//===- MemRefDataFlowOpt.cpp - MemRef DataFlow Optimization pass ------ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to forward memref stores to loads, thereby // potentially getting rid of intermediate memref's entirely. // TODO: In the future, similar techniques could be used to eliminate // dead memref store's and perform more complex forwarding when support for // SSA scalars live out of 'affine.for'/'affine.if' statements is available. //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/Dominance.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/SmallPtrSet.h" #include #define DEBUG_TYPE "memref-dataflow-opt" using namespace mlir; namespace { // The store to load forwarding relies on three conditions: // // 1) they need to have mathematically equivalent affine access functions // (checked after full composition of load/store operands); this implies that // they access the same single memref element for all iterations of the common // surrounding loop, // // 2) the store op should dominate the load op, // // 3) among all op's that satisfy both (1) and (2), the one that postdominates // all store op's that have a dependence into the load, is provably the last // writer to the particular memref location being loaded at the load op, and its // store value can be forwarded to the load. Note that the only dependences // that are to be considered are those that are satisfied at the block* of the // innermost common surrounding loop of the being considered. // // (* A dependence being satisfied at a block: a dependence that is satisfied by // virtue of the destination operation appearing textually / lexically after // the source operation within the body of a 'affine.for' operation; thus, a // dependence is always either satisfied by a loop or by a block). // // The above conditions are simple to check, sufficient, and powerful for most // cases in practice - they are sufficient, but not necessary --- since they // don't reason about loops that are guaranteed to execute at least once or // multiple sources to forward from. // // TODO: more forwarding can be done when support for // loop/conditional live-out SSA values is available. // TODO: do general dead store elimination for memref's. This pass // currently only eliminates the stores only if no other loads/uses (other // than dealloc) remain. // struct MemRefDataFlowOpt : public MemRefDataFlowOptBase { void runOnFunction() override; void forwardStoreToLoad(AffineReadOpInterface loadOp); // A list of memref's that are potentially dead / could be eliminated. SmallPtrSet memrefsToErase; // Load op's whose results were replaced by those forwarded from stores. SmallVector loadOpsToErase; DominanceInfo *domInfo = nullptr; PostDominanceInfo *postDomInfo = nullptr; }; } // end anonymous namespace /// Creates a pass to perform optimizations relying on memref dataflow such as /// store to load forwarding, elimination of dead stores, and dead allocs. std::unique_ptr> mlir::createMemRefDataFlowOptPass() { return std::make_unique(); } // This is a straightforward implementation not optimized for speed. Optimize // if needed. void MemRefDataFlowOpt::forwardStoreToLoad(AffineReadOpInterface loadOp) { // First pass over the use list to get the minimum number of surrounding // loops common between the load op and the store op, with min taken across // all store ops. SmallVector storeOps; unsigned minSurroundingLoops = getNestingDepth(loadOp); for (auto *user : loadOp.getMemRef().getUsers()) { auto storeOp = dyn_cast(user); if (!storeOp) continue; unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp); minSurroundingLoops = std::min(nsLoops, minSurroundingLoops); storeOps.push_back(storeOp); } // The list of store op candidates for forwarding that satisfy conditions // (1) and (2) above - they will be filtered later when checking (3). SmallVector fwdingCandidates; // Store ops that have a dependence into the load (even if they aren't // forwarding candidates). Each forwarding candidate will be checked for a // post-dominance on these. 'fwdingCandidates' are a subset of depSrcStores. SmallVector depSrcStores; for (auto *storeOp : storeOps) { MemRefAccess srcAccess(storeOp); MemRefAccess destAccess(loadOp); // Find stores that may be reaching the load. FlatAffineConstraints dependenceConstraints; unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp); unsigned d; // Dependences at loop depth <= minSurroundingLoops do NOT matter. for (d = nsLoops + 1; d > minSurroundingLoops; d--) { DependenceResult result = checkMemrefAccessDependence( srcAccess, destAccess, d, &dependenceConstraints, /*dependenceComponents=*/nullptr); if (hasDependence(result)) break; } if (d == minSurroundingLoops) continue; // Stores that *may* be reaching the load. depSrcStores.push_back(storeOp); // 1. Check if the store and the load have mathematically equivalent // affine access functions; this implies that they statically refer to the // same single memref element. As an example this filters out cases like: // store %A[%i0 + 1] // load %A[%i0] // store %A[%M] // load %A[%N] // Use the AffineValueMap difference based memref access equality checking. if (srcAccess != destAccess) continue; // 2. The store has to dominate the load op to be candidate. if (!domInfo->dominates(storeOp, loadOp)) continue; // We now have a candidate for forwarding. fwdingCandidates.push_back(storeOp); } // 3. Of all the store op's that meet the above criteria, the store that // postdominates all 'depSrcStores' (if one exists) is the unique store // providing the value to the load, i.e., provably the last writer to that // memref loc. // Note: this can be implemented in a cleaner way with postdominator tree // traversals. Consider this for the future if needed. Operation *lastWriteStoreOp = nullptr; for (auto *storeOp : fwdingCandidates) { if (llvm::all_of(depSrcStores, [&](Operation *depStore) { return postDomInfo->postDominates(storeOp, depStore); })) { lastWriteStoreOp = storeOp; break; } } if (!lastWriteStoreOp) return; // Perform the actual store to load forwarding. Value storeVal = cast(lastWriteStoreOp).getValueToStore(); loadOp.getValue().replaceAllUsesWith(storeVal); // Record the memref for a later sweep to optimize away. memrefsToErase.insert(loadOp.getMemRef()); // Record this to erase later. loadOpsToErase.push_back(loadOp); } void MemRefDataFlowOpt::runOnFunction() { // Only supports single block functions at the moment. FuncOp f = getFunction(); if (!llvm::hasSingleElement(f)) { markAllAnalysesPreserved(); return; } domInfo = &getAnalysis(); postDomInfo = &getAnalysis(); loadOpsToErase.clear(); memrefsToErase.clear(); // Walk all load's and perform store to load forwarding. f.walk([&](AffineReadOpInterface loadOp) { forwardStoreToLoad(loadOp); }); // Erase all load op's whose results were replaced with store fwd'ed ones. for (auto *loadOp : loadOpsToErase) loadOp->erase(); // Check if the store fwd'ed memrefs are now left with only stores and can // thus be completely deleted. Note: the canonicalize pass should be able // to do this as well, but we'll do it here since we collected these anyway. for (auto memref : memrefsToErase) { // If the memref hasn't been alloc'ed in this function, skip. Operation *defOp = memref.getDefiningOp(); if (!defOp || !isa(defOp)) // TODO: if the memref was returned by a 'call' operation, we // could still erase it if the call had no side-effects. continue; if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) { return !isa(ownerOp); })) continue; // Erase all stores, the dealloc, and the alloc on the memref. for (auto *user : llvm::make_early_inc_range(memref.getUsers())) user->erase(); defOp->erase(); } }