//===- Ops.cpp - Standard MLIR Operations ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/CommonFolders.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Value.h" #include "mlir/Support/MathExtras.h" #include "mlir/Transforms/InliningUtils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" // Pull in all enum type definitions and utility function declarations. #include "mlir/Dialect/StandardOps/IR/OpsEnums.cpp.inc" using namespace mlir; //===----------------------------------------------------------------------===// // StandardOpsDialect Interfaces //===----------------------------------------------------------------------===// namespace { /// This class defines the interface for handling inlining with standard /// operations. struct StdInlinerInterface : public DialectInlinerInterface { using DialectInlinerInterface::DialectInlinerInterface; //===--------------------------------------------------------------------===// // Analysis Hooks //===--------------------------------------------------------------------===// /// All call operations within standard ops can be inlined. bool isLegalToInline(Operation *call, Operation *callable, bool wouldBeCloned) const final { return true; } /// All operations within standard ops can be inlined. bool isLegalToInline(Operation *, Region *, bool, BlockAndValueMapping &) const final { return true; } //===--------------------------------------------------------------------===// // Transformation Hooks //===--------------------------------------------------------------------===// /// Handle the given inlined terminator by replacing it with a new operation /// as necessary. void handleTerminator(Operation *op, Block *newDest) const final { // Only "std.return" needs to be handled here. auto returnOp = dyn_cast(op); if (!returnOp) return; // Replace the return with a branch to the dest. OpBuilder builder(op); builder.create(op->getLoc(), newDest, returnOp.getOperands()); op->erase(); } /// Handle the given inlined terminator by replacing it with a new operation /// as necessary. void handleTerminator(Operation *op, ArrayRef valuesToRepl) const final { // Only "std.return" needs to be handled here. auto returnOp = cast(op); // Replace the values directly with the return operands. assert(returnOp.getNumOperands() == valuesToRepl.size()); for (const auto &it : llvm::enumerate(returnOp.getOperands())) valuesToRepl[it.index()].replaceAllUsesWith(it.value()); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // StandardOpsDialect //===----------------------------------------------------------------------===// /// A custom unary operation printer that omits the "std." prefix from the /// operation names. static void printStandardUnaryOp(Operation *op, OpAsmPrinter &p) { assert(op->getNumOperands() == 1 && "unary op should have one operand"); assert(op->getNumResults() == 1 && "unary op should have one result"); int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' ' << op->getOperand(0); p.printOptionalAttrDict(op->getAttrs()); p << " : " << op->getOperand(0).getType(); } /// A custom binary operation printer that omits the "std." prefix from the /// operation names. static void printStandardBinaryOp(Operation *op, OpAsmPrinter &p) { assert(op->getNumOperands() == 2 && "binary op should have two operands"); assert(op->getNumResults() == 1 && "binary op should have one result"); // If not all the operand and result types are the same, just use the // generic assembly form to avoid omitting information in printing. auto resultType = op->getResult(0).getType(); if (op->getOperand(0).getType() != resultType || op->getOperand(1).getType() != resultType) { p.printGenericOp(op); return; } int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' ' << op->getOperand(0) << ", " << op->getOperand(1); p.printOptionalAttrDict(op->getAttrs()); // Now we can output only one type for all operands and the result. p << " : " << op->getResult(0).getType(); } /// A custom cast operation printer that omits the "std." prefix from the /// operation names. static void printStandardCastOp(Operation *op, OpAsmPrinter &p) { int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' ' << op->getOperand(0) << " : " << op->getOperand(0).getType() << " to " << op->getResult(0).getType(); } /// A custom cast operation verifier. template static LogicalResult verifyCastOp(T op) { auto opType = op.getOperand().getType(); auto resType = op.getType(); if (!T::areCastCompatible(opType, resType)) return op.emitError("operand type ") << opType << " and result type " << resType << " are cast incompatible"; return success(); } void StandardOpsDialect::initialize() { addOperations(); addInterfaces(); } /// Materialize a single constant operation from a given attribute value with /// the desired resultant type. Operation *StandardOpsDialect::materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc) { return builder.create(loc, type, value); } /// Matches a ConstantIndexOp. /// TODO: This should probably just be a general matcher that uses m_Constant /// and checks the operation for an index type. static detail::op_matcher m_ConstantIndex() { return detail::op_matcher(); } //===----------------------------------------------------------------------===// // Common canonicalization pattern support logic //===----------------------------------------------------------------------===// /// This is a common class used for patterns of the form /// "someop(memrefcast) -> someop". It folds the source of any memref_cast /// into the root operation directly. static LogicalResult foldMemRefCast(Operation *op) { bool folded = false; for (OpOperand &operand : op->getOpOperands()) { auto cast = operand.get().getDefiningOp(); if (cast && !cast.getOperand().getType().isa()) { operand.set(cast.getOperand()); folded = true; } } return success(folded); } //===----------------------------------------------------------------------===// // Common cast compatibility check for vector types. //===----------------------------------------------------------------------===// /// This method checks for cast compatibility of vector types. /// If 'a' and 'b' are vector types, and they are cast compatible, /// it calls the 'areElementsCastCompatible' function to check for /// element cast compatibility. /// Returns 'true' if the vector types are cast compatible, and 'false' /// otherwise. static bool areVectorCastSimpleCompatible( Type a, Type b, function_ref areElementsCastCompatible) { if (auto va = a.dyn_cast()) if (auto vb = b.dyn_cast()) return va.getShape().equals(vb.getShape()) && areElementsCastCompatible(va.getElementType(), vb.getElementType()); return false; } //===----------------------------------------------------------------------===// // Helpers for Tensor[Load|Store]Op, TensorToMemrefOp, and GlobalMemrefOp //===----------------------------------------------------------------------===// static Type getTensorTypeFromMemRefType(Type type) { if (auto memref = type.dyn_cast()) return RankedTensorType::get(memref.getShape(), memref.getElementType()); if (auto memref = type.dyn_cast()) return UnrankedTensorType::get(memref.getElementType()); return NoneType::get(type.getContext()); } //===----------------------------------------------------------------------===// // AddFOp //===----------------------------------------------------------------------===// OpFoldResult AddFOp::fold(ArrayRef operands) { return constFoldBinaryOp( operands, [](APFloat a, APFloat b) { return a + b; }); } //===----------------------------------------------------------------------===// // AddIOp //===----------------------------------------------------------------------===// OpFoldResult AddIOp::fold(ArrayRef operands) { /// addi(x, 0) -> x if (matchPattern(rhs(), m_Zero())) return lhs(); return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a + b; }); } /// Extract int64_t values from the assumed ArrayAttr of IntegerAttr. static SmallVector extractFromI64ArrayAttr(Attribute attr) { return llvm::to_vector<4>( llvm::map_range(attr.cast(), [](Attribute a) -> int64_t { return a.cast().getInt(); })); } //===----------------------------------------------------------------------===// // AllocOp / AllocaOp //===----------------------------------------------------------------------===// template static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { static_assert(llvm::is_one_of::value, "applies to only alloc or alloca"); auto memRefType = op.getResult().getType().template dyn_cast(); if (!memRefType) return op.emitOpError("result must be a memref"); if (static_cast(op.dynamicSizes().size()) != memRefType.getNumDynamicDims()) return op.emitOpError("dimension operand count does not equal memref " "dynamic dimension count"); unsigned numSymbols = 0; if (!memRefType.getAffineMaps().empty()) numSymbols = memRefType.getAffineMaps().front().getNumSymbols(); if (op.symbolOperands().size() != numSymbols) return op.emitOpError( "symbol operand count does not equal memref symbol count"); return success(); } static LogicalResult verify(AllocOp op) { return verifyAllocLikeOp(op); } static LogicalResult verify(AllocaOp op) { // An alloca op needs to have an ancestor with an allocation scope trait. if (!op->getParentWithTrait()) return op.emitOpError( "requires an ancestor op with AutomaticAllocationScope trait"); return verifyAllocLikeOp(op); } namespace { /// Fold constant dimensions into an alloc like operation. template struct SimplifyAllocConst : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AllocLikeOp alloc, PatternRewriter &rewriter) const override { // Check to see if any dimensions operands are constants. If so, we can // substitute and drop them. if (llvm::none_of(alloc.getOperands(), [](Value operand) { return matchPattern(operand, m_ConstantIndex()); })) return failure(); auto memrefType = alloc.getType(); // Ok, we have one or more constant operands. Collect the non-constant ones // and keep track of the resultant memref type to build. SmallVector newShapeConstants; newShapeConstants.reserve(memrefType.getRank()); SmallVector newOperands; unsigned dynamicDimPos = 0; for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { int64_t dimSize = memrefType.getDimSize(dim); // If this is already static dimension, keep it. if (dimSize != -1) { newShapeConstants.push_back(dimSize); continue; } auto *defOp = alloc.getOperand(dynamicDimPos).getDefiningOp(); if (auto constantIndexOp = dyn_cast_or_null(defOp)) { // Dynamic shape dimension will be folded. newShapeConstants.push_back(constantIndexOp.getValue()); } else { // Dynamic shape dimension not folded; copy operand from old memref. newShapeConstants.push_back(-1); newOperands.push_back(alloc.getOperand(dynamicDimPos)); } dynamicDimPos++; } // Create new memref type (which will have fewer dynamic dimensions). MemRefType newMemRefType = MemRefType::Builder(memrefType).setShape(newShapeConstants); assert(static_cast(newOperands.size()) == newMemRefType.getNumDynamicDims()); // Create and insert the alloc op for the new memref. auto newAlloc = rewriter.create(alloc.getLoc(), newMemRefType, newOperands, IntegerAttr()); // Insert a cast so we have the same type as the old alloc. auto resultCast = rewriter.create(alloc.getLoc(), newAlloc, alloc.getType()); rewriter.replaceOp(alloc, {resultCast}); return success(); } }; /// Fold alloc operations with no uses. Alloc has side effects on the heap, /// but can still be deleted if it has zero uses. struct SimplifyDeadAlloc : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AllocOp alloc, PatternRewriter &rewriter) const override { if (alloc.use_empty()) { rewriter.eraseOp(alloc); return success(); } return failure(); } }; } // end anonymous namespace. void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert, SimplifyDeadAlloc>(context); } void AllocaOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert>(context); } //===----------------------------------------------------------------------===// // AndOp //===----------------------------------------------------------------------===// OpFoldResult AndOp::fold(ArrayRef operands) { /// and(x, 0) -> 0 if (matchPattern(rhs(), m_Zero())) return rhs(); /// and(x, allOnes) -> x APInt intValue; if (matchPattern(rhs(), m_ConstantInt(&intValue)) && intValue.isAllOnesValue()) return lhs(); /// and(x,x) -> x if (lhs() == rhs()) return rhs(); return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a & b; }); } //===----------------------------------------------------------------------===// // AssertOp //===----------------------------------------------------------------------===// namespace { struct EraseRedundantAssertions : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AssertOp op, PatternRewriter &rewriter) const override { // Erase assertion if argument is constant true. if (matchPattern(op.arg(), m_One())) { rewriter.eraseOp(op); return success(); } return failure(); } }; } // namespace void AssertOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns, MLIRContext *context) { patterns.insert(context); } //===----------------------------------------------------------------------===// // AssumeAlignmentOp //===----------------------------------------------------------------------===// static LogicalResult verify(AssumeAlignmentOp op) { unsigned alignment = op.alignment(); if (!llvm::isPowerOf2_32(alignment)) return op.emitOpError("alignment must be power of 2"); return success(); } //===----------------------------------------------------------------------===// // AtomicRMWOp //===----------------------------------------------------------------------===// static LogicalResult verify(AtomicRMWOp op) { if (op.getMemRefType().getRank() != op.getNumOperands() - 2) return op.emitOpError( "expects the number of subscripts to be equal to memref rank"); switch (op.kind()) { case AtomicRMWKind::addf: case AtomicRMWKind::maxf: case AtomicRMWKind::minf: case AtomicRMWKind::mulf: if (!op.value().getType().isa()) return op.emitOpError() << "with kind '" << stringifyAtomicRMWKind(op.kind()) << "' expects a floating-point type"; break; case AtomicRMWKind::addi: case AtomicRMWKind::maxs: case AtomicRMWKind::maxu: case AtomicRMWKind::mins: case AtomicRMWKind::minu: case AtomicRMWKind::muli: if (!op.value().getType().isa()) return op.emitOpError() << "with kind '" << stringifyAtomicRMWKind(op.kind()) << "' expects an integer type"; break; default: break; } return success(); } //===----------------------------------------------------------------------===// // GenericAtomicRMWOp //===----------------------------------------------------------------------===// void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result, Value memref, ValueRange ivs) { result.addOperands(memref); result.addOperands(ivs); if (auto memrefType = memref.getType().dyn_cast()) { Type elementType = memrefType.getElementType(); result.addTypes(elementType); Region *bodyRegion = result.addRegion(); bodyRegion->push_back(new Block()); bodyRegion->addArgument(elementType); } } static LogicalResult verify(GenericAtomicRMWOp op) { auto &body = op.body(); if (body.getNumArguments() != 1) return op.emitOpError("expected single number of entry block arguments"); if (op.getResult().getType() != body.getArgument(0).getType()) return op.emitOpError( "expected block argument of the same type result type"); bool hasSideEffects = body.walk([&](Operation *nestedOp) { if (MemoryEffectOpInterface::hasNoEffect(nestedOp)) return WalkResult::advance(); nestedOp->emitError("body of 'generic_atomic_rmw' should contain " "only operations with no side effects"); return WalkResult::interrupt(); }) .wasInterrupted(); return hasSideEffects ? failure() : success(); } static ParseResult parseGenericAtomicRMWOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType memref; Type memrefType; SmallVector ivs; Type indexType = parser.getBuilder().getIndexType(); if (parser.parseOperand(memref) || parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) || parser.parseColonType(memrefType) || parser.resolveOperand(memref, memrefType, result.operands) || parser.resolveOperands(ivs, indexType, result.operands)) return failure(); Region *body = result.addRegion(); if (parser.parseRegion(*body, llvm::None, llvm::None) || parser.parseOptionalAttrDict(result.attributes)) return failure(); result.types.push_back(memrefType.cast().getElementType()); return success(); } static void print(OpAsmPrinter &p, GenericAtomicRMWOp op) { p << op.getOperationName() << ' ' << op.memref() << "[" << op.indices() << "] : " << op.memref().getType(); p.printRegion(op.body()); p.printOptionalAttrDict(op.getAttrs()); } //===----------------------------------------------------------------------===// // AtomicYieldOp //===----------------------------------------------------------------------===// static LogicalResult verify(AtomicYieldOp op) { Type parentType = op->getParentOp()->getResultTypes().front(); Type resultType = op.result().getType(); if (parentType != resultType) return op.emitOpError() << "types mismatch between yield op: " << resultType << " and its parent: " << parentType; return success(); } //===----------------------------------------------------------------------===// // BranchOp //===----------------------------------------------------------------------===// /// Given a successor, try to collapse it to a new destination if it only /// contains a passthrough unconditional branch. If the successor is /// collapsable, `successor` and `successorOperands` are updated to reference /// the new destination and values. `argStorage` is an optional storage to use /// if operands to the collapsed successor need to be remapped. static LogicalResult collapseBranch(Block *&successor, ValueRange &successorOperands, SmallVectorImpl &argStorage) { // Check that the successor only contains a unconditional branch. if (std::next(successor->begin()) != successor->end()) return failure(); // Check that the terminator is an unconditional branch. BranchOp successorBranch = dyn_cast(successor->getTerminator()); if (!successorBranch) return failure(); // Check that the arguments are only used within the terminator. for (BlockArgument arg : successor->getArguments()) { for (Operation *user : arg.getUsers()) if (user != successorBranch) return failure(); } // Don't try to collapse branches to infinite loops. Block *successorDest = successorBranch.getDest(); if (successorDest == successor) return failure(); // Update the operands to the successor. If the branch parent has no // arguments, we can use the branch operands directly. OperandRange operands = successorBranch.getOperands(); if (successor->args_empty()) { successor = successorDest; successorOperands = operands; return success(); } // Otherwise, we need to remap any argument operands. for (Value operand : operands) { BlockArgument argOperand = operand.dyn_cast(); if (argOperand && argOperand.getOwner() == successor) argStorage.push_back(successorOperands[argOperand.getArgNumber()]); else argStorage.push_back(operand); } successor = successorDest; successorOperands = argStorage; return success(); } namespace { /// Simplify a branch to a block that has a single predecessor. This effectively /// merges the two blocks. struct SimplifyBrToBlockWithSinglePred : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BranchOp op, PatternRewriter &rewriter) const override { // Check that the successor block has a single predecessor. Block *succ = op.getDest(); Block *opParent = op->getBlock(); if (succ == opParent || !llvm::hasSingleElement(succ->getPredecessors())) return failure(); // Merge the successor into the current block and erase the branch. rewriter.mergeBlocks(succ, opParent, op.getOperands()); rewriter.eraseOp(op); return success(); } }; /// br ^bb1 /// ^bb1 /// br ^bbN(...) /// /// -> br ^bbN(...) /// struct SimplifyPassThroughBr : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BranchOp op, PatternRewriter &rewriter) const override { Block *dest = op.getDest(); ValueRange destOperands = op.getOperands(); SmallVector destOperandStorage; // Try to collapse the successor if it points somewhere other than this // block. if (dest == op->getBlock() || failed(collapseBranch(dest, destOperands, destOperandStorage))) return failure(); // Create a new branch with the collapsed successor. rewriter.replaceOpWithNewOp(op, dest, destOperands); return success(); } }; } // end anonymous namespace. Block *BranchOp::getDest() { return getSuccessor(); } void BranchOp::setDest(Block *block) { return setSuccessor(block); } void BranchOp::eraseOperand(unsigned index) { (*this)->eraseOperand(index); } void BranchOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert( context); } Optional BranchOp::getMutableSuccessorOperands(unsigned index) { assert(index == 0 && "invalid successor index"); return destOperandsMutable(); } Block *BranchOp::getSuccessorForOperands(ArrayRef) { return dest(); } //===----------------------------------------------------------------------===// // CallOp //===----------------------------------------------------------------------===// LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) { // Check that the callee attribute was specified. auto fnAttr = (*this)->getAttrOfType("callee"); if (!fnAttr) return emitOpError("requires a 'callee' symbol reference attribute"); FuncOp fn = symbolTable.lookupNearestSymbolFrom(*this, fnAttr); if (!fn) return emitOpError() << "'" << fnAttr.getValue() << "' does not reference a valid function"; // Verify that the operand and result types match the callee. auto fnType = fn.getType(); if (fnType.getNumInputs() != getNumOperands()) return emitOpError("incorrect number of operands for callee"); for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i) if (getOperand(i).getType() != fnType.getInput(i)) return emitOpError("operand type mismatch: expected operand type ") << fnType.getInput(i) << ", but provided " << getOperand(i).getType() << " for operand number " << i; if (fnType.getNumResults() != getNumResults()) return emitOpError("incorrect number of results for callee"); for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i) if (getResult(i).getType() != fnType.getResult(i)) return emitOpError("result type mismatch"); return success(); } FunctionType CallOp::getCalleeType() { return FunctionType::get(getOperandTypes(), getResultTypes(), getContext()); } //===----------------------------------------------------------------------===// // CallIndirectOp //===----------------------------------------------------------------------===// namespace { /// Fold indirect calls that have a constant function as the callee operand. struct SimplifyIndirectCallWithKnownCallee : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CallIndirectOp indirectCall, PatternRewriter &rewriter) const override { // Check that the callee is a constant callee. SymbolRefAttr calledFn; if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn))) return failure(); // Replace with a direct call. rewriter.replaceOpWithNewOp(indirectCall, calledFn, indirectCall.getResultTypes(), indirectCall.getArgOperands()); return success(); } }; } // end anonymous namespace. void CallIndirectOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // General helpers for comparison ops //===----------------------------------------------------------------------===// // Return the type of the same shape (scalar, vector or tensor) containing i1. static Type getI1SameShape(Type type) { auto i1Type = IntegerType::get(1, type.getContext()); if (auto tensorType = type.dyn_cast()) return RankedTensorType::get(tensorType.getShape(), i1Type); if (type.isa()) return UnrankedTensorType::get(i1Type); if (auto vectorType = type.dyn_cast()) return VectorType::get(vectorType.getShape(), i1Type); return i1Type; } //===----------------------------------------------------------------------===// // CmpIOp //===----------------------------------------------------------------------===// static void buildCmpIOp(OpBuilder &build, OperationState &result, CmpIPredicate predicate, Value lhs, Value rhs) { result.addOperands({lhs, rhs}); result.types.push_back(getI1SameShape(lhs.getType())); result.addAttribute(CmpIOp::getPredicateAttrName(), build.getI64IntegerAttr(static_cast(predicate))); } // Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer // comparison predicates. bool mlir::applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs, const APInt &rhs) { switch (predicate) { case CmpIPredicate::eq: return lhs.eq(rhs); case CmpIPredicate::ne: return lhs.ne(rhs); case CmpIPredicate::slt: return lhs.slt(rhs); case CmpIPredicate::sle: return lhs.sle(rhs); case CmpIPredicate::sgt: return lhs.sgt(rhs); case CmpIPredicate::sge: return lhs.sge(rhs); case CmpIPredicate::ult: return lhs.ult(rhs); case CmpIPredicate::ule: return lhs.ule(rhs); case CmpIPredicate::ugt: return lhs.ugt(rhs); case CmpIPredicate::uge: return lhs.uge(rhs); } llvm_unreachable("unknown comparison predicate"); } // Returns true if the predicate is true for two equal operands. static bool applyCmpPredicateToEqualOperands(CmpIPredicate predicate) { switch (predicate) { case CmpIPredicate::eq: case CmpIPredicate::sle: case CmpIPredicate::sge: case CmpIPredicate::ule: case CmpIPredicate::uge: return true; case CmpIPredicate::ne: case CmpIPredicate::slt: case CmpIPredicate::sgt: case CmpIPredicate::ult: case CmpIPredicate::ugt: return false; } llvm_unreachable("unknown comparison predicate"); } // Constant folding hook for comparisons. OpFoldResult CmpIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "cmpi takes two arguments"); if (lhs() == rhs()) { auto val = applyCmpPredicateToEqualOperands(getPredicate()); return BoolAttr::get(val, getContext()); } auto lhs = operands.front().dyn_cast_or_null(); auto rhs = operands.back().dyn_cast_or_null(); if (!lhs || !rhs) return {}; auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); return BoolAttr::get(val, getContext()); } //===----------------------------------------------------------------------===// // CmpFOp //===----------------------------------------------------------------------===// static void buildCmpFOp(OpBuilder &build, OperationState &result, CmpFPredicate predicate, Value lhs, Value rhs) { result.addOperands({lhs, rhs}); result.types.push_back(getI1SameShape(lhs.getType())); result.addAttribute(CmpFOp::getPredicateAttrName(), build.getI64IntegerAttr(static_cast(predicate))); } /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point /// comparison predicates. bool mlir::applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs, const APFloat &rhs) { auto cmpResult = lhs.compare(rhs); switch (predicate) { case CmpFPredicate::AlwaysFalse: return false; case CmpFPredicate::OEQ: return cmpResult == APFloat::cmpEqual; case CmpFPredicate::OGT: return cmpResult == APFloat::cmpGreaterThan; case CmpFPredicate::OGE: return cmpResult == APFloat::cmpGreaterThan || cmpResult == APFloat::cmpEqual; case CmpFPredicate::OLT: return cmpResult == APFloat::cmpLessThan; case CmpFPredicate::OLE: return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; case CmpFPredicate::ONE: return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; case CmpFPredicate::ORD: return cmpResult != APFloat::cmpUnordered; case CmpFPredicate::UEQ: return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; case CmpFPredicate::UGT: return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpGreaterThan; case CmpFPredicate::UGE: return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpGreaterThan || cmpResult == APFloat::cmpEqual; case CmpFPredicate::ULT: return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpLessThan; case CmpFPredicate::ULE: return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; case CmpFPredicate::UNE: return cmpResult != APFloat::cmpEqual; case CmpFPredicate::UNO: return cmpResult == APFloat::cmpUnordered; case CmpFPredicate::AlwaysTrue: return true; } llvm_unreachable("unknown comparison predicate"); } // Constant folding hook for comparisons. OpFoldResult CmpFOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "cmpf takes two arguments"); auto lhs = operands.front().dyn_cast_or_null(); auto rhs = operands.back().dyn_cast_or_null(); // TODO: We could actually do some intelligent things if we know only one // of the operands, but it's inf or nan. if (!lhs || !rhs) return {}; auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val)); } //===----------------------------------------------------------------------===// // CondBranchOp //===----------------------------------------------------------------------===// namespace { /// cond_br true, ^bb1, ^bb2 /// -> br ^bb1 /// cond_br false, ^bb1, ^bb2 /// -> br ^bb2 /// struct SimplifyConstCondBranchPred : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CondBranchOp condbr, PatternRewriter &rewriter) const override { if (matchPattern(condbr.getCondition(), m_NonZero())) { // True branch taken. rewriter.replaceOpWithNewOp(condbr, condbr.getTrueDest(), condbr.getTrueOperands()); return success(); } else if (matchPattern(condbr.getCondition(), m_Zero())) { // False branch taken. rewriter.replaceOpWithNewOp(condbr, condbr.getFalseDest(), condbr.getFalseOperands()); return success(); } return failure(); } }; /// cond_br %cond, ^bb1, ^bb2 /// ^bb1 /// br ^bbN(...) /// ^bb2 /// br ^bbK(...) /// /// -> cond_br %cond, ^bbN(...), ^bbK(...) /// struct SimplifyPassThroughCondBranch : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CondBranchOp condbr, PatternRewriter &rewriter) const override { Block *trueDest = condbr.trueDest(), *falseDest = condbr.falseDest(); ValueRange trueDestOperands = condbr.getTrueOperands(); ValueRange falseDestOperands = condbr.getFalseOperands(); SmallVector trueDestOperandStorage, falseDestOperandStorage; // Try to collapse one of the current successors. LogicalResult collapsedTrue = collapseBranch(trueDest, trueDestOperands, trueDestOperandStorage); LogicalResult collapsedFalse = collapseBranch(falseDest, falseDestOperands, falseDestOperandStorage); if (failed(collapsedTrue) && failed(collapsedFalse)) return failure(); // Create a new branch with the collapsed successors. rewriter.replaceOpWithNewOp(condbr, condbr.getCondition(), trueDest, trueDestOperands, falseDest, falseDestOperands); return success(); } }; /// cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N) /// -> br ^bb1(A, ..., N) /// /// cond_br %cond, ^bb1(A), ^bb1(B) /// -> %select = select %cond, A, B /// br ^bb1(%select) /// struct SimplifyCondBranchIdenticalSuccessors : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CondBranchOp condbr, PatternRewriter &rewriter) const override { // Check that the true and false destinations are the same and have the same // operands. Block *trueDest = condbr.trueDest(); if (trueDest != condbr.falseDest()) return failure(); // If all of the operands match, no selects need to be generated. OperandRange trueOperands = condbr.getTrueOperands(); OperandRange falseOperands = condbr.getFalseOperands(); if (trueOperands == falseOperands) { rewriter.replaceOpWithNewOp(condbr, trueDest, trueOperands); return success(); } // Otherwise, if the current block is the only predecessor insert selects // for any mismatched branch operands. if (trueDest->getUniquePredecessor() != condbr->getBlock()) return failure(); // Generate a select for any operands that differ between the two. SmallVector mergedOperands; mergedOperands.reserve(trueOperands.size()); Value condition = condbr.getCondition(); for (auto it : llvm::zip(trueOperands, falseOperands)) { if (std::get<0>(it) == std::get<1>(it)) mergedOperands.push_back(std::get<0>(it)); else mergedOperands.push_back(rewriter.create( condbr.getLoc(), condition, std::get<0>(it), std::get<1>(it))); } rewriter.replaceOpWithNewOp(condbr, trueDest, mergedOperands); return success(); } }; /// ... /// cond_br %cond, ^bb1(...), ^bb2(...) /// ... /// ^bb1: // has single predecessor /// ... /// cond_br %cond, ^bb3(...), ^bb4(...) /// /// -> /// /// ... /// cond_br %cond, ^bb1(...), ^bb2(...) /// ... /// ^bb1: // has single predecessor /// ... /// br ^bb3(...) /// struct SimplifyCondBranchFromCondBranchOnSameCondition : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CondBranchOp condbr, PatternRewriter &rewriter) const override { // Check that we have a single distinct predecessor. Block *currentBlock = condbr->getBlock(); Block *predecessor = currentBlock->getSinglePredecessor(); if (!predecessor) return failure(); // Check that the predecessor terminates with a conditional branch to this // block and that it branches on the same condition. auto predBranch = dyn_cast(predecessor->getTerminator()); if (!predBranch || condbr.getCondition() != predBranch.getCondition()) return failure(); // Fold this branch to an unconditional branch. if (currentBlock == predBranch.trueDest()) rewriter.replaceOpWithNewOp(condbr, condbr.trueDest(), condbr.trueDestOperands()); else rewriter.replaceOpWithNewOp(condbr, condbr.falseDest(), condbr.falseDestOperands()); return success(); } }; } // end anonymous namespace void CondBranchOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } Optional CondBranchOp::getMutableSuccessorOperands(unsigned index) { assert(index < getNumSuccessors() && "invalid successor index"); return index == trueIndex ? trueDestOperandsMutable() : falseDestOperandsMutable(); } Block *CondBranchOp::getSuccessorForOperands(ArrayRef operands) { if (IntegerAttr condAttr = operands.front().dyn_cast_or_null()) return condAttr.getValue().isOneValue() ? trueDest() : falseDest(); return nullptr; } //===----------------------------------------------------------------------===// // Constant*Op //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, ConstantOp &op) { p << "constant "; p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"}); if (op.getAttrs().size() > 1) p << ' '; p << op.getValue(); // If the value is a symbol reference, print a trailing type. if (op.getValue().isa()) p << " : " << op.getType(); } static ParseResult parseConstantOp(OpAsmParser &parser, OperationState &result) { Attribute valueAttr; if (parser.parseOptionalAttrDict(result.attributes) || parser.parseAttribute(valueAttr, "value", result.attributes)) return failure(); // If the attribute is a symbol reference, then we expect a trailing type. Type type; if (!valueAttr.isa()) type = valueAttr.getType(); else if (parser.parseColonType(type)) return failure(); // Add the attribute type to the list. return parser.addTypeToList(type, result.types); } /// The constant op requires an attribute, and furthermore requires that it /// matches the return type. static LogicalResult verify(ConstantOp &op) { auto value = op.getValue(); if (!value) return op.emitOpError("requires a 'value' attribute"); auto type = op.getType(); if (!value.getType().isa() && type != value.getType()) return op.emitOpError() << "requires attribute's type (" << value.getType() << ") to match op's return type (" << type << ")"; if (type.isa() || value.isa()) return success(); if (auto intAttr = value.dyn_cast()) { // If the type has a known bitwidth we verify that the value can be // represented with the given bitwidth. auto bitwidth = type.cast().getWidth(); auto intVal = intAttr.getValue(); if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth)) return op.emitOpError("requires 'value' to be an integer within the " "range of the integer result type"); return success(); } if (type.isa()) { if (!value.isa()) return op.emitOpError("requires 'value' to be a floating point constant"); return success(); } if (type.isa()) { if (!value.isa()) return op.emitOpError("requires 'value' to be a shaped constant"); return success(); } if (type.isa()) { auto fnAttr = value.dyn_cast(); if (!fnAttr) return op.emitOpError("requires 'value' to be a function reference"); // Try to find the referenced function. auto fn = op->getParentOfType().lookupSymbol(fnAttr.getValue()); if (!fn) return op.emitOpError() << "reference to undefined function '" << fnAttr.getValue() << "'"; // Check that the referenced function has the correct type. if (fn.getType() != type) return op.emitOpError("reference to function with mismatched type"); return success(); } if (type.isa() && value.isa()) return success(); return op.emitOpError("unsupported 'value' attribute: ") << value; } OpFoldResult ConstantOp::fold(ArrayRef operands) { assert(operands.empty() && "constant has no operands"); return getValue(); } void ConstantOp::getAsmResultNames( function_ref setNameFn) { Type type = getType(); if (auto intCst = getValue().dyn_cast()) { IntegerType intTy = type.dyn_cast(); // Sugar i1 constants with 'true' and 'false'. if (intTy && intTy.getWidth() == 1) return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); // Otherwise, build a complex name with the value and type. SmallString<32> specialNameBuffer; llvm::raw_svector_ostream specialName(specialNameBuffer); specialName << 'c' << intCst.getInt(); if (intTy) specialName << '_' << type; setNameFn(getResult(), specialName.str()); } else if (type.isa()) { setNameFn(getResult(), "f"); } else { setNameFn(getResult(), "cst"); } } /// Returns true if a constant operation can be built with the given value and /// result type. bool ConstantOp::isBuildableWith(Attribute value, Type type) { // SymbolRefAttr can only be used with a function type. if (value.isa()) return type.isa(); // Otherwise, the attribute must have the same type as 'type'. if (value.getType() != type) return false; // Finally, check that the attribute kind is handled. return value.isa(); } void ConstantFloatOp::build(OpBuilder &builder, OperationState &result, const APFloat &value, FloatType type) { ConstantOp::build(builder, result, type, builder.getFloatAttr(type, value)); } bool ConstantFloatOp::classof(Operation *op) { return ConstantOp::classof(op) && op->getResult(0).getType().isa(); } /// ConstantIntOp only matches values whose result type is an IntegerType. bool ConstantIntOp::classof(Operation *op) { return ConstantOp::classof(op) && op->getResult(0).getType().isSignlessInteger(); } void ConstantIntOp::build(OpBuilder &builder, OperationState &result, int64_t value, unsigned width) { Type type = builder.getIntegerType(width); ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value)); } /// Build a constant int op producing an integer with the specified type, /// which must be an integer type. void ConstantIntOp::build(OpBuilder &builder, OperationState &result, int64_t value, Type type) { assert(type.isSignlessInteger() && "ConstantIntOp can only have signless integer type"); ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value)); } /// ConstantIndexOp only matches values whose result type is Index. bool ConstantIndexOp::classof(Operation *op) { return ConstantOp::classof(op) && op->getResult(0).getType().isIndex(); } void ConstantIndexOp::build(OpBuilder &builder, OperationState &result, int64_t value) { Type type = builder.getIndexType(); ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value)); } //===----------------------------------------------------------------------===// // DeallocOp //===----------------------------------------------------------------------===// namespace { /// Fold Dealloc operations that are deallocating an AllocOp that is only used /// by other Dealloc operations. struct SimplifyDeadDealloc : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(DeallocOp dealloc, PatternRewriter &rewriter) const override { // Check that the memref operand's defining operation is an AllocOp. Value memref = dealloc.memref(); if (!isa_and_nonnull(memref.getDefiningOp())) return failure(); // Check that all of the uses of the AllocOp are other DeallocOps. for (auto *user : memref.getUsers()) if (!isa(user)) return failure(); // Erase the dealloc operation. rewriter.eraseOp(dealloc); return success(); } }; } // end anonymous namespace. static LogicalResult verify(DeallocOp op) { if (!op.memref().getType().isa()) return op.emitOpError("operand must be a memref"); return success(); } void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } LogicalResult DeallocOp::fold(ArrayRef cstOperands, SmallVectorImpl &results) { /// dealloc(memrefcast) -> dealloc return foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // DimOp //===----------------------------------------------------------------------===// void DimOp::build(OpBuilder &builder, OperationState &result, Value memrefOrTensor, int64_t index) { auto loc = result.location; Value indexValue = builder.create(loc, index); build(builder, result, memrefOrTensor, indexValue); } void DimOp::build(OpBuilder &builder, OperationState &result, Value memrefOrTensor, Value index) { auto indexTy = builder.getIndexType(); build(builder, result, indexTy, memrefOrTensor, index); } Optional DimOp::getConstantIndex() { if (auto constantOp = index().getDefiningOp()) return constantOp.getValue().cast().getInt(); return {}; } static LogicalResult verify(DimOp op) { // Assume unknown index to be in range. Optional index = op.getConstantIndex(); if (!index.hasValue()) return success(); // Check that constant index is not knowingly out of range. auto type = op.memrefOrTensor().getType(); if (auto tensorType = type.dyn_cast()) { if (index.getValue() >= tensorType.getRank()) return op.emitOpError("index is out of range"); } else if (auto memrefType = type.dyn_cast()) { if (index.getValue() >= memrefType.getRank()) return op.emitOpError("index is out of range"); } else if (type.isa() || type.isa()) { // Assume index to be in range. } else { llvm_unreachable("expected operand with tensor or memref type"); } return success(); } OpFoldResult DimOp::fold(ArrayRef operands) { auto index = operands[1].dyn_cast_or_null(); // All forms of folding require a known index. if (!index) return {}; auto argTy = memrefOrTensor().getType(); // Fold if the shape extent along the given index is known. if (auto shapedTy = argTy.dyn_cast()) { // Folding for unranked types (UnrankedMemRefType, UnrankedTensorType) is // not supported. if (!shapedTy.hasRank()) return {}; if (!shapedTy.isDynamicDim(index.getInt())) { Builder builder(getContext()); return builder.getIndexAttr(shapedTy.getShape()[index.getInt()]); } } Operation *definingOp = memrefOrTensor().getDefiningOp(); // dim(tensor_load(memref)) -> dim(memref) if (auto tensorLoadOp = dyn_cast_or_null(definingOp)) { setOperand(0, tensorLoadOp.memref()); return getResult(); } // Fold dim to the operand of dynamic_tensor_from_elements. if (auto fromElements = dyn_cast_or_null(definingOp)) { auto resultType = fromElements.getResult().getType().cast(); // The case where the type encodes the size of the dimension is handled // above. assert(resultType.getShape()[index.getInt()] == RankedTensorType::kDynamicSize); // Find the operand of the fromElements that corresponds to this index. auto dynExtents = fromElements.dynamicExtents().begin(); for (auto dim : resultType.getShape().take_front(index.getInt())) if (dim == RankedTensorType::kDynamicSize) dynExtents++; return Value{*dynExtents}; } // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. auto memrefType = argTy.dyn_cast(); if (!memrefType) return {}; // The size at the given index is now known to be a dynamic size of a memref. unsigned unsignedIndex = index.getValue().getZExtValue(); if (auto alloc = dyn_cast_or_null(definingOp)) return *(alloc.getDynamicSizes().begin() + memrefType.getDynamicDimIndex(unsignedIndex)); if (auto view = dyn_cast_or_null(definingOp)) return *(view.getDynamicSizes().begin() + memrefType.getDynamicDimIndex(unsignedIndex)); if (auto subview = dyn_cast_or_null(definingOp)) { assert(subview.isDynamicSize(unsignedIndex) && "Expected dynamic subview size"); return subview.getDynamicSize(unsignedIndex); } // dim(memrefcast) -> dim if (succeeded(foldMemRefCast(*this))) return getResult(); return {}; } namespace { /// Fold dim of a memref reshape operation to a load into the reshape's shape /// operand. struct DimOfMemRefReshape : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(DimOp dim, PatternRewriter &rewriter) const override { auto reshape = dim.memrefOrTensor().getDefiningOp(); if (!reshape) return failure(); // Place the load directly after the reshape to ensure that the shape memref // was not mutated. rewriter.setInsertionPointAfter(reshape); rewriter.replaceOpWithNewOp(dim, reshape.shape(), llvm::makeArrayRef({dim.index()})); return success(); } }; } // end anonymous namespace. void DimOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } // --------------------------------------------------------------------------- // DmaStartOp // --------------------------------------------------------------------------- void DmaStartOp::build(OpBuilder &builder, OperationState &result, Value srcMemRef, ValueRange srcIndices, Value destMemRef, ValueRange destIndices, Value numElements, Value tagMemRef, ValueRange tagIndices, Value stride, Value elementsPerStride) { result.addOperands(srcMemRef); result.addOperands(srcIndices); result.addOperands(destMemRef); result.addOperands(destIndices); result.addOperands({numElements, tagMemRef}); result.addOperands(tagIndices); if (stride) result.addOperands({stride, elementsPerStride}); } void DmaStartOp::print(OpAsmPrinter &p) { p << "dma_start " << getSrcMemRef() << '[' << getSrcIndices() << "], " << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements() << ", " << getTagMemRef() << '[' << getTagIndices() << ']'; if (isStrided()) p << ", " << getStride() << ", " << getNumElementsPerStride(); p.printOptionalAttrDict(getAttrs()); p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType() << ", " << getTagMemRef().getType(); } // Parse DmaStartOp. // Ex: // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, // %tag[%index], %stride, %num_elt_per_stride : // : memref<3076 x f32, 0>, // memref<1024 x f32, 2>, // memref<1 x i32> // ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcMemRefInfo; SmallVector srcIndexInfos; OpAsmParser::OperandType dstMemRefInfo; SmallVector dstIndexInfos; OpAsmParser::OperandType numElementsInfo; OpAsmParser::OperandType tagMemrefInfo; SmallVector tagIndexInfos; SmallVector strideInfo; SmallVector types; auto indexType = parser.getBuilder().getIndexType(); // Parse and resolve the following list of operands: // *) source memref followed by its indices (in square brackets). // *) destination memref followed by its indices (in square brackets). // *) dma size in KiB. if (parser.parseOperand(srcMemRefInfo) || parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(dstMemRefInfo) || parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(numElementsInfo) || parser.parseComma() || parser.parseOperand(tagMemrefInfo) || parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) return failure(); // Parse optional stride and elements per stride. if (parser.parseTrailingOperandList(strideInfo)) return failure(); bool isStrided = strideInfo.size() == 2; if (!strideInfo.empty() && !isStrided) { return parser.emitError(parser.getNameLoc(), "expected two stride related operands"); } if (parser.parseColonTypeList(types)) return failure(); if (types.size() != 3) return parser.emitError(parser.getNameLoc(), "fewer/more types expected"); if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || parser.resolveOperands(srcIndexInfos, indexType, result.operands) || parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || parser.resolveOperands(dstIndexInfos, indexType, result.operands) || // size should be an index. parser.resolveOperand(numElementsInfo, indexType, result.operands) || parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || // tag indices should be index. parser.resolveOperands(tagIndexInfos, indexType, result.operands)) return failure(); if (isStrided) { if (parser.resolveOperands(strideInfo, indexType, result.operands)) return failure(); } return success(); } LogicalResult DmaStartOp::verify() { unsigned numOperands = getNumOperands(); // Mandatory non-variadic operands are: src memref, dst memref, tag memref and // the number of elements. if (numOperands < 4) return emitOpError("expected at least 4 operands"); // Check types of operands. The order of these calls is important: the later // calls rely on some type properties to compute the operand position. // 1. Source memref. if (!getSrcMemRef().getType().isa()) return emitOpError("expected source to be of memref type"); if (numOperands < getSrcMemRefRank() + 4) return emitOpError() << "expected at least " << getSrcMemRefRank() + 4 << " operands"; if (!getSrcIndices().empty() && !llvm::all_of(getSrcIndices().getTypes(), [](Type t) { return t.isIndex(); })) return emitOpError("expected source indices to be of index type"); // 2. Destination memref. if (!getDstMemRef().getType().isa()) return emitOpError("expected destination to be of memref type"); unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4; if (numOperands < numExpectedOperands) return emitOpError() << "expected at least " << numExpectedOperands << " operands"; if (!getDstIndices().empty() && !llvm::all_of(getDstIndices().getTypes(), [](Type t) { return t.isIndex(); })) return emitOpError("expected destination indices to be of index type"); // 3. Number of elements. if (!getNumElements().getType().isIndex()) return emitOpError("expected num elements to be of index type"); // 4. Tag memref. if (!getTagMemRef().getType().isa()) return emitOpError("expected tag to be of memref type"); numExpectedOperands += getTagMemRefRank(); if (numOperands < numExpectedOperands) return emitOpError() << "expected at least " << numExpectedOperands << " operands"; if (!getTagIndices().empty() && !llvm::all_of(getTagIndices().getTypes(), [](Type t) { return t.isIndex(); })) return emitOpError("expected tag indices to be of index type"); // DMAs from different memory spaces supported. if (getSrcMemorySpace() == getDstMemorySpace()) return emitOpError("DMA should be between different memory spaces"); // Optional stride-related operands must be either both present or both // absent. if (numOperands != numExpectedOperands && numOperands != numExpectedOperands + 2) return emitOpError("incorrect number of operands"); // 5. Strides. if (isStrided()) { if (!getStride().getType().isIndex() || !getNumElementsPerStride().getType().isIndex()) return emitOpError( "expected stride and num elements per stride to be of type index"); } return success(); } LogicalResult DmaStartOp::fold(ArrayRef cstOperands, SmallVectorImpl &results) { /// dma_start(memrefcast) -> dma_start return foldMemRefCast(*this); } // --------------------------------------------------------------------------- // DmaWaitOp // --------------------------------------------------------------------------- void DmaWaitOp::build(OpBuilder &builder, OperationState &result, Value tagMemRef, ValueRange tagIndices, Value numElements) { result.addOperands(tagMemRef); result.addOperands(tagIndices); result.addOperands(numElements); } void DmaWaitOp::print(OpAsmPrinter &p) { p << "dma_wait " << getTagMemRef() << '[' << getTagIndices() << "], " << getNumElements(); p.printOptionalAttrDict(getAttrs()); p << " : " << getTagMemRef().getType(); } // Parse DmaWaitOp. // Eg: // dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4> // ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType tagMemrefInfo; SmallVector tagIndexInfos; Type type; auto indexType = parser.getBuilder().getIndexType(); OpAsmParser::OperandType numElementsInfo; // Parse tag memref, its indices, and dma size. if (parser.parseOperand(tagMemrefInfo) || parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(numElementsInfo) || parser.parseColonType(type) || parser.resolveOperand(tagMemrefInfo, type, result.operands) || parser.resolveOperands(tagIndexInfos, indexType, result.operands) || parser.resolveOperand(numElementsInfo, indexType, result.operands)) return failure(); return success(); } LogicalResult DmaWaitOp::fold(ArrayRef cstOperands, SmallVectorImpl &results) { /// dma_wait(memrefcast) -> dma_wait return foldMemRefCast(*this); } LogicalResult DmaWaitOp::verify() { // Mandatory non-variadic operands are tag and the number of elements. if (getNumOperands() < 2) return emitOpError() << "expected at least 2 operands"; // Check types of operands. The order of these calls is important: the later // calls rely on some type properties to compute the operand position. if (!getTagMemRef().getType().isa()) return emitOpError() << "expected tag to be of memref type"; if (getNumOperands() != 2 + getTagMemRefRank()) return emitOpError() << "expected " << 2 + getTagMemRefRank() << " operands"; if (!getTagIndices().empty() && !llvm::all_of(getTagIndices().getTypes(), [](Type t) { return t.isIndex(); })) return emitOpError() << "expected tag indices to be of index type"; if (!getNumElements().getType().isIndex()) return emitOpError() << "expected the number of elements to be of index type"; return success(); } //===----------------------------------------------------------------------===// // DynamicTensorFromElementsOp //===----------------------------------------------------------------------===// static ParseResult parseDynamicTensorFromElementsOp(OpAsmParser &parser, OperationState &result) { // Parse operands. SmallVector dynamicExtents; Type indexTy = parser.getBuilder().getIndexType(); if (parser.parseOperandList(dynamicExtents) || parser.resolveOperands(dynamicExtents, indexTy, result.operands)) return failure(); // Parse body. Region *body = result.addRegion(); if (parser.parseRegion(*body, {}, {})) return failure(); // Parse result type. Type resultType; if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(resultType)) return failure(); result.addTypes(resultType); return success(); } static void print(OpAsmPrinter &p, DynamicTensorFromElementsOp op) { p << "dynamic_tensor_from_elements " << op.dynamicExtents(); p.printRegion(op.body()); p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.getType(); } static LogicalResult verify(DynamicTensorFromElementsOp op) { // Ensure that the tensor type has as many dynamic dimensions as are specified // by the operands. RankedTensorType resultTy = op.getType().cast(); if (op.getNumOperands() != resultTy.getNumDynamicDims()) return op.emitError("must have as many index operands as dynamic extents " "in the result type"); // Ensure that region arguments span the index space. if (!llvm::all_of(op.body().getArgumentTypes(), [](Type ty) { return ty.isIndex(); })) return op.emitError("all body arguments must be index"); if (op.body().getNumArguments() != resultTy.getRank()) return op.emitError("must have one body argument per input dimension"); // Ensure that the region yields an element of the right type. auto yieldOp = llvm::cast(op.body().getBlocks().front().getTerminator()); if (yieldOp.value().getType() != resultTy.getElementType()) return op.emitOpError( "body must be terminated with a `yield` operation of the tensor " "element type"); return success(); } void DynamicTensorFromElementsOp::build( OpBuilder &b, OperationState &result, Type resultTy, ValueRange dynamicExtents, function_ref bodyBuilder) { build(b, result, resultTy, dynamicExtents); // Build and populate body. OpBuilder::InsertionGuard guard(b); Region *bodyRegion = result.regions.front().get(); auto rank = resultTy.cast().getRank(); SmallVector argumentTypes(rank, b.getIndexType()); Block *bodyBlock = b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes); bodyBuilder(b, result.location, bodyBlock->getArguments()); } namespace { /// Canonicalizes dynamic_tensor_from_elements operations with a constant /// operand into the equivalent operation with the operand expressed in the /// result type, instead. We also insert a type cast to make sure that the /// resulting IR is still well-typed. struct StaticDynamicTensorFromElements : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(DynamicTensorFromElementsOp tensorFromElements, PatternRewriter &rewriter) const final { auto resultType = tensorFromElements.getResult().getType().cast(); if (resultType.hasStaticShape()) return failure(); SmallVector newOperands; SmallVector newShape; auto operandsIt = tensorFromElements.dynamicExtents().begin(); for (int64_t dim : resultType.getShape()) { if (dim != RankedTensorType::kDynamicSize) { newShape.push_back(dim); continue; } APInt index; if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { newShape.push_back(RankedTensorType::kDynamicSize); newOperands.push_back(*operandsIt++); continue; } newShape.push_back(index.getSExtValue()); operandsIt++; } if (newOperands.size() == tensorFromElements.dynamicExtents().size()) return failure(); auto loc = tensorFromElements.getLoc(); auto newOp = rewriter.create( loc, RankedTensorType::get(newShape, resultType.getElementType()), newOperands); rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), newOp.body().begin()); rewriter.replaceOpWithNewOp(tensorFromElements, resultType, newOp); return success(); } }; /// Canonicalizes the pattern of the form /// /// %tensor = dynamic_tensor_from_elements %x { /// ^bb0(%arg0: index): // no predecessors /// /// yield %1 : index /// } : tensor /// %extracted_element = extract_element %tensor[%c0] : tensor /// /// to just with %arg0 replaced by %c0. We only do this if the /// dynamic_tensor_from_elements operation has no side-effects. struct ExtractElementFromDynamicTensorFromElements : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractElementOp extract, PatternRewriter &rewriter) const final { auto tensorFromElements = extract.aggregate().getDefiningOp(); if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) return failure(); BlockAndValueMapping mapping; Block *body = tensorFromElements.getBody(); mapping.map(body->getArguments(), extract.indices()); for (auto &op : body->without_terminator()) rewriter.clone(op, mapping); auto yield = cast(body->getTerminator()); rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); return success(); } }; /// Canonicalizes the pattern of the form /// /// %val = tensor_cast %source : : tensor to tensor<2xi32> /// %extracted_element = extract_element %val[%c0] : tensor<2xi32> /// /// to /// /// %extracted_element = extract_element %source[%c0] : tensor struct ExtractElementFromTensorCast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractElementOp extract, PatternRewriter &rewriter) const final { auto tensorCast = extract.aggregate().getDefiningOp(); if (!tensorCast) return failure(); rewriter.replaceOpWithNewOp(extract, tensorCast.source(), extract.getIndices()); return success(); } }; } // namespace void DynamicTensorFromElementsOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) { results.insert( context); } //===----------------------------------------------------------------------===// // ExtractElementOp //===----------------------------------------------------------------------===// static LogicalResult verify(ExtractElementOp op) { // Verify the # indices match if we have a ranked type. auto aggregateType = op.getAggregate().getType().cast(); if (aggregateType.hasRank() && aggregateType.getRank() != op.getNumOperands() - 1) return op.emitOpError("incorrect number of indices for extract_element"); return success(); } OpFoldResult ExtractElementOp::fold(ArrayRef operands) { assert(!operands.empty() && "extract_element takes at least one operand"); // The aggregate operand must be a known constant. Attribute aggregate = operands.front(); if (!aggregate) return {}; // If this is a splat elements attribute, simply return the value. All of the // elements of a splat attribute are the same. if (auto splatAggregate = aggregate.dyn_cast()) return splatAggregate.getSplatValue(); // Otherwise, collect the constant indices into the aggregate. SmallVector indices; for (Attribute indice : llvm::drop_begin(operands, 1)) { if (!indice || !indice.isa()) return {}; indices.push_back(indice.cast().getInt()); } // If this is an elements attribute, query the value at the given indices. auto elementsAttr = aggregate.dyn_cast(); if (elementsAttr && elementsAttr.isValidIndex(indices)) return elementsAttr.getValue(indices); return {}; } //===----------------------------------------------------------------------===// // TensorFromElementsOp //===----------------------------------------------------------------------===// void TensorFromElementsOp::build(OpBuilder &builder, OperationState &result, Type elementType, ValueRange elements) { Type resultTy = RankedTensorType::get({static_cast(elements.size())}, elementType); result.addOperands(elements); result.addTypes(resultTy); } void TensorFromElementsOp::build(OpBuilder &builder, OperationState &result, ValueRange elements) { assert(!elements.empty() && "expected at least one element"); build(builder, result, elements.front().getType(), elements); } namespace { // Canonicalizes the pattern of the form // // %tensor = "tensor_from_elements(%element) : (i32) -> tensor<1xi32> // %extracted_element = extract_element %tensor[%c0] : tensor<1xi32> // // to just %element. struct ExtractElementFromTensorFromElements : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractElementOp extract, PatternRewriter &rewriter) const final { if (extract.indices().size() != 1) return failure(); auto tensorFromElements = dyn_cast_or_null( extract.aggregate().getDefiningOp()); if (tensorFromElements == nullptr) return failure(); APInt index; if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index))) return failure(); rewriter.replaceOp(extract, tensorFromElements.getOperand(index.getZExtValue())); return success(); } }; } // namespace void TensorFromElementsOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // FPExtOp //===----------------------------------------------------------------------===// bool FPExtOp::areCastCompatible(Type a, Type b) { if (auto fa = a.dyn_cast()) if (auto fb = b.dyn_cast()) return fa.getWidth() < fb.getWidth(); return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // FPToSIOp //===----------------------------------------------------------------------===// bool FPToSIOp::areCastCompatible(Type a, Type b) { if (a.isa() && b.isSignlessInteger()) return true; return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // FPToUIOp //===----------------------------------------------------------------------===// bool FPToUIOp::areCastCompatible(Type a, Type b) { if (a.isa() && b.isSignlessInteger()) return true; return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // FPTruncOp //===----------------------------------------------------------------------===// bool FPTruncOp::areCastCompatible(Type a, Type b) { if (auto fa = a.dyn_cast()) if (auto fb = b.dyn_cast()) return fa.getWidth() > fb.getWidth(); return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // GlobalMemrefOp //===----------------------------------------------------------------------===// static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalMemrefOp op, TypeAttr type, Attribute initialValue) { p << type; if (!op.isExternal()) { p << " = "; if (op.isUninitialized()) p << "uninitialized"; else p.printAttributeWithoutType(initialValue); } } static ParseResult parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, Attribute &initialValue) { Type type; if (parser.parseType(type)) return failure(); auto memrefType = type.dyn_cast(); if (!memrefType || !memrefType.hasStaticShape()) return parser.emitError(parser.getNameLoc()) << "type should be static shaped memref, but got " << type; typeAttr = TypeAttr::get(type); if (parser.parseOptionalEqual()) return success(); if (succeeded(parser.parseOptionalKeyword("uninitialized"))) { initialValue = UnitAttr::get(parser.getBuilder().getContext()); return success(); } Type tensorType = getTensorTypeFromMemRefType(memrefType); if (parser.parseAttribute(initialValue, tensorType)) return failure(); if (!initialValue.isa()) return parser.emitError(parser.getNameLoc()) << "initial value should be a unit or elements attribute"; return success(); } static LogicalResult verify(GlobalMemrefOp op) { auto memrefType = op.type().dyn_cast(); if (!memrefType || !memrefType.hasStaticShape()) return op.emitOpError("type should be static shaped memref, but got ") << op.type(); // Verify that the initial value, if present, is either a unit attribute or // an elements attribute. if (op.initial_value().hasValue()) { Attribute initValue = op.initial_value().getValue(); if (!initValue.isa() && !initValue.isa()) return op.emitOpError("initial value should be a unit or elements " "attribute, but got ") << initValue; // Check that the type of the initial value is compatible with the type of // the global variable. if (initValue.isa()) { Type initType = initValue.getType(); Type tensorType = getTensorTypeFromMemRefType(memrefType); if (initType != tensorType) return op.emitOpError("initial value expected to be of type ") << tensorType << ", but was of type " << initType; } } // TODO: verify visibility for declarations. return success(); } //===----------------------------------------------------------------------===// // GetGlobalMemrefOp //===----------------------------------------------------------------------===// LogicalResult GetGlobalMemrefOp::verifySymbolUses(SymbolTableCollection &symbolTable) { // Verify that the result type is same as the type of the referenced // global_memref op. auto global = symbolTable.lookupNearestSymbolFrom(*this, nameAttr()); if (!global) return emitOpError("'") << name() << "' does not reference a valid global memref"; Type resultType = result().getType(); if (global.type() != resultType) return emitOpError("result type ") << resultType << " does not match type " << global.type() << " of the global memref @" << name(); return success(); } //===----------------------------------------------------------------------===// // IndexCastOp //===----------------------------------------------------------------------===// // Index cast is applicable from index to integer and backwards. bool IndexCastOp::areCastCompatible(Type a, Type b) { if (a.isa() && b.isa()) { auto aShaped = a.cast(); auto bShaped = b.cast(); return (aShaped.getShape() == bShaped.getShape()) && areCastCompatible(aShaped.getElementType(), bShaped.getElementType()); } return (a.isIndex() && b.isSignlessInteger()) || (a.isSignlessInteger() && b.isIndex()); } OpFoldResult IndexCastOp::fold(ArrayRef cstOperands) { // Fold IndexCast(IndexCast(x)) -> x auto cast = getOperand().getDefiningOp(); if (cast && cast.getOperand().getType() == getType()) return cast.getOperand(); // Fold IndexCast(constant) -> constant // A little hack because we go through int. Otherwise, the size // of the constant might need to change. if (auto value = cstOperands[0].dyn_cast_or_null()) return IntegerAttr::get(getType(), value.getInt()); return {}; } //===----------------------------------------------------------------------===// // LoadOp //===----------------------------------------------------------------------===// static LogicalResult verify(LoadOp op) { if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) return op.emitOpError("incorrect number of indices for load"); return success(); } OpFoldResult LoadOp::fold(ArrayRef cstOperands) { /// load(memrefcast) -> load if (succeeded(foldMemRefCast(*this))) return getResult(); return OpFoldResult(); } namespace { /// Fold a load on a tensor_to_memref operation into an extract_element on the /// corresponding tensor. struct LoadOfTensorToMemref : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(LoadOp load, PatternRewriter &rewriter) const override { auto tensorToMemref = load.memref().getDefiningOp(); if (!tensorToMemref) return failure(); rewriter.replaceOpWithNewOp(load, tensorToMemref.tensor(), load.indices()); return success(); } }; } // end anonymous namespace. void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // MemRefCastOp //===----------------------------------------------------------------------===// Value MemRefCastOp::getViewSource() { return source(); } bool MemRefCastOp::areCastCompatible(Type a, Type b) { auto aT = a.dyn_cast(); auto bT = b.dyn_cast(); auto uaT = a.dyn_cast(); auto ubT = b.dyn_cast(); if (aT && bT) { if (aT.getElementType() != bT.getElementType()) return false; if (aT.getAffineMaps() != bT.getAffineMaps()) { int64_t aOffset, bOffset; SmallVector aStrides, bStrides; if (failed(getStridesAndOffset(aT, aStrides, aOffset)) || failed(getStridesAndOffset(bT, bStrides, bOffset)) || aStrides.size() != bStrides.size()) return false; // Strides along a dimension/offset are compatible if the value in the // source memref is static and the value in the target memref is the // same. They are also compatible if either one is dynamic (see // description of MemRefCastOp for details). auto checkCompatible = [](int64_t a, int64_t b) { return (a == MemRefType::getDynamicStrideOrOffset() || b == MemRefType::getDynamicStrideOrOffset() || a == b); }; if (!checkCompatible(aOffset, bOffset)) return false; for (auto aStride : enumerate(aStrides)) if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) return false; } if (aT.getMemorySpace() != bT.getMemorySpace()) return false; // They must have the same rank, and any specified dimensions must match. if (aT.getRank() != bT.getRank()) return false; for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); if (aDim != -1 && bDim != -1 && aDim != bDim) return false; } return true; } else { if (!aT && !uaT) return false; if (!bT && !ubT) return false; // Unranked to unranked casting is unsupported if (uaT && ubT) return false; auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); if (aEltType != bEltType) return false; auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); if (aMemSpace != bMemSpace) return false; return true; } return false; } OpFoldResult MemRefCastOp::fold(ArrayRef operands) { if (Value folded = impl::foldCastOp(*this)) return folded; return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); } //===----------------------------------------------------------------------===// // MemRefReinterpretCastOp //===----------------------------------------------------------------------===// void mlir::MemRefReinterpretCastOp::build( OpBuilder &b, OperationState &result, MemRefType resultType, Value source, int64_t staticOffset, ArrayRef staticSizes, ArrayRef staticStrides, ValueRange offset, ValueRange sizes, ValueRange strides, ArrayRef attrs) { build(b, result, resultType, source, offset, sizes, strides, b.getI64ArrayAttr(staticOffset), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build a MemRefReinterpretCastOp with all dynamic entries: `staticOffsets`, /// `staticSizes` and `staticStrides` are automatically filled with /// source-memref-rank sentinel values that encode dynamic entries. void mlir::MemRefReinterpretCastOp::build(OpBuilder &b, OperationState &result, MemRefType resultType, Value source, Value offset, ValueRange sizes, ValueRange strides, ArrayRef attrs) { unsigned rank = resultType.getRank(); SmallVector staticSizesVector(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector( rank, ShapedType::kDynamicStrideOrOffset); build(b, result, resultType, source, /*staticOffset=*/ShapedType::kDynamicStrideOrOffset, staticSizesVector, staticStridesVector, offset, sizes, strides, attrs); } /// Print a memref_reinterpret_cast op of the form: /// ``` /// `memref_reinterpret_cast` ssa-name to /// offset: `[` offset `]` /// sizes: `[` size-list `]` /// strides:`[` stride-list `]` /// `:` any-memref-type to strided-memref-type /// ``` static void print(OpAsmPrinter &p, MemRefReinterpretCastOp op) { int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' '; p << op.source() << " "; printOffsetsSizesAndStrides( p, op, /*offsetPrefix=*/"to offset: ", /*sizePrefix=*/", sizes: ", /*stridePrefix=*/", strides: "); p << ": " << op.source().getType() << " to " << op.getType(); } /// Parse a memref_reinterpret_cast op of the form: /// ``` /// `memref_reinterpret_cast` ssa-name to /// offset: `[` offset `]` /// sizes: `[` size-list `]` /// strides:`[` stride-list `]` /// `:` any-memref-type to strided-memref-type /// ``` static ParseResult parseMemRefReinterpretCastOp(OpAsmParser &parser, OperationState &result) { // Parse `operand` OpAsmParser::OperandType srcInfo; if (parser.parseOperand(srcInfo)) return failure(); auto parseOffsetPrefix = [](OpAsmParser &parser) { return failure(parser.parseKeyword("to") || parser.parseKeyword("offset") || parser.parseColon()); }; auto parseSizePrefix = [](OpAsmParser &parser) { return failure(parser.parseComma() || parser.parseKeyword("sizes") || parser.parseColon()); }; auto parseStridePrefix = [](OpAsmParser &parser) { return failure(parser.parseComma() || parser.parseKeyword("strides") || parser.parseColon()); }; Type srcType, dstType; auto preResolutionFn = [&](OpAsmParser &parser, OperationState &result) { return failure(parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.parseKeywordType("to", dstType) || parser.resolveOperand(srcInfo, srcType, result.operands)); }; if (failed(parseOffsetsSizesAndStrides(parser, result, /*segmentSizes=*/{1}, // source memref preResolutionFn, parseOffsetPrefix, parseSizePrefix, parseStridePrefix))) return failure(); return parser.addTypeToList(dstType, result.types); } static LogicalResult verify(MemRefReinterpretCastOp op) { // The source and result memrefs should be in the same memory space. auto srcType = op.source().getType().cast(); auto resultType = op.getType().cast(); if (srcType.getMemorySpace() != resultType.getMemorySpace()) return op.emitError("different memory spaces specified for source type ") << srcType << " and result memref type " << resultType; if (srcType.getElementType() != resultType.getElementType()) return op.emitError("different element types specified for source type ") << srcType << " and result memref type " << resultType; // Match sizes in result memref type and in static_sizes attribute. for (auto &en : llvm::enumerate(llvm::zip(resultType.getShape(), extractFromI64ArrayAttr(op.static_sizes())))) { int64_t resultSize = std::get<0>(en.value()); int64_t expectedSize = std::get<1>(en.value()); if (resultSize != expectedSize) return op.emitError("expected result type with size = ") << expectedSize << " instead of " << resultSize << " in dim = " << en.index(); } // Match offset and strides in static_offset and static_strides attributes if // result memref type has an affine map specified. if (!resultType.getAffineMaps().empty()) { int64_t resultOffset; SmallVector resultStrides; if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) return failure(); // Match offset in result memref type and in static_offsets attribute. int64_t expectedOffset = extractFromI64ArrayAttr(op.static_offsets()).front(); if (resultOffset != expectedOffset) return op.emitError("expected result type with offset = ") << resultOffset << " instead of " << expectedOffset; // Match strides in result memref type and in static_strides attribute. for (auto &en : llvm::enumerate(llvm::zip( resultStrides, extractFromI64ArrayAttr(op.static_strides())))) { int64_t resultStride = std::get<0>(en.value()); int64_t expectedStride = std::get<1>(en.value()); if (resultStride != expectedStride) return op.emitError("expected result type with stride = ") << expectedStride << " instead of " << resultStride << " in dim = " << en.index(); } } return success(); } //===----------------------------------------------------------------------===// // MemRefReshapeOp //===----------------------------------------------------------------------===// static LogicalResult verify(MemRefReshapeOp op) { Type operandType = op.source().getType(); Type resultType = op.result().getType(); Type operandElementType = operandType.cast().getElementType(); Type resultElementType = resultType.cast().getElementType(); if (operandElementType != resultElementType) return op.emitOpError("element types of source and destination memref " "types should be the same"); if (auto operandMemRefType = operandType.dyn_cast()) if (!operandMemRefType.getAffineMaps().empty()) return op.emitOpError( "source memref type should have identity affine map"); int64_t shapeSize = op.shape().getType().cast().getDimSize(0); auto resultMemRefType = resultType.dyn_cast(); if (resultMemRefType) { if (!resultMemRefType.getAffineMaps().empty()) return op.emitOpError( "result memref type should have identity affine map"); if (shapeSize == ShapedType::kDynamicSize) return op.emitOpError("cannot use shape operand with dynamic length to " "reshape to statically-ranked memref type"); if (shapeSize != resultMemRefType.getRank()) return op.emitOpError( "length of shape operand differs from the result's memref rank"); } return success(); } //===----------------------------------------------------------------------===// // MulFOp //===----------------------------------------------------------------------===// OpFoldResult MulFOp::fold(ArrayRef operands) { return constFoldBinaryOp( operands, [](APFloat a, APFloat b) { return a * b; }); } //===----------------------------------------------------------------------===// // MulIOp //===----------------------------------------------------------------------===// OpFoldResult MulIOp::fold(ArrayRef operands) { /// muli(x, 0) -> 0 if (matchPattern(rhs(), m_Zero())) return rhs(); /// muli(x, 1) -> x if (matchPattern(rhs(), m_One())) return getOperand(0); // TODO: Handle the overflow case. return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a * b; }); } //===----------------------------------------------------------------------===// // OrOp //===----------------------------------------------------------------------===// OpFoldResult OrOp::fold(ArrayRef operands) { /// or(x, 0) -> x if (matchPattern(rhs(), m_Zero())) return lhs(); /// or(x,x) -> x if (lhs() == rhs()) return rhs(); return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a | b; }); } //===----------------------------------------------------------------------===// // PrefetchOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, PrefetchOp op) { p << PrefetchOp::getOperationName() << " " << op.memref() << '['; p.printOperands(op.indices()); p << ']' << ", " << (op.isWrite() ? "write" : "read"); p << ", locality<" << op.localityHint(); p << ">, " << (op.isDataCache() ? "data" : "instr"); p.printOptionalAttrDict( op.getAttrs(), /*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"}); p << " : " << op.getMemRefType(); } static ParseResult parsePrefetchOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType memrefInfo; SmallVector indexInfo; IntegerAttr localityHint; MemRefType type; StringRef readOrWrite, cacheType; auto indexTy = parser.getBuilder().getIndexType(); auto i32Type = parser.getBuilder().getIntegerType(32); if (parser.parseOperand(memrefInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseKeyword(&readOrWrite) || parser.parseComma() || parser.parseKeyword("locality") || parser.parseLess() || parser.parseAttribute(localityHint, i32Type, "localityHint", result.attributes) || parser.parseGreater() || parser.parseComma() || parser.parseKeyword(&cacheType) || parser.parseColonType(type) || parser.resolveOperand(memrefInfo, type, result.operands) || parser.resolveOperands(indexInfo, indexTy, result.operands)) return failure(); if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) return parser.emitError(parser.getNameLoc(), "rw specifier has to be 'read' or 'write'"); result.addAttribute( PrefetchOp::getIsWriteAttrName(), parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); if (!cacheType.equals("data") && !cacheType.equals("instr")) return parser.emitError(parser.getNameLoc(), "cache type has to be 'data' or 'instr'"); result.addAttribute( PrefetchOp::getIsDataCacheAttrName(), parser.getBuilder().getBoolAttr(cacheType.equals("data"))); return success(); } static LogicalResult verify(PrefetchOp op) { if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) return op.emitOpError("too few indices"); return success(); } LogicalResult PrefetchOp::fold(ArrayRef cstOperands, SmallVectorImpl &results) { // prefetch(memrefcast) -> prefetch return foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // RankOp //===----------------------------------------------------------------------===// OpFoldResult RankOp::fold(ArrayRef operands) { // Constant fold rank when the rank of the operand is known. auto type = getOperand().getType(); if (auto shapedType = type.dyn_cast()) if (shapedType.hasRank()) return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); return IntegerAttr(); } //===----------------------------------------------------------------------===// // ReturnOp //===----------------------------------------------------------------------===// static LogicalResult verify(ReturnOp op) { auto function = cast(op->getParentOp()); // The operand number and types must match the function signature. const auto &results = function.getType().getResults(); if (op.getNumOperands() != results.size()) return op.emitOpError("has ") << op.getNumOperands() << " operands, but enclosing function (@" << function.getName() << ") returns " << results.size(); for (unsigned i = 0, e = results.size(); i != e; ++i) if (op.getOperand(i).getType() != results[i]) return op.emitError() << "type of return operand " << i << " (" << op.getOperand(i).getType() << ") doesn't match function result type (" << results[i] << ")" << " in function @" << function.getName(); return success(); } //===----------------------------------------------------------------------===// // SelectOp //===----------------------------------------------------------------------===// OpFoldResult SelectOp::fold(ArrayRef operands) { auto condition = getCondition(); // select true, %0, %1 => %0 if (matchPattern(condition, m_One())) return getTrueValue(); // select false, %0, %1 => %1 if (matchPattern(condition, m_Zero())) return getFalseValue(); return nullptr; } static void print(OpAsmPrinter &p, SelectOp op) { p << "select " << op.getOperands(); p.printOptionalAttrDict(op.getAttrs()); p << " : "; if (ShapedType condType = op.getCondition().getType().dyn_cast()) p << condType << ", "; p << op.getType(); } static ParseResult parseSelectOp(OpAsmParser &parser, OperationState &result) { Type conditionType, resultType; SmallVector operands; if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(resultType)) return failure(); // Check for the explicit condition type if this is a masked tensor or vector. if (succeeded(parser.parseOptionalComma())) { conditionType = resultType; if (parser.parseType(resultType)) return failure(); } else { conditionType = parser.getBuilder().getI1Type(); } result.addTypes(resultType); return parser.resolveOperands(operands, {conditionType, resultType, resultType}, parser.getNameLoc(), result.operands); } static LogicalResult verify(SelectOp op) { Type conditionType = op.getCondition().getType(); if (conditionType.isSignlessInteger(1)) return success(); // If the result type is a vector or tensor, the type can be a mask with the // same elements. Type resultType = op.getType(); if (!resultType.isa()) return op.emitOpError() << "expected condition to be a signless i1, but got " << conditionType; Type shapedConditionType = getI1SameShape(resultType); if (conditionType != shapedConditionType) return op.emitOpError() << "expected condition type to have the same shape " "as the result type, expected " << shapedConditionType << ", but got " << conditionType; return success(); } //===----------------------------------------------------------------------===// // SignExtendIOp //===----------------------------------------------------------------------===// static LogicalResult verify(SignExtendIOp op) { // Get the scalar type (which is either directly the type of the operand // or the vector's/tensor's element type. auto srcType = getElementTypeOrSelf(op.getOperand().getType()); auto dstType = getElementTypeOrSelf(op.getType()); // For now, index is forbidden for the source and the destination type. if (srcType.isa()) return op.emitError() << srcType << " is not a valid operand type"; if (dstType.isa()) return op.emitError() << dstType << " is not a valid result type"; if (srcType.cast().getWidth() >= dstType.cast().getWidth()) return op.emitError("result type ") << dstType << " must be wider than operand type " << srcType; return success(); } //===----------------------------------------------------------------------===// // SignedDivIOp //===----------------------------------------------------------------------===// OpFoldResult SignedDivIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "binary operation takes two operands"); // Don't fold if it would overflow or if it requires a division by zero. bool overflowOrDiv0 = false; auto result = constFoldBinaryOp(operands, [&](APInt a, APInt b) { if (overflowOrDiv0 || !b) { overflowOrDiv0 = true; return a; } return a.sdiv_ov(b, overflowOrDiv0); }); // Fold out division by one. Assumes all tensors of all ones are splats. if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getValue() == 1) return lhs(); } else if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getSplatValue().getValue() == 1) return lhs(); } return overflowOrDiv0 ? Attribute() : result; } //===----------------------------------------------------------------------===// // SignedFloorDivIOp //===----------------------------------------------------------------------===// static APInt signedCeilNonnegInputs(APInt a, APInt b, bool &overflow) { // Returns (a-1)/b + 1 APInt one(a.getBitWidth(), 1, true); // Signed value 1. APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); return val.sadd_ov(one, overflow); } OpFoldResult SignedFloorDivIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "binary operation takes two operands"); // Don't fold if it would overflow or if it requires a division by zero. bool overflowOrDiv0 = false; auto result = constFoldBinaryOp(operands, [&](APInt a, APInt b) { if (overflowOrDiv0 || !b) { overflowOrDiv0 = true; return a; } unsigned bits = a.getBitWidth(); APInt zero = APInt::getNullValue(bits); if (a.sge(zero) && b.sgt(zero)) { // Both positive (or a is zero), return a / b. return a.sdiv_ov(b, overflowOrDiv0); } else if (a.sle(zero) && b.slt(zero)) { // Both negative (or a is zero), return -a / -b. APInt posA = zero.ssub_ov(a, overflowOrDiv0); APInt posB = zero.ssub_ov(b, overflowOrDiv0); return posA.sdiv_ov(posB, overflowOrDiv0); } else if (a.slt(zero) && b.sgt(zero)) { // A is negative, b is positive, return - ceil(-a, b). APInt posA = zero.ssub_ov(a, overflowOrDiv0); APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); return zero.ssub_ov(ceil, overflowOrDiv0); } else { // A is positive, b is negative, return - ceil(a, -b). APInt posB = zero.ssub_ov(b, overflowOrDiv0); APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); return zero.ssub_ov(ceil, overflowOrDiv0); } }); // Fold out floor division by one. Assumes all tensors of all ones are // splats. if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getValue() == 1) return lhs(); } else if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getSplatValue().getValue() == 1) return lhs(); } return overflowOrDiv0 ? Attribute() : result; } //===----------------------------------------------------------------------===// // SignedCeilDivIOp //===----------------------------------------------------------------------===// OpFoldResult SignedCeilDivIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "binary operation takes two operands"); // Don't fold if it would overflow or if it requires a division by zero. bool overflowOrDiv0 = false; auto result = constFoldBinaryOp(operands, [&](APInt a, APInt b) { if (overflowOrDiv0 || !b) { overflowOrDiv0 = true; return a; } unsigned bits = a.getBitWidth(); APInt zero = APInt::getNullValue(bits); if (a.sgt(zero) && b.sgt(zero)) { // Both positive, return ceil(a, b). return signedCeilNonnegInputs(a, b, overflowOrDiv0); } else if (a.slt(zero) && b.slt(zero)) { // Both negative, return ceil(-a, -b). APInt posA = zero.ssub_ov(a, overflowOrDiv0); APInt posB = zero.ssub_ov(b, overflowOrDiv0); return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); } else if (a.slt(zero) && b.sgt(zero)) { // A is negative, b is positive, return - ( -a / b). APInt posA = zero.ssub_ov(a, overflowOrDiv0); APInt div = posA.sdiv_ov(b, overflowOrDiv0); return zero.ssub_ov(div, overflowOrDiv0); } else { // A is positive (or zero), b is negative, return - (a / -b). APInt posB = zero.ssub_ov(b, overflowOrDiv0); APInt div = a.sdiv_ov(posB, overflowOrDiv0); return zero.ssub_ov(div, overflowOrDiv0); } }); // Fold out floor division by one. Assumes all tensors of all ones are // splats. if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getValue() == 1) return lhs(); } else if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getSplatValue().getValue() == 1) return lhs(); } return overflowOrDiv0 ? Attribute() : result; } //===----------------------------------------------------------------------===// // SignedRemIOp //===----------------------------------------------------------------------===// OpFoldResult SignedRemIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "remi_signed takes two operands"); auto rhs = operands.back().dyn_cast_or_null(); if (!rhs) return {}; auto rhsValue = rhs.getValue(); // x % 1 = 0 if (rhsValue.isOneValue()) return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); // Don't fold if it requires division by zero. if (rhsValue.isNullValue()) return {}; auto lhs = operands.front().dyn_cast_or_null(); if (!lhs) return {}; return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue)); } //===----------------------------------------------------------------------===// // SIToFPOp //===----------------------------------------------------------------------===// // sitofp is applicable from integer types to float types. bool SIToFPOp::areCastCompatible(Type a, Type b) { if (a.isSignlessInteger() && b.isa()) return true; return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // SplatOp //===----------------------------------------------------------------------===// static LogicalResult verify(SplatOp op) { // TODO: we could replace this by a trait. if (op.getOperand().getType() != op.getType().cast().getElementType()) return op.emitError("operand should be of elemental type of result type"); return success(); } // Constant folding hook for SplatOp. OpFoldResult SplatOp::fold(ArrayRef operands) { assert(operands.size() == 1 && "splat takes one operand"); auto constOperand = operands.front(); if (!constOperand || !constOperand.isa()) return {}; auto shapedType = getType().cast(); assert(shapedType.getElementType() == constOperand.getType() && "incorrect input attribute type for folding"); // SplatElementsAttr::get treats single value for second arg as being a splat. return SplatElementsAttr::get(shapedType, {constOperand}); } //===----------------------------------------------------------------------===// // StoreOp //===----------------------------------------------------------------------===// static LogicalResult verify(StoreOp op) { if (op.getNumOperands() != 2 + op.getMemRefType().getRank()) return op.emitOpError("store index operand count not equal to memref rank"); return success(); } LogicalResult StoreOp::fold(ArrayRef cstOperands, SmallVectorImpl &results) { /// store(memrefcast) -> store return foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // SubFOp //===----------------------------------------------------------------------===// OpFoldResult SubFOp::fold(ArrayRef operands) { return constFoldBinaryOp( operands, [](APFloat a, APFloat b) { return a - b; }); } //===----------------------------------------------------------------------===// // SubIOp //===----------------------------------------------------------------------===// OpFoldResult SubIOp::fold(ArrayRef operands) { // subi(x,x) -> 0 if (getOperand(0) == getOperand(1)) return Builder(getContext()).getZeroAttr(getType()); // subi(x,0) -> x if (matchPattern(rhs(), m_Zero())) return lhs(); return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a - b; }); } //===----------------------------------------------------------------------===// // UIToFPOp //===----------------------------------------------------------------------===// // uitofp is applicable from integer types to float types. bool UIToFPOp::areCastCompatible(Type a, Type b) { if (a.isSignlessInteger() && b.isa()) return true; return areVectorCastSimpleCompatible(a, b, areCastCompatible); } //===----------------------------------------------------------------------===// // SubViewOp //===----------------------------------------------------------------------===// namespace { /// Helpers to write more idiomatic operations. namespace saturated_arith { struct Wrapper { explicit Wrapper(int64_t v) : v(v) {} operator int64_t() { return v; } int64_t v; }; Wrapper operator+(Wrapper a, int64_t b) { if (ShapedType::isDynamicStrideOrOffset(a) || ShapedType::isDynamicStrideOrOffset(b)) return Wrapper(ShapedType::kDynamicStrideOrOffset); return Wrapper(a.v + b); } Wrapper operator*(Wrapper a, int64_t b) { if (ShapedType::isDynamicStrideOrOffset(a) || ShapedType::isDynamicStrideOrOffset(b)) return Wrapper(ShapedType::kDynamicStrideOrOffset); return Wrapper(a.v * b); } } // end namespace saturated_arith } // end namespace /// A subview result type can be fully inferred from the source type and the /// static representation of offsets, sizes and strides. Special sentinels /// encode the dynamic case. Type SubViewOp::inferResultType(MemRefType sourceMemRefType, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides) { unsigned rank = sourceMemRefType.getRank(); (void)rank; assert(staticOffsets.size() == rank && "unexpected staticOffsets size mismatch"); assert(staticSizes.size() == rank && "unexpected staticSizes size mismatch"); assert(staticStrides.size() == rank && "unexpected staticStrides size mismatch"); // Extract source offset and strides. int64_t sourceOffset; SmallVector sourceStrides; auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset); assert(succeeded(res) && "SubViewOp expected strided memref type"); (void)res; // Compute target offset whose value is: // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. int64_t targetOffset = sourceOffset; for (auto it : llvm::zip(staticOffsets, sourceStrides)) { auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it); using namespace saturated_arith; targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride; } // Compute target stride whose value is: // `sourceStrides_i * staticStrides_i`. SmallVector targetStrides; targetStrides.reserve(staticOffsets.size()); for (auto it : llvm::zip(sourceStrides, staticStrides)) { auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); using namespace saturated_arith; targetStrides.push_back(Wrapper(sourceStride) * staticStride); } // The type is now known. return MemRefType::get( staticSizes, sourceMemRefType.getElementType(), makeStridedLinearLayoutMap(targetStrides, targetOffset, sourceMemRefType.getContext()), sourceMemRefType.getMemorySpace()); } /// Print a subview op of the form: /// ``` /// `subview` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` strided-memref-type `to` strided-memref-type /// ``` static void print(OpAsmPrinter &p, SubViewOp op) { int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' '; p << op.source(); printOffsetsSizesAndStrides(p, op); p << " : " << op.getSourceType() << " to " << op.getType(); } /// Parse a subview op of the form: /// ``` /// `subview` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` strided-memref-type `to` strided-memref-type /// ``` static ParseResult parseSubViewOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcInfo; if (parser.parseOperand(srcInfo)) return failure(); Type srcType, dstType; auto preResolutionFn = [&](OpAsmParser &parser, OperationState &result) { return failure(parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.parseKeywordType("to", dstType) || parser.resolveOperand(srcInfo, srcType, result.operands)); }; if (failed(parseOffsetsSizesAndStrides(parser, result, /*segmentSizes=*/{1}, // source memref preResolutionFn))) return failure(); return parser.addTypeToList(dstType, result.types); } void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, Value source, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceMemRefType = source.getType().cast(); auto resultType = inferResultType(sourceMemRefType, staticOffsets, staticSizes, staticStrides); build(b, result, resultType, source, offsets, sizes, strides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build a SubViewOp with all dynamic entries: `staticOffsets`, `staticSizes` /// and `staticStrides` are automatically filled with source-memref-rank /// sentinel values that encode dynamic entries. void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, Value source, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceMemRefType = source.getType().cast(); unsigned rank = sourceMemRefType.getRank(); SmallVector staticOffsetsVector; staticOffsetsVector.assign(rank, ShapedType::kDynamicStrideOrOffset); SmallVector staticSizesVector; staticSizesVector.assign(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector; staticStridesVector.assign(rank, ShapedType::kDynamicStrideOrOffset); build(b, result, source, staticOffsetsVector, staticSizesVector, staticStridesVector, offsets, sizes, strides, attrs); } /// Build a SubViewOp as above but with custom result type. void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, MemRefType resultType, Value source, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { build(b, result, resultType, source, offsets, sizes, strides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build a SubViewOp as above but with custom result type. void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, MemRefType resultType, Value source, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceMemRefType = source.getType().cast(); unsigned rank = sourceMemRefType.getRank(); SmallVector staticOffsetsVector; staticOffsetsVector.assign(rank, ShapedType::kDynamicStrideOrOffset); SmallVector staticSizesVector; staticSizesVector.assign(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector; staticStridesVector.assign(rank, ShapedType::kDynamicStrideOrOffset); build(b, result, resultType, source, staticOffsetsVector, staticSizesVector, staticStridesVector, offsets, sizes, strides, attrs); } /// For ViewLikeOpInterface. Value SubViewOp::getViewSource() { return source(); } llvm::Optional> mlir::computeRankReductionMask(ArrayRef originalShape, ArrayRef reducedShape) { size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); SmallVector mask(originalRank); unsigned reducedIdx = 0; for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { // Skip matching dims greedily. mask[originalIdx] = (reducedIdx < reducedRank) && (originalShape[originalIdx] == reducedShape[reducedIdx]); if (mask[originalIdx]) reducedIdx++; // 1 is the only non-matching allowed. else if (originalShape[originalIdx] != 1) return {}; } if (reducedIdx != reducedRank) return {}; return mask; } enum SubViewVerificationResult { Success, RankTooLarge, SizeMismatch, StrideMismatch, ElemTypeMismatch, MemSpaceMismatch, AffineMapMismatch }; /// Checks if `original` Type type can be rank reduced to `reduced` type. /// This function is slight variant of `is subsequence` algorithm where /// not matching dimension must be 1. static SubViewVerificationResult isRankReducedType(Type originalType, Type reducedType) { if (originalType == reducedType) return SubViewVerificationResult::Success; if (!originalType.isa() && !originalType.isa()) return SubViewVerificationResult::Success; if (originalType.isa() && !reducedType.isa()) return SubViewVerificationResult::Success; if (originalType.isa() && !reducedType.isa()) return SubViewVerificationResult::Success; ShapedType originalShapedType = originalType.cast(); ShapedType reducedShapedType = reducedType.cast(); // Rank and size logic is valid for all ShapedTypes. ArrayRef originalShape = originalShapedType.getShape(); ArrayRef reducedShape = reducedShapedType.getShape(); unsigned originalRank = originalShape.size(), reducedRank = reducedShape.size(); if (reducedRank > originalRank) return SubViewVerificationResult::RankTooLarge; auto optionalMask = computeRankReductionMask(originalShape, reducedShape); // Sizes cannot be matched in case empty vector is returned. if (!optionalMask.hasValue()) return SubViewVerificationResult::SizeMismatch; // We are done for the tensor case. if (originalType.isa()) return SubViewVerificationResult::Success; // Strided layout logic is relevant for MemRefType only. MemRefType original = originalType.cast(); MemRefType reduced = reducedType.cast(); MLIRContext *c = original.getContext(); int64_t originalOffset, reducedOffset; SmallVector originalStrides, reducedStrides, keepStrides; SmallVector keepMask = optionalMask.getValue(); getStridesAndOffset(original, originalStrides, originalOffset); getStridesAndOffset(reduced, reducedStrides, reducedOffset); // Filter strides based on the mask and check that they are the same // as reduced ones. unsigned reducedIdx = 0; for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { if (keepMask[originalIdx]) { if (originalStrides[originalIdx] != reducedStrides[reducedIdx++]) return SubViewVerificationResult::StrideMismatch; keepStrides.push_back(originalStrides[originalIdx]); } } if (original.getElementType() != reduced.getElementType()) return SubViewVerificationResult::ElemTypeMismatch; if (original.getMemorySpace() != reduced.getMemorySpace()) return SubViewVerificationResult::MemSpaceMismatch; auto reducedMap = makeStridedLinearLayoutMap(keepStrides, originalOffset, c); if (!reduced.getAffineMaps().empty() && reducedMap != reduced.getAffineMaps().front()) return SubViewVerificationResult::AffineMapMismatch; return SubViewVerificationResult::Success; } template static LogicalResult produceSubViewErrorMsg(SubViewVerificationResult result, OpTy op, Type expectedType) { auto memrefType = expectedType.cast(); switch (result) { case SubViewVerificationResult::Success: return success(); case SubViewVerificationResult::RankTooLarge: return op.emitError("expected result rank to be smaller or equal to ") << "the source rank."; case SubViewVerificationResult::SizeMismatch: return op.emitError("expected result type to be ") << expectedType << " or a rank-reduced version. (mismatch of result sizes)"; case SubViewVerificationResult::StrideMismatch: return op.emitError("expected result type to be ") << expectedType << " or a rank-reduced version. (mismatch of result strides)"; case SubViewVerificationResult::ElemTypeMismatch: return op.emitError("expected result element type to be ") << memrefType.getElementType(); case SubViewVerificationResult::MemSpaceMismatch: return op.emitError("expected result and source memory spaces to match."); case SubViewVerificationResult::AffineMapMismatch: return op.emitError("expected result type to be ") << expectedType << " or a rank-reduced version. (mismatch of result affine map)"; } llvm_unreachable("unexpected subview verification result"); } /// Verifier for SubViewOp. static LogicalResult verify(SubViewOp op) { MemRefType baseType = op.getSourceType(); MemRefType subViewType = op.getType(); // The base memref and the view memref should be in the same memory space. if (baseType.getMemorySpace() != subViewType.getMemorySpace()) return op.emitError("different memory spaces specified for base memref " "type ") << baseType << " and subview memref type " << subViewType; // Verify that the base memref type has a strided layout map. if (!isStrided(baseType)) return op.emitError("base type ") << baseType << " is not strided"; // Verify result type against inferred type. auto expectedType = SubViewOp::inferResultType( baseType, extractFromI64ArrayAttr(op.static_offsets()), extractFromI64ArrayAttr(op.static_sizes()), extractFromI64ArrayAttr(op.static_strides())); auto result = isRankReducedType(expectedType, subViewType); return produceSubViewErrorMsg(result, op, expectedType); } raw_ostream &mlir::operator<<(raw_ostream &os, Range &range) { return os << "range " << range.offset << ":" << range.size << ":" << range.stride; } /// Return the list of Range (i.e. offset, size, stride). Each Range /// entry contains either the dynamic value or a ConstantIndexOp constructed /// with `b` at location `loc`. SmallVector mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, OpBuilder &b, Location loc) { std::array ranks = op.getArrayAttrRanks(); assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks"); assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks"); SmallVector res; unsigned rank = ranks[0]; res.reserve(rank); for (unsigned idx = 0; idx < rank; ++idx) { Value offset = op.isDynamicOffset(idx) ? op.getDynamicOffset(idx) : b.create(loc, op.getStaticOffset(idx)); Value size = op.isDynamicSize(idx) ? op.getDynamicSize(idx) : b.create(loc, op.getStaticSize(idx)); Value stride = op.isDynamicStride(idx) ? op.getDynamicStride(idx) : b.create(loc, op.getStaticStride(idx)); res.emplace_back(Range{offset, size, stride}); } return res; } namespace { /// Take a list of `values` with potential new constant to extract and a list /// of `constantValues` with`values.size()` sentinel that evaluate to true by /// applying `isDynamic`. /// Detects the `values` produced by a ConstantIndexOp and places the new /// constant in place of the corresponding sentinel value. void canonicalizeSubViewPart(SmallVectorImpl &values, SmallVectorImpl &constantValues, llvm::function_ref isDynamic) { bool hasNewStaticValue = llvm::any_of( values, [](Value val) { return matchPattern(val, m_ConstantIndex()); }); if (hasNewStaticValue) { for (unsigned cstIdx = 0, valIdx = 0, e = constantValues.size(); cstIdx != e; ++cstIdx) { // Was already static, skip. if (!isDynamic(constantValues[cstIdx])) continue; // Newly static, move from Value to constant. if (matchPattern(values[valIdx], m_ConstantIndex())) { constantValues[cstIdx] = cast(values[valIdx].getDefiningOp()).getValue(); // Erase for impl. simplicity. Reverse iterator if we really must. values.erase(std::next(values.begin(), valIdx)); continue; } // Remains dynamic move to next value. ++valIdx; } } } static void replaceWithNewOp(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { rewriter.replaceOpWithNewOp(op, newOp, op.getType()); } static void replaceWithNewOp(PatternRewriter &rewriter, SubTensorOp op, SubTensorOp newOp) { rewriter.replaceOpWithNewOp(op, newOp, op.getType()); } /// Pattern to rewrite a subview op with constant arguments. template class OpWithOffsetSizesAndStridesConstantArgumentFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpType op, PatternRewriter &rewriter) const override { // No constant operand, just return; if (llvm::none_of(op.getOperands(), [](Value operand) { return matchPattern(operand, m_ConstantIndex()); })) return failure(); // At least one of offsets/sizes/strides is a new constant. // Form the new list of operands and constant attributes from the existing. SmallVector newOffsets(op.offsets()); SmallVector newStaticOffsets = extractFromI64ArrayAttr(op.static_offsets()); std::array ranks = op.getArrayAttrRanks(); (void)ranks; assert(newStaticOffsets.size() == ranks[0]); canonicalizeSubViewPart(newOffsets, newStaticOffsets, ShapedType::isDynamicStrideOrOffset); SmallVector newSizes(op.sizes()); SmallVector newStaticSizes = extractFromI64ArrayAttr(op.static_sizes()); assert(newStaticSizes.size() == ranks[1]); canonicalizeSubViewPart(newSizes, newStaticSizes, ShapedType::isDynamic); SmallVector newStrides(op.strides()); SmallVector newStaticStrides = extractFromI64ArrayAttr(op.static_strides()); assert(newStaticStrides.size() == ranks[2]); canonicalizeSubViewPart(newStrides, newStaticStrides, ShapedType::isDynamicStrideOrOffset); // Create the new op in canonical form. auto newOp = rewriter.create( op.getLoc(), op.source(), newStaticOffsets, newStaticSizes, newStaticStrides, newOffsets, newSizes, newStrides); replaceWithNewOp(rewriter, op, newOp); return success(); } }; } // end anonymous namespace /// Determines whether MemRefCastOp casts to a more dynamic version of the /// source memref. This is useful to to fold a memref_cast into a consuming op /// and implement canonicalization patterns for ops in different dialects that /// may consume the results of memref_cast operations. Such foldable memref_cast /// operations are typically inserted as `view` and `subview` ops are /// canonicalized, to preserve the type compatibility of their uses. /// /// Returns true when all conditions are met: /// 1. source and result are ranked memrefs with strided semantics and same /// element type and rank. /// 2. each of the source's size, offset or stride has more static information /// than the corresponding result's size, offset or stride. /// /// Example 1: /// ```mlir /// %1 = memref_cast %0 : memref<8x16xf32> to memref /// %2 = consumer %1 ... : memref ... /// ``` /// /// may fold into: /// /// ```mlir /// %2 = consumer %0 ... : memref<8x16xf32> ... /// ``` /// /// Example 2: /// ``` /// %1 = memref_cast %0 : memref(16 * i + j)>> /// to memref /// consumer %1 : memref ... /// ``` /// /// may fold into: /// /// ``` /// consumer %0 ... : memref(16 * i + j)>> /// ``` bool mlir::canFoldIntoConsumerOp(MemRefCastOp castOp) { MemRefType sourceType = castOp.source().getType().dyn_cast(); MemRefType resultType = castOp.getType().dyn_cast(); // Requires ranked MemRefType. if (!sourceType || !resultType) return false; // Requires same elemental type. if (sourceType.getElementType() != resultType.getElementType()) return false; // Requires same rank. if (sourceType.getRank() != resultType.getRank()) return false; // Only fold casts between strided memref forms. int64_t sourceOffset, resultOffset; SmallVector sourceStrides, resultStrides; if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) || failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) return false; // If cast is towards more static sizes along any dimension, don't fold. for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { auto ss = std::get<0>(it), st = std::get<1>(it); if (ss != st) if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st)) return false; } // If cast is towards more static offset along any dimension, don't fold. if (sourceOffset != resultOffset) if (MemRefType::isDynamicStrideOrOffset(sourceOffset) && !MemRefType::isDynamicStrideOrOffset(resultOffset)) return false; // If cast is towards more static strides along any dimension, don't fold. for (auto it : llvm::zip(sourceStrides, resultStrides)) { auto ss = std::get<0>(it), st = std::get<1>(it); if (ss != st) if (MemRefType::isDynamicStrideOrOffset(ss) && !MemRefType::isDynamicStrideOrOffset(st)) return false; } return true; } /// Counterpart of `canFoldIntoConsumerOp(MemRefCastOp castOp)` for tensors. /// Determines whether TensorCastOp casts to a more dynamic version of the /// source tensor. This is useful to fold a tensor_cast into a consuming op and /// implement canonicalization patterns for ops in different dialects that may /// consume the results of tensor_cast operations. Such foldable tensor_cast /// operations are typically inserted as `subtensor` ops and are canonicalized, /// to preserve the type compatibility of their uses. /// /// Returns true when all conditions are met: /// 1. source and result are ranked tensors with same element type and rank. /// 2. the tensor type has more static information than the result /// /// Example: /// ```mlir /// %1 = tensor_cast %0 : tensor<8x16xf32> to tensor /// %2 = consumer %1 ... : tensor ... /// ``` /// /// folds into: /// /// ```mlir /// %2 = consumer %0 ... : tensor<8x16xf32> ... /// ``` bool mlir::canFoldIntoConsumerOp(TensorCastOp castOp) { if (!castOp) return false; RankedTensorType sourceType = castOp.source().getType().dyn_cast(); RankedTensorType resultType = castOp.getType().dyn_cast(); // Requires RankedTensorType. if (!sourceType || !resultType) return false; // Requires same elemental type. if (sourceType.getElementType() != resultType.getElementType()) return false; // Requires same rank. if (sourceType.getRank() != resultType.getRank()) return false; // If cast is towards more static sizes along any dimension, don't fold. for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { auto ss = std::get<0>(it), st = std::get<1>(it); if (ss != st) if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) return false; } return true; } namespace { /// Pattern to rewrite a subview op with MemRefCast arguments. /// This essentially pushes memref_cast past its consuming subview when /// `canFoldIntoConsumerOp` is true. /// /// Example: /// ``` /// %0 = memref_cast %V : memref<16x16xf32> to memref /// %1 = subview %0[0, 0][3, 4][1, 1] : /// memref to memref<3x4xf32, offset:?, strides:[?, 1]> /// ``` /// is rewritten into: /// ``` /// %0 = subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> /// %1 = memref_cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to /// memref<3x4xf32, offset:?, strides:[?, 1]> /// ``` class SubViewOpMemRefCastFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(SubViewOp subViewOp, PatternRewriter &rewriter) const override { // Any constant operand, just return to let SubViewOpConstantFolder kick in. if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { return matchPattern(operand, m_ConstantIndex()); })) return failure(); auto castOp = subViewOp.source().getDefiningOp(); if (!castOp) return failure(); if (!canFoldIntoConsumerOp(castOp)) return failure(); /// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on /// the cast source operand type and the SubViewOp static information. This /// is the resulting type if the MemRefCastOp were folded. Type resultType = SubViewOp::inferResultType( castOp.source().getType().cast(), extractFromI64ArrayAttr(subViewOp.static_offsets()), extractFromI64ArrayAttr(subViewOp.static_sizes()), extractFromI64ArrayAttr(subViewOp.static_strides())); Value newSubView = rewriter.create( subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(), subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(), subViewOp.static_sizes(), subViewOp.static_strides()); rewriter.replaceOpWithNewOp(subViewOp, subViewOp.getType(), newSubView); return success(); } }; } // namespace void SubViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert, SubViewOpMemRefCastFolder>(context); } OpFoldResult SubViewOp::fold(ArrayRef operands) { if (getResult().getType().cast().getRank() == 0 && source().getType().cast().getRank() == 0) return getViewSource(); return {}; } //===----------------------------------------------------------------------===// // SubTensorOp //===----------------------------------------------------------------------===// /// Print a subtensor op of the form: /// ``` /// `subtensor` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` ranked-tensor-type `to` ranked-tensor-type /// ``` static void print(OpAsmPrinter &p, SubTensorOp op) { int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' '; p << op.source(); printOffsetsSizesAndStrides(p, op); p << " : " << op.getSourceType() << " to " << op.getType(); } /// Parse a subtensor op of the form: /// ``` /// `subtensor` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` ranked-tensor-type `to` ranked-tensor-type /// ``` static ParseResult parseSubTensorOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcInfo; if (parser.parseOperand(srcInfo)) return failure(); Type srcType, dstType; auto preResolutionFn = [&](OpAsmParser &parser, OperationState &result) { return failure(parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.parseKeywordType("to", dstType) || parser.resolveOperand(srcInfo, srcType, result.operands)); }; if (failed(parseOffsetsSizesAndStrides(parser, result, /*segmentSizes=*/{1}, // source tensor preResolutionFn))) return failure(); return parser.addTypeToList(dstType, result.types); } /// A subtensor result type can be fully inferred from the source type and the /// static representation of offsets, sizes and strides. Special sentinels /// encode the dynamic case. Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides) { unsigned rank = sourceRankedTensorType.getRank(); (void)rank; assert(staticOffsets.size() == rank && "unexpected staticOffsets size mismatch"); assert(staticSizes.size() == rank && "unexpected staticSizes size mismatch"); assert(staticStrides.size() == rank && "unexpected staticStrides size mismatch"); return RankedTensorType::get(staticSizes, sourceRankedTensorType.getElementType()); } void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result, Value source, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceRankedTensorType = source.getType().cast(); auto resultType = inferResultType(sourceRankedTensorType, staticOffsets, staticSizes, staticStrides); build(b, result, resultType, source, offsets, sizes, strides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build a SubTensorOp with all dynamic entries: `staticOffsets`, `staticSizes` /// and `staticStrides` are automatically filled with sentinel values that /// encode dynamic entries. void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result, Value source, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceRankedTensorType = source.getType().cast(); unsigned rank = sourceRankedTensorType.getRank(); SmallVector staticOffsetsVector( rank, ShapedType::kDynamicStrideOrOffset); SmallVector staticSizesVector(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector( rank, ShapedType::kDynamicStrideOrOffset); build(b, result, source, staticOffsetsVector, staticSizesVector, staticStridesVector, offsets, sizes, strides, attrs); } /// Verifier for SubTensorOp. static LogicalResult verify(SubTensorOp op) { // Verify result type against inferred type. auto expectedType = SubTensorOp::inferResultType( op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()), extractFromI64ArrayAttr(op.static_sizes()), extractFromI64ArrayAttr(op.static_strides())); auto result = isRankReducedType(expectedType, op.getType()); return produceSubViewErrorMsg(result, op, expectedType); } void SubTensorOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results .insert>( context); } //===----------------------------------------------------------------------===// // SubTensorInsertOp //===----------------------------------------------------------------------===// /// Print a subtensor_insert op of the form: /// ``` /// `subtensor_insert` ssa-name `into` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` ranked-tensor-type `into` ranked-tensor-type /// ``` static void print(OpAsmPrinter &p, SubTensorInsertOp op) { int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1; p << op->getName().getStringRef().drop_front(stdDotLen) << ' '; p << op.source() << " into " << op.dest(); printOffsetsSizesAndStrides(p, op); p << " : " << op.getSourceType() << " into " << op.getType(); } /// Parse a subtensor_insert op of the form: /// ``` /// `subtensor_insert` ssa-name `into` ssa-name /// `[` offset-list `]` `[` size-list `]` `[` stride-list `]` /// `:` ranked-tensor-type `into` ranked-tensor-type /// ``` static ParseResult parseSubTensorInsertOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcInfo, dstInfo; if (parser.parseOperand(srcInfo) || parser.parseKeyword("into") || parser.parseOperand(dstInfo)) return failure(); Type srcType, dstType; auto preResolutionFn = [&](OpAsmParser &parser, OperationState &result) { return failure(parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.parseKeywordType("into", dstType) || parser.resolveOperand(srcInfo, srcType, result.operands) || parser.resolveOperand(dstInfo, dstType, result.operands)); }; if (failed(parseOffsetsSizesAndStrides( parser, result, /*segmentSizes=*/{1, 1}, // source tensor, destination tensor preResolutionFn))) return failure(); return parser.addTypeToList(dstType, result.types); } void mlir::SubTensorInsertOp::build( OpBuilder &b, OperationState &result, Value source, Value dest, ArrayRef staticOffsets, ArrayRef staticSizes, ArrayRef staticStrides, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { build(b, result, dest.getType(), source, dest, offsets, sizes, strides, b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); result.addAttributes(attrs); } /// Build a SubViewOp with all dynamic entries: `staticOffsets`, `staticSizes` /// and `staticStrides` are automatically filled with source-memref-rank /// sentinel values that encode dynamic entries. void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result, Value source, Value dest, ValueRange offsets, ValueRange sizes, ValueRange strides, ArrayRef attrs) { auto sourceRankedTensorType = source.getType().cast(); unsigned rank = sourceRankedTensorType.getRank(); SmallVector staticOffsetsVector( rank, ShapedType::kDynamicStrideOrOffset); SmallVector staticSizesVector(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector( rank, ShapedType::kDynamicStrideOrOffset); build(b, result, source, dest, staticOffsetsVector, staticSizesVector, staticStridesVector, offsets, sizes, strides, attrs); } /// Verifier for SubViewOp. static LogicalResult verify(SubTensorInsertOp op) { if (op.getType() != op.dest().getType()) return op.emitError("expected result type to be ") << op.dest().getType(); return success(); } //===----------------------------------------------------------------------===// // TensorCastOp //===----------------------------------------------------------------------===// bool TensorCastOp::areCastCompatible(Type a, Type b) { auto aT = a.dyn_cast(); auto bT = b.dyn_cast(); if (!aT || !bT) return false; if (aT.getElementType() != bT.getElementType()) return false; return succeeded(verifyCompatibleShape(aT, bT)); } OpFoldResult TensorCastOp::fold(ArrayRef operands) { return impl::foldCastOp(*this); } /// Compute a TensorType that has the joined shape knowledge of the two /// given TensorTypes. The element types need to match. static TensorType joinShapes(TensorType one, TensorType two) { assert(one.getElementType() == two.getElementType()); if (!one.hasRank()) return two; if (!two.hasRank()) return one; int64_t rank = one.getRank(); if (rank != two.getRank()) return {}; SmallVector join; join.reserve(rank); for (int64_t i = 0; i < rank; ++i) { if (one.isDynamicDim(i)) { join.push_back(two.getDimSize(i)); continue; } if (two.isDynamicDim(i)) { join.push_back(one.getDimSize(i)); continue; } if (one.getDimSize(i) != two.getDimSize(i)) return {}; join.push_back(one.getDimSize(i)); } return RankedTensorType::get(join, one.getElementType()); } namespace { /// Replaces chains of two tensor_cast operations by a single tensor_cast /// operation if doing so does not remove runtime constraints. struct ChainedTensorCast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TensorCastOp tensorCast, PatternRewriter &rewriter) const final { auto tensorCastOperand = tensorCast.getOperand().getDefiningOp(); if (!tensorCastOperand) return failure(); auto sourceType = tensorCastOperand.getOperand().getType().cast(); auto intermediateType = tensorCastOperand.getType().cast(); auto resultType = tensorCast.getType().cast(); // We can remove the intermediate cast if joining all three produces the // same result as just joining the source and result shapes. auto firstJoin = joinShapes(joinShapes(sourceType, intermediateType), resultType); // The join might not exist if the cast sequence would fail at runtime. if (!firstJoin) return failure(); // The newJoin always exists if the above join exists, it might just contain // less information. If so, we cannot drop the intermediate cast, as doing // so would remove runtime checks. auto newJoin = joinShapes(sourceType, resultType); if (firstJoin != newJoin) return failure(); rewriter.replaceOpWithNewOp(tensorCast, resultType, tensorCastOperand.getOperand()); return success(); } }; } // namespace void TensorCastOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // TensorLoadOp //===----------------------------------------------------------------------===// OpFoldResult TensorLoadOp::fold(ArrayRef) { if (auto tensorToMemref = memref().getDefiningOp()) return tensorToMemref.tensor(); return {}; } //===----------------------------------------------------------------------===// // TensorToMemrefOp //===----------------------------------------------------------------------===// OpFoldResult TensorToMemrefOp::fold(ArrayRef) { if (auto tensorLoad = tensor().getDefiningOp()) if (tensorLoad.memref().getType() == getType()) return tensorLoad.memref(); return {}; } //===----------------------------------------------------------------------===// // TransposeOp //===----------------------------------------------------------------------===// /// Build a strided memref type by applying `permutationMap` tp `memRefType`. static MemRefType inferTransposeResultType(MemRefType memRefType, AffineMap permutationMap) { auto rank = memRefType.getRank(); auto originalSizes = memRefType.getShape(); // Compute permuted sizes. SmallVector sizes(rank, 0); for (auto en : llvm::enumerate(permutationMap.getResults())) sizes[en.index()] = originalSizes[en.value().cast().getPosition()]; // Compute permuted strides. int64_t offset; SmallVector strides; auto res = getStridesAndOffset(memRefType, strides, offset); assert(succeeded(res) && strides.size() == static_cast(rank)); (void)res; auto map = makeStridedLinearLayoutMap(strides, offset, memRefType.getContext()); map = permutationMap ? map.compose(permutationMap) : map; return MemRefType::Builder(memRefType).setShape(sizes).setAffineMaps(map); } void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, AffineMapAttr permutation, ArrayRef attrs) { auto permutationMap = permutation.getValue(); assert(permutationMap); auto memRefType = in.getType().cast(); // Compute result type. MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); build(b, result, resultType, in, attrs); result.addAttribute(TransposeOp::getPermutationAttrName(), permutation); } // transpose $in $permutation attr-dict : type($in) `to` type(results) static void print(OpAsmPrinter &p, TransposeOp op) { p << "transpose " << op.in() << " " << op.permutation(); p.printOptionalAttrDict(op.getAttrs(), {TransposeOp::getPermutationAttrName()}); p << " : " << op.in().getType() << " to " << op.getType(); } static ParseResult parseTransposeOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType in; AffineMap permutation; MemRefType srcType, dstType; if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.resolveOperand(in, srcType, result.operands) || parser.parseKeywordType("to", dstType) || parser.addTypeToList(dstType, result.types)) return failure(); result.addAttribute(TransposeOp::getPermutationAttrName(), AffineMapAttr::get(permutation)); return success(); } static LogicalResult verify(TransposeOp op) { if (!op.permutation().isPermutation()) return op.emitOpError("expected a permutation map"); if (op.permutation().getNumDims() != op.getShapedType().getRank()) return op.emitOpError( "expected a permutation map of same rank as the input"); auto srcType = op.in().getType().cast(); auto dstType = op.getType().cast(); auto transposedType = inferTransposeResultType(srcType, op.permutation()); if (dstType != transposedType) return op.emitOpError("output type ") << dstType << " does not match transposed input type " << srcType << ", " << transposedType; return success(); } OpFoldResult TransposeOp::fold(ArrayRef) { if (succeeded(foldMemRefCast(*this))) return getResult(); return {}; } //===----------------------------------------------------------------------===// // TruncateIOp //===----------------------------------------------------------------------===// static LogicalResult verify(TruncateIOp op) { auto srcType = getElementTypeOrSelf(op.getOperand().getType()); auto dstType = getElementTypeOrSelf(op.getType()); if (srcType.isa()) return op.emitError() << srcType << " is not a valid operand type"; if (dstType.isa()) return op.emitError() << dstType << " is not a valid result type"; if (srcType.cast().getWidth() <= dstType.cast().getWidth()) return op.emitError("operand type ") << srcType << " must be wider than result type " << dstType; return success(); } //===----------------------------------------------------------------------===// // UnsignedDivIOp //===----------------------------------------------------------------------===// OpFoldResult UnsignedDivIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "binary operation takes two operands"); // Don't fold if it would require a division by zero. bool div0 = false; auto result = constFoldBinaryOp(operands, [&](APInt a, APInt b) { if (div0 || !b) { div0 = true; return a; } return a.udiv(b); }); // Fold out division by one. Assumes all tensors of all ones are splats. if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getValue() == 1) return lhs(); } else if (auto rhs = operands[1].dyn_cast_or_null()) { if (rhs.getSplatValue().getValue() == 1) return lhs(); } return div0 ? Attribute() : result; } //===----------------------------------------------------------------------===// // UnsignedRemIOp //===----------------------------------------------------------------------===// OpFoldResult UnsignedRemIOp::fold(ArrayRef operands) { assert(operands.size() == 2 && "remi_unsigned takes two operands"); auto rhs = operands.back().dyn_cast_or_null(); if (!rhs) return {}; auto rhsValue = rhs.getValue(); // x % 1 = 0 if (rhsValue.isOneValue()) return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); // Don't fold if it requires division by zero. if (rhsValue.isNullValue()) return {}; auto lhs = operands.front().dyn_cast_or_null(); if (!lhs) return {}; return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue)); } //===----------------------------------------------------------------------===// // ViewOp //===----------------------------------------------------------------------===// static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType srcInfo; SmallVector offsetInfo; SmallVector sizesInfo; auto indexType = parser.getBuilder().getIndexType(); Type srcType, dstType; llvm::SMLoc offsetLoc; if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) || parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square)) return failure(); if (offsetInfo.size() != 1) return parser.emitError(offsetLoc) << "expects 1 offset operand"; return failure( parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(srcType) || parser.resolveOperand(srcInfo, srcType, result.operands) || parser.resolveOperands(offsetInfo, indexType, result.operands) || parser.resolveOperands(sizesInfo, indexType, result.operands) || parser.parseKeywordType("to", dstType) || parser.addTypeToList(dstType, result.types)); } static void print(OpAsmPrinter &p, ViewOp op) { p << op.getOperationName() << ' ' << op.getOperand(0) << '['; p.printOperand(op.byte_shift()); p << "][" << op.sizes() << ']'; p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.getOperand(0).getType() << " to " << op.getType(); } static LogicalResult verify(ViewOp op) { auto baseType = op.getOperand(0).getType().cast(); auto viewType = op.getType(); // The base memref should have identity layout map (or none). if (baseType.getAffineMaps().size() > 1 || (baseType.getAffineMaps().size() == 1 && !baseType.getAffineMaps()[0].isIdentity())) return op.emitError("unsupported map for base memref type ") << baseType; // The result memref should have identity layout map (or none). if (viewType.getAffineMaps().size() > 1 || (viewType.getAffineMaps().size() == 1 && !viewType.getAffineMaps()[0].isIdentity())) return op.emitError("unsupported map for result memref type ") << viewType; // The base memref and the view memref should be in the same memory space. if (baseType.getMemorySpace() != viewType.getMemorySpace()) return op.emitError("different memory spaces specified for base memref " "type ") << baseType << " and view memref type " << viewType; // Verify that we have the correct number of sizes for the result type. unsigned numDynamicDims = viewType.getNumDynamicDims(); if (op.sizes().size() != numDynamicDims) return op.emitError("incorrect number of size operands for type ") << viewType; return success(); } Value ViewOp::getViewSource() { return source(); } namespace { struct ViewOpShapeFolder : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ViewOp viewOp, PatternRewriter &rewriter) const override { // Return if none of the operands are constants. if (llvm::none_of(viewOp.getOperands(), [](Value operand) { return matchPattern(operand, m_ConstantIndex()); })) return failure(); // Get result memref type. auto memrefType = viewOp.getType(); // Get offset from old memref view type 'memRefType'. int64_t oldOffset; SmallVector oldStrides; if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset))) return failure(); assert(oldOffset == 0 && "Expected 0 offset"); SmallVector newOperands; // Offset cannot be folded into result type. // Fold any dynamic dim operands which are produced by a constant. SmallVector newShapeConstants; newShapeConstants.reserve(memrefType.getRank()); unsigned dynamicDimPos = 0; unsigned rank = memrefType.getRank(); for (unsigned dim = 0, e = rank; dim < e; ++dim) { int64_t dimSize = memrefType.getDimSize(dim); // If this is already static dimension, keep it. if (!ShapedType::isDynamic(dimSize)) { newShapeConstants.push_back(dimSize); continue; } auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp(); if (auto constantIndexOp = dyn_cast_or_null(defOp)) { // Dynamic shape dimension will be folded. newShapeConstants.push_back(constantIndexOp.getValue()); } else { // Dynamic shape dimension not folded; copy operand from old memref. newShapeConstants.push_back(dimSize); newOperands.push_back(viewOp.sizes()[dynamicDimPos]); } dynamicDimPos++; } // Create new memref type with constant folded dims. MemRefType newMemRefType = MemRefType::Builder(memrefType).setShape(newShapeConstants); // Nothing new, don't fold. if (newMemRefType == memrefType) return failure(); // Create new ViewOp. auto newViewOp = rewriter.create(viewOp.getLoc(), newMemRefType, viewOp.getOperand(0), viewOp.byte_shift(), newOperands); // Insert a cast so we have the same type as the old memref type. rewriter.replaceOpWithNewOp(viewOp, newViewOp, viewOp.getType()); return success(); } }; struct ViewOpMemrefCastFolder : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ViewOp viewOp, PatternRewriter &rewriter) const override { Value memrefOperand = viewOp.getOperand(0); MemRefCastOp memrefCastOp = memrefOperand.getDefiningOp(); if (!memrefCastOp) return failure(); Value allocOperand = memrefCastOp.getOperand(); AllocOp allocOp = allocOperand.getDefiningOp(); if (!allocOp) return failure(); rewriter.replaceOpWithNewOp(viewOp, viewOp.getType(), allocOperand, viewOp.byte_shift(), viewOp.sizes()); return success(); } }; } // end anonymous namespace void ViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results, MLIRContext *context) { results.insert(context); } //===----------------------------------------------------------------------===// // XOrOp //===----------------------------------------------------------------------===// OpFoldResult XOrOp::fold(ArrayRef operands) { /// xor(x, 0) -> x if (matchPattern(rhs(), m_Zero())) return lhs(); /// xor(x,x) -> 0 if (lhs() == rhs()) return Builder(getContext()).getZeroAttr(getType()); return constFoldBinaryOp(operands, [](APInt a, APInt b) { return a ^ b; }); } //===----------------------------------------------------------------------===// // ZeroExtendIOp //===----------------------------------------------------------------------===// static LogicalResult verify(ZeroExtendIOp op) { auto srcType = getElementTypeOrSelf(op.getOperand().getType()); auto dstType = getElementTypeOrSelf(op.getType()); if (srcType.isa()) return op.emitError() << srcType << " is not a valid operand type"; if (dstType.isa()) return op.emitError() << dstType << " is not a valid result type"; if (srcType.cast().getWidth() >= dstType.cast().getWidth()) return op.emitError("result type ") << dstType << " must be wider than operand type " << srcType; return success(); } //===----------------------------------------------------------------------===// // TableGen'd op method definitions //===----------------------------------------------------------------------===// #define GET_OP_CLASSES #include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"