//===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements a straightforward conversion of an loop nest into a GPU // kernel. The caller is expected to guarantee that the conversion is correct // or to further transform the kernel to ensure correctness. // //===----------------------------------------------------------------------===// #include "mlir/Conversion/SCFToGPU/SCFToGPU.h" #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/GPU/ParallelLoopMapper.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Builders.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/Passes.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/Sequence.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "loops-to-gpu" using namespace mlir; using namespace mlir::scf; // Extract an indexed value from KernelDim3. static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { switch (pos) { case 0: return dim3.x; case 1: return dim3.y; case 2: return dim3.z; default: llvm_unreachable("dim3 position out of bounds"); } return nullptr; } // Get the lower bound-related operands of a loop operation. static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { return forOp.getLowerBoundOperands(); } // Get the upper bound-related operands of a loop operation. static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { return forOp.getUpperBoundOperands(); } // Get a Value that corresponds to the loop step. If the step is an attribute, // materialize a corresponding constant using builder. static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { return builder.create(forOp.getLoc(), forOp.getStep()); } // Get a Value for the loop lower bound. If the value requires computation, // materialize the instructions using builder. static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineLowerBound(forOp, builder); } // Get a Value for the loop upper bound. If the value requires computation, // materialize the instructions using builder. static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineUpperBound(forOp, builder); } // Check the structure of the loop nest: // - there are enough loops to map to numDims; // - the loops are perfectly nested; // - the loop bounds can be computed above the outermost loop. // This roughly corresponds to the "matcher" part of the pattern-based // rewriting infrastructure. static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp, unsigned numDims) { Region &limit = forOp.region(); for (unsigned i = 0, e = numDims; i < e; ++i) { Operation *nested = &forOp.getBody()->front(); if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) return forOp.emitError( "loops with bounds depending on other mapped loops " "are not supported"); // The innermost loop can have an arbitrary body, skip the perfect nesting // check for it. if (i == e - 1) break; auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); if (forOp.getBody()->empty() || std::next(begin, 2) != end) return forOp.emitError("expected perfectly nested loops in the body"); if (!(forOp = dyn_cast(nested))) return nested->emitError("expected a nested loop"); } return success(); } static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { if (numBlockDims < 1 || numThreadDims < 1) { LLVM_DEBUG(llvm::dbgs() << "nothing to map"); return success(); } if (numBlockDims > 3) { return forOp.emitError("cannot map to more than 3 block dimensions"); } if (numThreadDims > 3) { return forOp.emitError("cannot map to more than 3 thread dimensions"); } return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); } namespace { // Helper structure that holds common state of the loop to GPU kernel // conversion. struct AffineLoopToGpuConverter { Optional collectBounds(AffineForOp forOp, unsigned numLoops); void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp, unsigned numBlockDims, unsigned numThreadDims); // Ranges of the loops mapped to blocks or threads. SmallVector dims; // Lower bounds of the loops mapped to blocks or threads. SmallVector lbs; // Induction variables of the loops mapped to blocks or threads. SmallVector ivs; // Steps of the loops mapped to blocks or threads. SmallVector steps; }; } // namespace // Return true if the value is obviously a constant "one". static bool isConstantOne(Value value) { if (auto def = value.getDefiningOp()) return def.getValue() == 1; return false; } // Collect ranges, bounds, steps and induction variables in preparation for // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. // This may fail if the IR for computing loop bounds cannot be constructed, for // example if an affine loop uses semi-affine maps. Return the last loop to be // mapped on success, llvm::None on failure. Optional AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) { OpBuilder builder(forOp.getOperation()); dims.reserve(numLoops); lbs.reserve(numLoops); ivs.reserve(numLoops); steps.reserve(numLoops); AffineForOp currentLoop = forOp; for (unsigned i = 0; i < numLoops; ++i) { Value lowerBound = getOrEmitLowerBound(currentLoop, builder); Value upperBound = getOrEmitUpperBound(currentLoop, builder); if (!lowerBound || !upperBound) { return llvm::None; } Value range = builder.create(currentLoop.getLoc(), upperBound, lowerBound); Value step = getOrCreateStep(currentLoop, builder); if (!isConstantOne(step)) range = builder.create(currentLoop.getLoc(), range, step); dims.push_back(range); lbs.push_back(lowerBound); ivs.push_back(currentLoop.getInductionVar()); steps.push_back(step); if (i != numLoops - 1) currentLoop = cast(¤tLoop.getBody()->front()); } return currentLoop; } // Replace the rooted at "rootForOp" with a GPU launch operation. This expects // "innermostForOp" to point to the last loop to be transformed to the kernel, // and to have (numBlockDims + numThreadDims) perfectly nested loops between // "rootForOp" and "innermostForOp". void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp, unsigned numBlockDims, unsigned numThreadDims) { OpBuilder builder(rootForOp.getOperation()); // Prepare the grid and block sizes for the launch operation. If there is // no loop mapped to a specific dimension, use constant "1" as its size. Value constOne = (numBlockDims < 3 || numThreadDims < 3) ? builder.create(rootForOp.getLoc(), 1) : nullptr; Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne; Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne; Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; // Create a launch op and move the body region of the innermost loop to the // launch op. auto launchOp = builder.create( rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ); // Replace the loop terminator (loops contain only a single block) with the // gpu terminator and move the operations from the loop body block to the gpu // launch body block. Do not move the entire block because of the difference // in block arguments. Operation &terminator = innermostForOp.getBody()->back(); Location terminatorLoc = terminator.getLoc(); terminator.erase(); builder.setInsertionPointToEnd(innermostForOp.getBody()); builder.create(terminatorLoc, llvm::None); launchOp.body().front().getOperations().splice( launchOp.body().front().begin(), innermostForOp.getBody()->getOperations()); // Remap the loop iterators to use block/thread identifiers instead. Loops // may iterate from LB with step S whereas GPU thread/block ids always iterate // from 0 to N with step 1. Therefore, loop induction variables are replaced // with (gpu-thread/block-id * S) + LB. builder.setInsertionPointToStart(&launchOp.body().front()); auto lbArgumentIt = lbs.begin(); auto stepArgumentIt = steps.begin(); for (auto en : llvm::enumerate(ivs)) { Value id = en.index() < numBlockDims ? getDim3Value(launchOp.getBlockIds(), en.index()) : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); Value step = steps[en.index()]; if (!isConstantOne(step)) id = builder.create(rootForOp.getLoc(), step, id); Value ivReplacement = builder.create(rootForOp.getLoc(), *lbArgumentIt, id); en.value().replaceAllUsesWith(ivReplacement); std::advance(lbArgumentIt, 1); std::advance(stepArgumentIt, 1); } // We are done and can erase the original outermost loop. rootForOp.erase(); } // Generic loop to GPU kernel conversion function. static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims))) return failure(); AffineLoopToGpuConverter converter; auto maybeInnerLoop = converter.collectBounds(forOp, numBlockDims + numThreadDims); if (!maybeInnerLoop) return failure(); converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); return success(); } LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); } namespace { struct ParallelToGpuLaunchLowering : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ParallelOp parallelOp, PatternRewriter &rewriter) const override; }; } // namespace /// Tries to derive a static upper bound from the defining operation of /// `upperBound`. static Value deriveStaticUpperBound(Value upperBound, PatternRewriter &rewriter) { if (auto op = upperBound.getDefiningOp()) { return op; } if (auto minOp = upperBound.getDefiningOp()) { for (const AffineExpr &result : minOp.map().getResults()) { if (auto constExpr = result.dyn_cast()) { return rewriter.create(minOp.getLoc(), constExpr.getValue()); } } } if (auto multiplyOp = upperBound.getDefiningOp()) { if (auto lhs = dyn_cast_or_null( deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter) .getDefiningOp())) if (auto rhs = dyn_cast_or_null( deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter) .getDefiningOp())) { // Assumptions about the upper bound of minimum computations no longer // work if multiplied by a negative value, so abort in this case. if (lhs.getValue() < 0 || rhs.getValue() < 0) return {}; return rewriter.create( multiplyOp.getLoc(), lhs.getValue() * rhs.getValue()); } } return {}; } static bool isMappedToProcessor(gpu::Processor processor) { return processor != gpu::Processor::Sequential; } static unsigned getLaunchOpArgumentNum(gpu::Processor processor) { switch (processor) { case gpu::Processor::BlockX: return 0; case gpu::Processor::BlockY: return 1; case gpu::Processor::BlockZ: return 2; case gpu::Processor::ThreadX: return 3; case gpu::Processor::ThreadY: return 4; case gpu::Processor::ThreadZ: return 5; default:; } llvm_unreachable( "invalid processor type while retrieving launch op argument number"); } /// Modifies the current transformation state to capture the effect of the given /// `scf.parallel` operation on index substitutions and the operations to be /// inserted. /// Specifically, if a dimension of a parallel loop is mapped to a hardware id, /// this function will /// - compute the loop index based on the hardware id and affine map from the /// mapping and update `cloningMap` to substitute all uses. /// - derive a new upper bound for the hardware id and augment the provided /// `gpu.launch operation` accordingly. /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch` /// and update the rewriter to insert into the conditional's body. /// If the dimension is mapped to sequential, /// - insert a for loop into the body and update the rewriter to insert into /// the for loop's body. /// - update the `cloningMap` to replace uses of the index with the index of /// the new for loop. /// In either case, /// - append the instructions from the loops body to worklist, in reverse order. /// To note the end of the current scope in case a loop or conditional was /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the /// worklist. This signals the processor of the worklist to pop the rewriter /// one scope-level up. static LogicalResult processParallelLoop( ParallelOp parallelOp, gpu::LaunchOp launchOp, BlockAndValueMapping &cloningMap, SmallVectorImpl &worklist, DenseMap &bounds, PatternRewriter &rewriter) { // TODO: Verify that this is a valid GPU mapping. // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential ArrayAttr mapping = parallelOp->getAttrOfType(gpu::getMappingAttrName()); // TODO: Support reductions. if (!mapping || parallelOp.getNumResults() != 0) return failure(); Location loc = parallelOp.getLoc(); auto launchIndependent = [&launchOp](Value val) { return val.getParentRegion()->isAncestor(launchOp->getParentRegion()); }; auto ensureLaunchIndependent = [&rewriter, launchIndependent](Value val) -> Value { if (launchIndependent(val)) return val; if (ConstantOp constOp = val.getDefiningOp()) return rewriter.create(constOp.getLoc(), constOp.getValue()); return {}; }; for (auto config : llvm::zip(mapping, parallelOp.getInductionVars(), parallelOp.lowerBound(), parallelOp.upperBound(), parallelOp.step())) { Attribute mappingAttribute; Value iv, lowerBound, upperBound, step; std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config; auto annotation = mappingAttribute.dyn_cast(); if (!annotation) return parallelOp.emitOpError() << "expected mapping attribute for lowering to GPU"; Value newIndex; gpu::Processor processor = gpu::getProcessor(annotation); if (isMappedToProcessor(processor)) { // Use the corresponding thread/grid index as replacement for the loop iv. Value operand = launchOp.body().getArgument(getLaunchOpArgumentNum(processor)); // Take the indexmap and add the lower bound and step computations in. // This computes operand * step + lowerBound. // Use an affine map here so that it composes nicely with the provided // annotation. AffineMap lowerAndStep = AffineMap::get( 1, 2, rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) + rewriter.getAffineSymbolExpr(1)); newIndex = rewriter.create( loc, annotation.map().getValue().compose(lowerAndStep), ValueRange{operand, step, lowerBound}); // If there was also a bound, insert that, too. // TODO: Check that we do not assign bounds twice. if (annotation.bound().getValue()) { // We pass as the single operand to the bound-map the number of // iterations, which is (upperBound - lowerBound) ceilDiv step. To // support inner loops with dynamic upper bounds (as generated by e.g. // tiling), try to derive a max for the bounds. If the used bound for // the hardware id is imprecise, wrap the contained code into a // conditional. If the lower-bound is constant or defined before the // launch, we can use it in the launch bounds. Otherwise fail. if (!launchIndependent(lowerBound) && !isa_and_nonnull(lowerBound.getDefiningOp())) return failure(); // The step must also be constant or defined outside of the loop nest. if (!launchIndependent(step) && !isa_and_nonnull(step.getDefiningOp())) return failure(); // If the upper-bound is constant or defined before the launch, we can // use it in the launch bounds directly. Otherwise try derive a bound. bool boundIsPrecise = launchIndependent(upperBound) || isa_and_nonnull(upperBound.getDefiningOp()); { PatternRewriter::InsertionGuard guard(rewriter); rewriter.setInsertionPoint(launchOp); if (!boundIsPrecise) { upperBound = deriveStaticUpperBound(upperBound, rewriter); if (!upperBound) { return rewriter.notifyMatchFailure( parallelOp, "cannot derive loop-invariant upper bound for number of" "iterations"); } } // Compute the number of iterations needed. We compute this as an // affine expression ceilDiv (upperBound - lowerBound) step. We use // affine.apply here so that it composes nicely with the provided map. AffineMap stepMap = AffineMap::get( 1, 2, ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0)) .ceilDiv(rewriter.getAffineSymbolExpr(1)))); Value launchBound = rewriter.create( loc, annotation.bound().getValue().compose(stepMap), ValueRange{ ensureLaunchIndependent( cloningMap.lookupOrDefault(upperBound)), ensureLaunchIndependent( cloningMap.lookupOrDefault(lowerBound)), ensureLaunchIndependent(cloningMap.lookupOrDefault(step))}); // todo(herhut,ravishankarm): Update the behavior of setMappingAttr // when this condition is relaxed. if (bounds.find(processor) != bounds.end()) { return rewriter.notifyMatchFailure( parallelOp, "cannot redefine the bound for processor " + Twine(static_cast(processor))); } bounds[processor] = launchBound; } if (!boundIsPrecise) { // We are using an approximation, create a surrounding conditional. Value originalBound = std::get<3>(config); CmpIOp pred = rewriter.create( loc, CmpIPredicate::slt, newIndex, cloningMap.lookupOrDefault(originalBound)); scf::IfOp ifOp = rewriter.create(loc, pred, false); rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); // Put a sentinel into the worklist so we know when to pop out of the // if body again. We use the launchOp here, as that cannot be part of // the bodies instruction. worklist.push_back(launchOp.getOperation()); } } } else { // Create a sequential for loop. auto loopOp = rewriter.create( loc, cloningMap.lookupOrDefault(lowerBound), cloningMap.lookupOrDefault(upperBound), cloningMap.lookupOrDefault(step)); newIndex = loopOp.getInductionVar(); rewriter.setInsertionPointToStart(loopOp.getBody()); // Put a sentinel into the worklist so we know when to pop out of the loop // body again. We use the launchOp here, as that cannot be part of the // bodies instruction. worklist.push_back(launchOp.getOperation()); } cloningMap.map(iv, newIndex); } // Propagate custom user defined optional attributes, that can be used at // later stage, such as extension data for GPU kernel dispatch for (const auto &namedAttr : parallelOp.getAttrs()) { if (namedAttr.first == gpu::getMappingAttrName() || namedAttr.first == ParallelOp::getOperandSegmentSizeAttr()) continue; launchOp.setAttr(namedAttr.first, namedAttr.second); } Block *body = parallelOp.getBody(); worklist.reserve(worklist.size() + body->getOperations().size()); for (Operation &op : llvm::reverse(body->without_terminator())) worklist.push_back(&op); return success(); } /// Lower a `scf.parallel` operation into a corresponding `gpu.launch` /// operation. /// /// This essentially transforms a loop nest into a corresponding SIMT function. /// The conversion is driven by mapping annotations on the `scf.parallel` /// operations. The mapping is provided via a `DictionaryAttribute` named /// `mapping`, which has three entries: /// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are /// thread dimensions and 6 is sequential. /// - map : An affine map that is used to pre-process hardware ids before /// substitution. /// - bound : An affine map that is used to compute the bound of the hardware /// id based on an upper bound of the number of iterations. /// If the `scf.parallel` contains nested `scf.parallel` operations, those /// need to be annotated, as well. Structurally, the transformation works by /// splicing all operations from nested `scf.parallel` operations into a single /// sequence. Indices mapped to hardware ids are substituted with those ids, /// wheras sequential mappings result in a sequential for-loop. To have more /// flexibility when mapping code to hardware ids, the transform supports two /// affine maps. The first `map` is used to compute the actual index for /// substitution from the hardware id. The second `bound` is used to compute the /// launch dimension for the hardware id from the number of iterations the /// mapped loop is performing. Note that the number of iterations might be /// imprecise if the corresponding loop-bounds are loop-dependent. In such case, /// the hardware id might iterate over additional indices. The transformation /// caters for this by predicating the created sequence of instructions on /// the actual loop bound. This only works if an static upper bound for the /// dynamic loop bound can be derived, currently via analyzing `affine.min` /// operations. LogicalResult ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp, PatternRewriter &rewriter) const { // We can only transform starting at the outer-most loop. Launches inside of // parallel loops are not supported. if (auto parentLoop = parallelOp->getParentOfType()) return failure(); // Create a launch operation. We start with bound one for all grid/block // sizes. Those will be refined later as we discover them from mappings. Location loc = parallelOp.getLoc(); Value constantOne = rewriter.create(parallelOp.getLoc(), 1); gpu::LaunchOp launchOp = rewriter.create( parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne, constantOne, constantOne); rewriter.setInsertionPointToEnd(&launchOp.body().front()); rewriter.create(loc); rewriter.setInsertionPointToStart(&launchOp.body().front()); BlockAndValueMapping cloningMap; llvm::DenseMap launchBounds; SmallVector worklist; if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist, launchBounds, rewriter))) return failure(); // Whether we have seen any side-effects. Reset when leaving an inner scope. bool seenSideeffects = false; // Whether we have left a nesting scope (and hence are no longer innermost). bool leftNestingScope = false; while (!worklist.empty()) { Operation *op = worklist.pop_back_val(); // Now walk over the body and clone it. // TODO: This is only correct if there either is no further scf.parallel // nested or this code is side-effect free. Otherwise we might need // predication. We are overly conservative for now and only allow // side-effects in the innermost scope. if (auto nestedParallel = dyn_cast(op)) { // Before entering a nested scope, make sure there have been no // sideeffects until now. if (seenSideeffects) return failure(); // A nested scf.parallel needs insertion of code to compute indices. // Insert that now. This will also update the worklist with the loops // body. if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap, worklist, launchBounds, rewriter))) return failure(); } else if (op == launchOp.getOperation()) { // Found our sentinel value. We have finished the operations from one // nesting level, pop one level back up. auto parent = rewriter.getInsertionPoint()->getParentOp(); rewriter.setInsertionPointAfter(parent); leftNestingScope = true; seenSideeffects = false; } else { // Otherwise we copy it over. Operation *clone = rewriter.clone(*op, cloningMap); cloningMap.map(op->getResults(), clone->getResults()); // Check for side effects. // TODO: Handle region side effects properly. seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) || clone->getNumRegions() != 0; // If we are no longer in the innermost scope, sideeffects are disallowed. if (seenSideeffects && leftNestingScope) return failure(); } } // Now that we succeeded creating the launch operation, also update the // bounds. for (auto bound : launchBounds) launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)), std::get<1>(bound)); rewriter.eraseOp(parallelOp); return success(); } void mlir::populateParallelLoopToGPUPatterns(OwningRewritePatternList &patterns, MLIRContext *ctx) { patterns.insert(ctx); } void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) { target.addDynamicallyLegalOp([](scf::ParallelOp parallelOp) { return !parallelOp.getAttr(gpu::getMappingAttrName()); }); }