOp.getLoc(); auto numKernelOperands = launchOp.getNumKernelOperands(); auto arguments = getTypeConverter()->promoteOperands( loc, launchOp.getOperands().take_back(numKernelOperands), operands.take_back(numKernelOperands), builder); auto numArguments = arguments.size(); SmallVector argumentTypes; argumentTypes.reserve(numArguments); for (auto argument : arguments) argumentTypes.push_back(argument.getType().cast()); auto structType = LLVM::LLVMType::createStructTy(argumentTypes, StringRef()); auto one = builder.create(loc, llvmInt32Type, builder.getI32IntegerAttr(1)); auto structPtr = builder.create( loc, structType.getPointerTo(), one, /*alignment=*/0); auto arraySize = builder.create( loc, llvmInt32Type, builder.getI32IntegerAttr(numArguments)); auto arrayPtr = builder.create(loc, llvmPointerPointerType, arraySize, /*alignment=*/0); auto zero = builder.create(loc, llvmInt32Type, builder.getI32IntegerAttr(0)); for (auto en : llvm::enumerate(arguments)) { auto index = builder.create( loc, llvmInt32Type, builder.getI32IntegerAttr(en.index())); auto fieldPtr = builder.create( loc, argumentTypes[en.index()].getPointerTo(), structPtr, ArrayRef{zero, index.getResult()}); builder.create(loc, en.value(), fieldPtr); auto elementPtr = builder.create(loc, llvmPointerPointerType, arrayPtr, index.getResult()); auto casted = builder.create(loc, llvmPointerType, fieldPtr); builder.create(loc, casted, elementPtr); } return arrayPtr; } // Generates an LLVM IR dialect global that contains the name of the given // kernel function as a C string, and returns a pointer to its beginning. // The code is essentially: // // llvm.global constant @kernel_name("function_name\00") // func(...) { // %0 = llvm.addressof @kernel_name // %1 = llvm.constant (0 : index) // %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*"> // } Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant( StringRef moduleName, StringRef name, Location loc, OpBuilder &builder) const { // Make sure the trailing zero is included in the constant. std::vector kernelName(name.begin(), name.end()); kernelName.push_back('\0'); std::string globalName = std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name)); return LLVM::createGlobalString( loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()), LLVM::Linkage::Internal); } // Emits LLVM IR to launch a kernel function. Expects the module that contains // the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a // hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR. // // %0 = call %binarygetter // %1 = call %moduleLoad(%0) // %2 = // %3 = call %moduleGetFunction(%1, %2) // %4 = call %streamCreate() // %5 = // call %launchKernel(%3, , 0, %4, %5, nullptr) // call %streamSynchronize(%4) // call %streamDestroy(%4) // call %moduleUnload(%1) // // If the op is async, the stream corresponds to the (single) async dependency // as well as the async token the op produces. LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite( gpu::LaunchFuncOp launchOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (failed(areAllLLVMTypes(launchOp, operands, rewriter))) return failure(); if (launchOp.asyncDependencies().size() > 1) return rewriter.notifyMatchFailure( launchOp, "Cannot convert with more than one async dependency."); // Fail when the synchronous version of the op has async dependencies. The // lowering destroys the stream, and we do not want to check that there is no // use of the stream after this op. if (!launchOp.asyncToken() && !launchOp.asyncDependencies().empty()) return rewriter.notifyMatchFailure( launchOp, "Cannot convert non-async op with async dependencies."); Location loc = launchOp.getLoc(); // Create an LLVM global with CUBIN extracted from the kernel annotation and // obtain a pointer to the first byte in it. auto kernelModule = SymbolTable::lookupNearestSymbolFrom( launchOp, launchOp.getKernelModuleName()); assert(kernelModule && "expected a kernel module"); auto binaryAttr = kernelModule->getAttrOfType(gpuBinaryAnnotation); if (!binaryAttr) { kernelModule.emitOpError() << "missing " << gpuBinaryAnnotation << " attribute"; return failure(); } SmallString<128> nameBuffer(kernelModule.getName()); nameBuffer.append(kGpuBinaryStorageSuffix); Value data = LLVM::createGlobalString(loc, rewriter, nameBuffer.str(), binaryAttr.getValue(), LLVM::Linkage::Internal); auto module = moduleLoadCallBuilder.create(loc, rewriter, data); // Get the function from the module. The name corresponds to the name of // the kernel function. auto kernelName = generateKernelNameConstant( launchOp.getKernelModuleName(), launchOp.getKernelName(), loc, rewriter); auto function = moduleGetFunctionCallBuilder.create( loc, rewriter, {module.getResult(0), kernelName}); auto zero = rewriter.create(loc, llvmInt32Type, rewriter.getI32IntegerAttr(0)); auto adaptor = gpu::LaunchFuncOpAdaptor(operands, launchOp->getAttrDictionary()); Value stream = adaptor.asyncDependencies().empty() ? streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0) : adaptor.asyncDependencies().front(); // Create array of pointers to kernel arguments. auto kernelParams = generateParamsArray(launchOp, operands, rewriter); auto nullpointer = rewriter.create(loc, llvmPointerPointerType); launchKernelCallBuilder.create(loc, rewriter, {function.getResult(0), launchOp.gridSizeX(), launchOp.gridSizeY(), launchOp.gridSizeZ(), launchOp.blockSizeX(), launchOp.blockSizeY(), launchOp.blockSizeZ(), /*sharedMemBytes=*/zero, stream, kernelParams, /*extra=*/nullpointer}); if (launchOp.asyncToken()) { // Async launch: make dependent ops use the same stream. rewriter.replaceOp(launchOp, {stream}); } else { // Synchronize with host and destroy stream. This must be the stream created // above (with no other uses) because we check that the synchronous version // does not have any async dependencies. streamSynchronizeCallBuilder.create(loc, rewriter, stream); streamDestroyCallBuilder.create(loc, rewriter, stream); rewriter.eraseOp(launchOp); } moduleUnloadCallBuilder.create(loc, rewriter, module.getResult(0)); return success(); } std::unique_ptr> mlir::createGpuToLLVMConversionPass(StringRef gpuBinaryAnnotation) { return std::make_unique(gpuBinaryAnnotation); } void mlir::populateGpuToLLVMConversionPatterns( LLVMTypeConverter &converter, OwningRewritePatternList &patterns, StringRef gpuBinaryAnnotation) { converter.addConversion( [context = &converter.getContext()](gpu::AsyncTokenType type) -> Type { return LLVM::LLVMType::getInt8PtrTy(context); }); patterns.insert(converter); patterns.insert( converter, gpuBinaryAnnotation); patterns.insert(&converter.getContext()); }