//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements miscellaneous loop transformation routines. // //===----------------------------------------------------------------------===// #include "mlir/Transforms/LoopUtils.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Affine/IR/AffineValueMap.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/IntegerSet.h" #include "mlir/Support/MathExtras.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "mlir/Transforms/RegionUtils.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "LoopUtils" using namespace mlir; using llvm::SetVector; using llvm::SmallMapVector; namespace { // This structure is to pass and return sets of loop parameters without // confusing the order. struct LoopParams { Value lowerBound; Value upperBound; Value step; }; } // namespace /// Computes the cleanup loop lower bound of the loop being unrolled with /// the specified unroll factor; this bound will also be upper bound of the main /// part of the unrolled loop. Computes the bound as an AffineMap with its /// operands or a null map when the trip count can't be expressed as an affine /// expression. static void getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor, AffineMap &map, SmallVectorImpl &operands) { auto lbMap = forOp.getLowerBoundMap(); // Single result lower bound map only. if (lbMap.getNumResults() != 1) { map = AffineMap(); return; } AffineMap tripCountMap; SmallVector tripCountOperands; buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands); // Sometimes the trip count cannot be expressed as an affine expression. if (!tripCountMap) { map = AffineMap(); return; } OpBuilder b(forOp); auto lb = b.create(forOp.getLoc(), lbMap, forOp.getLowerBoundOperands()); // For each upper bound expr, get the range. // Eg: affine.for %i = lb to min (ub1, ub2), // where tripCountExprs yield (tr1, tr2), we create affine.apply's: // lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all // these affine.apply's make up the cleanup loop lower bound. SmallVector bumpExprs(tripCountMap.getNumResults()); SmallVector bumpValues(tripCountMap.getNumResults()); int64_t step = forOp.getStep(); for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) { auto tripCountExpr = tripCountMap.getResult(i); bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step; auto bumpMap = AffineMap::get(tripCountMap.getNumDims(), tripCountMap.getNumSymbols(), bumpExprs[i]); bumpValues[i] = b.create(forOp.getLoc(), bumpMap, tripCountOperands); } SmallVector newUbExprs(tripCountMap.getNumResults()); for (unsigned i = 0, e = bumpExprs.size(); i < e; i++) newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1); operands.clear(); operands.push_back(lb); operands.append(bumpValues.begin(), bumpValues.end()); map = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs, b.getContext()); // Simplify the map + operands. fullyComposeAffineMapAndOperands(&map, &operands); map = simplifyAffineMap(map); canonicalizeMapAndOperands(&map, &operands); // Remove any affine.apply's that became dead from the simplification above. for (auto v : bumpValues) if (v.use_empty()) v.getDefiningOp()->erase(); if (lb.use_empty()) lb.erase(); } // Build the IR that performs ceil division of a positive value by a constant: // ceildiv(a, B) = divis(a + (B-1), B) // where divis is rounding-to-zero division. static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend, int64_t divisor) { assert(divisor > 0 && "expected positive divisor"); assert(dividend.getType().isIndex() && "expected index-typed value"); Value divisorMinusOneCst = builder.create(loc, divisor - 1); Value divisorCst = builder.create(loc, divisor); Value sum = builder.create(loc, dividend, divisorMinusOneCst); return builder.create(loc, sum, divisorCst); } // Build the IR that performs ceil division of a positive value by another // positive value: // ceildiv(a, b) = divis(a + (b - 1), b) // where divis is rounding-to-zero division. static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend, Value divisor) { assert(dividend.getType().isIndex() && "expected index-typed value"); Value cstOne = builder.create(loc, 1); Value divisorMinusOne = builder.create(loc, divisor, cstOne); Value sum = builder.create(loc, dividend, divisorMinusOne); return builder.create(loc, sum, divisor); } /// Promotes the loop body of a forOp to its containing block if the forOp /// was known to have a single iteration. // TODO: extend this for arbitrary affine bounds. LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) { Optional tripCount = getConstantTripCount(forOp); if (!tripCount || tripCount.getValue() != 1) return failure(); if (forOp.getLowerBoundMap().getNumResults() != 1) return failure(); // Replaces all IV uses to its single iteration value. auto iv = forOp.getInductionVar(); auto *parentBlock = forOp->getBlock(); if (!iv.use_empty()) { if (forOp.hasConstantLowerBound()) { OpBuilder topBuilder(forOp->getParentOfType().getBody()); auto constOp = topBuilder.create( forOp.getLoc(), forOp.getConstantLowerBound()); iv.replaceAllUsesWith(constOp); } else { auto lbOperands = forOp.getLowerBoundOperands(); auto lbMap = forOp.getLowerBoundMap(); OpBuilder builder(parentBlock, Block::iterator(forOp)); if (lbMap == builder.getDimIdentityMap()) { // No need of generating an affine.apply. iv.replaceAllUsesWith(lbOperands[0]); } else { auto affineApplyOp = builder.create(forOp.getLoc(), lbMap, lbOperands); iv.replaceAllUsesWith(affineApplyOp); } } } // Move the loop body operations, except for its terminator, to the loop's // containing block. forOp.getBody()->back().erase(); parentBlock->getOperations().splice(Block::iterator(forOp), forOp.getBody()->getOperations()); forOp.erase(); return success(); } /// Promotes the loop body of a forOp to its containing block if the forOp /// it can be determined that the loop has a single iteration. LogicalResult mlir::promoteIfSingleIteration(scf::ForOp forOp) { auto lbCstOp = forOp.lowerBound().getDefiningOp(); auto ubCstOp = forOp.upperBound().getDefiningOp(); auto stepCstOp = forOp.step().getDefiningOp(); if (!lbCstOp || !ubCstOp || !stepCstOp || lbCstOp.getValue() < 0 || ubCstOp.getValue() < 0 || stepCstOp.getValue() < 0) return failure(); int64_t tripCount = mlir::ceilDiv(ubCstOp.getValue() - lbCstOp.getValue(), stepCstOp.getValue()); if (tripCount != 1) return failure(); auto iv = forOp.getInductionVar(); iv.replaceAllUsesWith(lbCstOp); // Replace uses of iterArgs with iterOperands. auto iterOperands = forOp.getIterOperands(); auto iterArgs = forOp.getRegionIterArgs(); for (auto e : llvm::zip(iterOperands, iterArgs)) std::get<1>(e).replaceAllUsesWith(std::get<0>(e)); // Replace uses of loop results with the values yielded by the loop. auto outerResults = forOp.getResults(); auto innerResults = forOp.getBody()->getTerminator()->getOperands(); for (auto e : llvm::zip(outerResults, innerResults)) std::get<0>(e).replaceAllUsesWith(std::get<1>(e)); // Move the loop body operations, except for its terminator, to the loop's // containing block. auto *parentBlock = forOp->getBlock(); forOp.getBody()->getTerminator()->erase(); parentBlock->getOperations().splice(Block::iterator(forOp), forOp.getBody()->getOperations()); forOp.erase(); return success(); } /// Promotes all single iteration 'for' ops in `f`, i.e., moves /// their body into the containing Block. void mlir::promoteSingleIterationLoops(FuncOp f) { // Gathers all innermost loops through a post order pruned walk. f.walk([](Operation *op) { if (auto forOp = dyn_cast(op)) promoteIfSingleIteration(forOp); else if (auto forOp = dyn_cast(op)) promoteIfSingleIteration(forOp); }); } /// Generates an affine.for op with the specified lower and upper bounds /// while generating the right IV remappings to realize shifts for operations in /// its body. The operations that go into the loop body are specified in /// opGroupQueue starting from the specified offset, and in that order. The /// first element of the pair specifies the shift applied to that group of /// operations; the shift is multiplied by the loop step before being applied. /// Returns nullptr if the generated loop simplifies to a single iteration one. static AffineForOp generateShiftedLoop( AffineMap lbMap, AffineMap ubMap, const std::vector>> &opGroupQueue, unsigned offset, AffineForOp srcForOp, OpBuilder b) { auto lbOperands = srcForOp.getLowerBoundOperands(); auto ubOperands = srcForOp.getUpperBoundOperands(); assert(lbMap.getNumInputs() == lbOperands.size()); assert(ubMap.getNumInputs() == ubOperands.size()); auto loopChunk = b.create(srcForOp.getLoc(), lbOperands, lbMap, ubOperands, ubMap, srcForOp.getStep()); auto loopChunkIV = loopChunk.getInductionVar(); auto srcIV = srcForOp.getInductionVar(); BlockAndValueMapping operandMap; auto bodyBuilder = OpBuilder::atBlockTerminator(loopChunk.getBody()); for (auto it = opGroupQueue.begin() + offset, e = opGroupQueue.end(); it != e; ++it) { uint64_t shift = it->first; auto ops = it->second; // All 'same shift' operations get added with their operands being // remapped to results of cloned operations, and their IV used remapped. // Generate the remapping if the shift is not zero: remappedIV = newIV - // shift. if (!srcIV.use_empty() && shift != 0) { auto ivRemap = bodyBuilder.create( srcForOp.getLoc(), bodyBuilder.getSingleDimShiftAffineMap( -static_cast(srcForOp.getStep() * shift)), loopChunkIV); operandMap.map(srcIV, ivRemap); } else { operandMap.map(srcIV, loopChunkIV); } for (auto *op : ops) bodyBuilder.clone(*op, operandMap); }; if (succeeded(promoteIfSingleIteration(loopChunk))) return AffineForOp(); return loopChunk; } // The skewing of operations with respect to one another can be used for // example to allow overlap of asynchronous operations (such as DMA // communication) with computation, or just relative shifting of operations // for better register reuse, locality or parallelism. As such, the shifts are // typically expected to be at most of the order of the number of operations. // This method should not be used as a substitute for loop distribution/fission. // This method uses an algorithm// in time linear in the number of operations // in the body of the for loop - (using the 'sweep line' paradigm). This method // asserts preservation of SSA dominance. A check for that as well as that for // memory-based dependence preservation check rests with the users of this // method. LogicalResult mlir::affineForOpBodySkew(AffineForOp forOp, ArrayRef shifts, bool unrollPrologueEpilogue) { assert(forOp.getBody()->getOperations().size() == shifts.size() && "too few/many shifts"); if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end())) return success(); // If the trip counts aren't constant, we would need versioning and // conditional guards (or context information to prevent such versioning). The // better way to pipeline for such loops is to first tile them and extract // constant trip count "full tiles" before applying this. auto mayBeConstTripCount = getConstantTripCount(forOp); if (!mayBeConstTripCount.hasValue()) { LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled")); return success(); } uint64_t tripCount = mayBeConstTripCount.getValue(); assert(isOpwiseShiftValid(forOp, shifts) && "shifts will lead to an invalid transformation\n"); int64_t step = forOp.getStep(); unsigned numChildOps = shifts.size(); // Do a linear time (counting) sort for the shifts. uint64_t maxShift = *std::max_element(shifts.begin(), shifts.end()); if (maxShift >= numChildOps) { // Large shifts are not the typical use case. forOp.emitWarning("not shifting because shifts are unrealistically large"); return success(); } // An array of operation groups sorted by shift amount; each group has all // operations with the same shift in the order in which they appear in the // body of the 'affine.for' op. std::vector> sortedOpGroups(maxShift + 1); unsigned pos = 0; for (auto &op : forOp.getBody()->without_terminator()) { auto shift = shifts[pos++]; sortedOpGroups[shift].push_back(&op); } // Unless the shifts have a specific pattern (which actually would be the // common use case), prologue and epilogue are not meaningfully defined. // Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first // loop generated as the prologue and the last as epilogue and unroll these // fully. AffineForOp prologue, epilogue; // Do a sweep over the sorted shifts while storing open groups in a // vector, and generating loop portions as necessary during the sweep. A block // of operations is paired with its shift. std::vector>> opGroupQueue; auto origLbMap = forOp.getLowerBoundMap(); uint64_t lbShift = 0; OpBuilder b(forOp); for (uint64_t d = 0, e = sortedOpGroups.size(); d < e; ++d) { // If nothing is shifted by d, continue. if (sortedOpGroups[d].empty()) continue; if (!opGroupQueue.empty()) { assert(d > 0 && "Queue expected to be empty when the first block is found"); // The interval for which the loop needs to be generated here is: // [lbShift, min(lbShift + tripCount, d)) and the body of the // loop needs to have all operations in opQueue in that order. AffineForOp res; if (lbShift + tripCount * step < d * step) { res = generateShiftedLoop( b.getShiftedAffineMap(origLbMap, lbShift), b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step), opGroupQueue, /*offset=*/0, forOp, b); // Entire loop for the queued op groups generated, empty it. opGroupQueue.clear(); lbShift += tripCount * step; } else { res = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift), b.getShiftedAffineMap(origLbMap, d), opGroupQueue, /*offset=*/0, forOp, b); lbShift = d * step; } if (res) { // Simplify/canonicalize the affine.for. OwningRewritePatternList patterns; AffineForOp::getCanonicalizationPatterns(patterns, res.getContext()); bool erased; applyOpPatternsAndFold(res, std::move(patterns), &erased); if (!erased && !prologue) prologue = res; if (!erased) epilogue = res; } } else { // Start of first interval. lbShift = d * step; } // Augment the list of operations that get into the current open interval. opGroupQueue.push_back({d, sortedOpGroups[d]}); } // Those operations groups left in the queue now need to be processed (FIFO) // and their loops completed. for (unsigned i = 0, e = opGroupQueue.size(); i < e; ++i) { uint64_t ubShift = (opGroupQueue[i].first + tripCount) * step; epilogue = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift), b.getShiftedAffineMap(origLbMap, ubShift), opGroupQueue, /*offset=*/i, forOp, b); lbShift = ubShift; if (!prologue) prologue = epilogue; } // Erase the original for op. forOp.erase(); if (unrollPrologueEpilogue && prologue) loopUnrollFull(prologue); if (unrollPrologueEpilogue && !epilogue && epilogue != prologue) loopUnrollFull(epilogue); return success(); } /// Checks the legality of tiling of a hyper-rectangular loop nest by simply /// checking if there is a 'negative' dependence in the memrefs present in /// the loop nest. If yes then tiling is invalid. static bool checkTilingLegalityImpl(MutableArrayRef origLoops) { assert(!origLoops.empty() && "no original loops provided"); // We first find out all dependences we intend to check. SmallVector loadAndStoreOps; origLoops[0]->walk([&](Operation *op) { if (isa(op)) loadAndStoreOps.push_back(op); }); unsigned numOps = loadAndStoreOps.size(); unsigned numLoops = origLoops.size(); FlatAffineConstraints dependenceConstraints; for (unsigned d = 1; d <= numLoops + 1; ++d) { for (unsigned i = 0; i < numOps; ++i) { Operation *srcOp = loadAndStoreOps[i]; MemRefAccess srcAccess(srcOp); for (unsigned j = 0; j < numOps; ++j) { Operation *dstOp = loadAndStoreOps[j]; MemRefAccess dstAccess(dstOp); SmallVector depComps; dependenceConstraints.reset(); DependenceResult result = checkMemrefAccessDependence( srcAccess, dstAccess, d, &dependenceConstraints, &depComps); // Skip if there is no dependence in this case. if (!hasDependence(result)) continue; // Check whether there is any negative direction vector in the // dependence components found above, which means that dependence is // violated by the default hyper-rect tiling method. LLVM_DEBUG(llvm::dbgs() << "Checking whether tiling legality violated " "for dependence at depth: " << Twine(d) << " between:\n";); LLVM_DEBUG(srcAccess.opInst->dump();); LLVM_DEBUG(dstAccess.opInst->dump();); for (unsigned k = 0, e = depComps.size(); k < e; k++) { DependenceComponent depComp = depComps[k]; if (depComp.lb.hasValue() && depComp.ub.hasValue() && depComp.lb.getValue() < depComp.ub.getValue() && depComp.ub.getValue() < 0) { LLVM_DEBUG(llvm::dbgs() << "Dependence component lb = " << Twine(depComp.lb.getValue()) << " ub = " << Twine(depComp.ub.getValue()) << " is negative at depth: " << Twine(d) << " and thus violates the legality rule.\n"); return false; } } } } } return true; } /// Checks whether hyper-rectangular loop tiling of the nest /// represented by `origLoops` is valid. The validity condition is from Irigoin /// and Triolet, which states that two tiles cannot depend on each other. We /// simplify such condition to just checking whether there is any negative /// dependence direction, since we have the prior knowledge that the tiling /// results will be hyper-rectangles, which are scheduled in the /// lexicographically increasing order on the vector of loop indices. This /// function will return failure when any dependence component is negative along /// any of `origLoops`. LogicalResult checkTilingLegality(MutableArrayRef origLoops) { return success(checkTilingLegalityImpl(origLoops)); } /// Check if the input data is valid and wheter tiled code will be legal or not. template void performPreTilingChecks(MutableArrayRef input, ArrayRef tileSizes) { // Check if the supplied for op's are all successively nested. assert(!input.empty() && "no loops in input band"); assert(input.size() == tileSizes.size() && "Too few/many tile sizes"); assert(isPerfectlyNested(input) && "input loops not perfectly nested"); // Perform tiling legality test. if (failed(checkTilingLegality(input))) input[0].emitRemark("tiled code is illegal due to dependences"); } /// Move the loop body of AffineForOp 'src' from 'src' into the specified /// location in destination's body, ignoring the terminator. static void moveLoopBodyImpl(AffineForOp src, AffineForOp dest, Block::iterator loc) { auto &ops = src.getBody()->getOperations(); dest.getBody()->getOperations().splice(loc, ops, ops.begin(), std::prev(ops.end())); } /// Move the loop body of AffineForOp 'src' from 'src' to the start of dest /// body. void moveLoopBody(AffineForOp src, AffineForOp dest) { moveLoopBodyImpl(src, dest, dest.getBody()->begin()); } /// Constructs tiled loop nest, without setting the loop bounds and move the /// body of the original loop nest to the tiled loop nest. void constructTiledLoopNest(MutableArrayRef origLoops, AffineForOp rootAffineForOp, unsigned width, MutableArrayRef tiledLoops) { Location loc = rootAffineForOp.getLoc(); // The outermost among the loops as we add more.. Operation *topLoop = rootAffineForOp.getOperation(); AffineForOp innermostPointLoop; // Add intra-tile (or point) loops. for (unsigned i = 0; i < width; i++) { OpBuilder b(topLoop); // Loop bounds will be set later. AffineForOp pointLoop = b.create(loc, 0, 0); pointLoop.getBody()->getOperations().splice( pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), topLoop); tiledLoops[2 * width - 1 - i] = pointLoop; topLoop = pointLoop.getOperation(); if (i == 0) innermostPointLoop = pointLoop; } // Add tile space loops; for (unsigned i = width; i < 2 * width; i++) { OpBuilder b(topLoop); // Loop bounds will be set later. AffineForOp tileSpaceLoop = b.create(loc, 0, 0); tileSpaceLoop.getBody()->getOperations().splice( tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), topLoop); tiledLoops[2 * width - i - 1] = tileSpaceLoop; topLoop = tileSpaceLoop.getOperation(); } // Move the loop body of the original nest to the new one. moveLoopBody(origLoops.back(), innermostPointLoop); } /// Checks whether a loop nest is hyper-rectangular or not. LogicalResult checkIfHyperRectangular(MutableArrayRef input, AffineForOp rootAffineForOp, unsigned width) { FlatAffineConstraints cst; SmallVector ops(input.begin(), input.end()); getIndexSet(ops, &cst); if (!cst.isHyperRectangular(0, width)) { rootAffineForOp.emitError("tiled code generation unimplemented for the " "non-hyperrectangular case"); return failure(); } return success(); } /// Set lower and upper bounds of intra-tile loops for parametric tiling. // TODO: Handle non-constant lower bounds. static void setIntraTileBoundsParametric(OpBuilder &b, AffineForOp origLoop, AffineForOp newInterTileLoop, AffineForOp newIntraTileLoop, Value tileSize) { // The lower bound for the intra-tile loop is represented by an affine map // as (%i, %t0)->((%i - %origlb) * %t0 + %origlb). Similarly, the upper bound // for the intra-tile loop is represented by an affine map as (%i, %t0)->((%i // - %origlb) * %t0) + (%t0 * %origLoopStep) + %origlb), where %i is loop IV // of the corresponding inter-tile loop, %t0 is the corresponding tiling // parameter, %origlb is lower bound and %origLoopStep is the loop step of the // corresponding inter-tile loop. assert(origLoop.hasConstantLowerBound() && "expected input loops to have constant lower bound."); // Get lower bound of original loop as an affine expression. AffineExpr origLowerBoundExpr; origLowerBoundExpr = b.getAffineConstantExpr(origLoop.getConstantLowerBound()); // Add dim operands from original lower/upper bound. SmallVector lbOperands, ubOperands; AffineBound lb = origLoop.getLowerBound(); AffineBound ub = origLoop.getUpperBound(); lbOperands.reserve(lb.getNumOperands() + 2); ubOperands.reserve(ub.getNumOperands() + 2); AffineMap origLbMap = lb.getMap(); AffineMap origUbMap = ub.getMap(); for (unsigned j = 0, e = origLbMap.getNumDims(); j < e; ++j) lbOperands.push_back(lb.getOperand(j)); for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) ubOperands.push_back(ub.getOperand(j)); // Add a new dim operand in lb/ubOperands corresponding to the origLoop // IV. lbOperands.push_back(newInterTileLoop.getInductionVar()); ubOperands.push_back(newInterTileLoop.getInductionVar()); // Get loop IV as an affine expression for lower/upper bound. Size of // lb/ubOperands is guaranteed to be atleast one. AffineExpr lbLoopIvExpr = b.getAffineDimExpr(lbOperands.size() - 1); AffineExpr ubLoopIvExpr = b.getAffineDimExpr(ubOperands.size() - 1); // Add symbol operands from original lower/upper bound. for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j) lbOperands.push_back(lb.getOperand(origLbMap.getNumDims() + j)); for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); // Add a new symbol operand which is the tile size for this loop. lbOperands.push_back(tileSize); ubOperands.push_back(tileSize); SmallVector lbBoundExprs; SmallVector ubBoundExprs; lbBoundExprs.reserve(origLbMap.getNumResults()); ubBoundExprs.reserve(origUbMap.getNumResults()); // Get tiling parameter as an affine expression for lb/ub. AffineExpr lbTileParameter = b.getAffineSymbolExpr(origLbMap.getNumSymbols()); AffineExpr ubTileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols()); // Insert lb as inter-tile ((loop IV - origlb) * tilingParameter) + origlb. lbBoundExprs.push_back( ((lbLoopIvExpr - origLowerBoundExpr) * lbTileParameter) + origLowerBoundExpr); // Get the origLoopStep as an affine expression. AffineExpr origLoopStep = b.getAffineConstantExpr(origLoop.getStep()); // Insert ub as inter-tile ((loop IV - origlb) * tilingParameter) + // (tilingParameter * origLoopStep) + origlb. ubBoundExprs.push_back( ((ubLoopIvExpr - origLowerBoundExpr) * ubTileParameter) + (ubTileParameter * origLoopStep) + origLowerBoundExpr); ubBoundExprs.append(origUbMap.getResults().begin(), origUbMap.getResults().end()); AffineMap lbMap = AffineMap::get(origLbMap.getNumDims() + 1, origLbMap.getNumSymbols() + 1, lbBoundExprs, b.getContext()); newIntraTileLoop.setLowerBound(lbOperands, lbMap); AffineMap ubMap = AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols() + 1, ubBoundExprs, b.getContext()); newIntraTileLoop.setUpperBound(ubOperands, ubMap); // Original loop step must be preserved. newIntraTileLoop.setStep(origLoop.getStep()); } /// Set lower and upper bounds of inter-tile loops for parametric tiling. // TODO: Handle non-constant lower bounds. static void setInterTileBoundsParametric(OpBuilder &b, AffineForOp origLoop, AffineForOp newLoop, Value tileSize) { OperandRange newLbOperands = origLoop.getLowerBoundOperands(); // The lower bounds for inter-tile loops are same as the corresponding lower // bounds of original loops. newLoop.setLowerBound(newLbOperands, origLoop.getLowerBoundMap()); // The new upper bound map for inter-tile loops, assuming constant lower // bounds, are now originalLowerBound + ceildiv((originalUpperBound - // originalLowerBound), tiling parameter); where tiling parameter is the // respective tile size for that loop. For e.g. if the original ubmap was // ()->(1024), the new map will be // ()[s0]->(ceildiv((1024 -lb) % s0)), where s0 is the tiling parameter. // Therefore a new symbol operand is inserted in the map and the result // expression is overwritten. assert(origLoop.hasConstantLowerBound() && "expected input loops to have constant lower bound."); // Get lower bound of original loop as an affine expression. AffineExpr origLowerBoundExpr; origLowerBoundExpr = b.getAffineConstantExpr(origLoop.getConstantLowerBound()); // Add dim operands from original upper bound. SmallVector ubOperands; AffineBound ub = origLoop.getUpperBound(); ubOperands.reserve(ub.getNumOperands() + 1); AffineMap origUbMap = ub.getMap(); for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) ubOperands.push_back(ub.getOperand(j)); // Add symbol operands from original upper bound. for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); // Add a new symbol operand which is the tile size for this loop. ubOperands.push_back(tileSize); // Get tiling parameter as an affine expression. AffineExpr tileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols()); SmallVector boundExprs; boundExprs.reserve(origUbMap.getNumResults()); int64_t origUpperBound; AffineExpr origUpperBoundExpr; // If upper bound for the original loop is constant, then the constant can // be obtained as an affine expression straight away. if (origLoop.hasConstantUpperBound()) { origUpperBound = origLoop.getConstantUpperBound(); // Get original constant upper bound as an affine expression. origUpperBoundExpr = b.getAffineConstantExpr(origUpperBound); // Insert the bound as originalLowerBoundceildiv((originalUpperBound - // originalLowerBound), tilingParameter). boundExprs.push_back( origLowerBoundExpr + (origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter)); } else { // If upper bound for the original loop is not constant then two cases // are possible, although there handeling is the same, 1.) The result of // ubmap has only one result expression. For e.g. // affine.for %i = 5 to %ub // // A symbol operand is added which represents the tiling parameter. The // new loop bounds here will be like ()[s0, s1] -> ((s0 - 5) ceildiv s1 + 5) // where 's0' is the original upper bound and 's1' is the tiling // parameter. 2.) When ubMap has more than one result expression. For e.g. // #map0 = affine_map<()[s0, s1] -> (s0, s1) // affine.for %i = 5 to min #map0()[%s0, %s1] // // A symbol operand is added which represents the tiling parameter. The // new loop bounds will be like ()[s0, s1, s2] -> ((s0 - 5) ceildiv s2 + 5, // (s1 -5) ceildiv s2 + 5), where s2 is the tiling parameter. // Insert the bounds as originalLowerBound + ceildiv((originalUpperBound - // originalLowerBound), tilingParameter). for (AffineExpr origUpperBoundExpr : origUbMap.getResults()) boundExprs.push_back( origLowerBoundExpr + (origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter)); } AffineMap ubMap = AffineMap::get(origUbMap.getNumDims(), origUbMap.getNumSymbols() + 1, boundExprs, b.getContext()); newLoop.setUpperBound(ubOperands, ubMap); // Original loop step must be preserved. newLoop.setStep(origLoop.getStep()); } /// Constructs and sets new loop bounds after tiling for the case of /// hyper-rectangular index sets, where the bounds of one dimension do not /// depend on other dimensions and tiling parameters are captured from SSA /// values. Bounds of each dimension can thus be treated independently, /// and deriving the new bounds is much simpler and faster than for the case of /// tiling arbitrary polyhedral shapes. static void constructParametricallyTiledIndexSetHyperRect( MutableArrayRef origLoops, MutableArrayRef newLoops, ArrayRef tileSizes) { assert(!origLoops.empty() && "expected atleast one loop in band"); assert(origLoops.size() == tileSizes.size() && "expected tiling parameter for each loop in band."); OpBuilder b(origLoops[0].getOperation()); unsigned width = origLoops.size(); // Set bounds for tile space loops. for (unsigned i = 0; i < width; ++i) { setInterTileBoundsParametric(b, origLoops[i], newLoops[i], tileSizes[i]); } // Set bounds for intra-tile loops. for (unsigned i = 0; i < width; ++i) { setIntraTileBoundsParametric(b, origLoops[i], newLoops[i], newLoops[i + width], tileSizes[i]); } } /// Constructs and sets new loop bounds after tiling for the case of /// hyper-rectangular index sets, where the bounds of one dimension do not /// depend on other dimensions. Bounds of each dimension can thus be treated /// independently, and deriving the new bounds is much simpler and faster /// than for the case of tiling arbitrary polyhedral shapes. static void constructTiledIndexSetHyperRect(MutableArrayRef origLoops, MutableArrayRef newLoops, ArrayRef tileSizes) { assert(!origLoops.empty()); assert(origLoops.size() == tileSizes.size()); OpBuilder b(origLoops[0].getOperation()); unsigned width = origLoops.size(); // Bounds for tile space loops. for (unsigned i = 0; i < width; i++) { OperandRange newLbOperands = origLoops[i].getLowerBoundOperands(); OperandRange newUbOperands = origLoops[i].getUpperBoundOperands(); newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap()); newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap()); newLoops[i].setStep(tileSizes[i]); } // Bounds for intra-tile loops. for (unsigned i = 0; i < width; i++) { int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]); Optional mayBeConstantCount = getConstantTripCount(origLoops[i]); // The lower bound is just the tile-space loop. AffineMap lbMap = b.getDimIdentityMap(); newLoops[width + i].setLowerBound( /*operands=*/newLoops[i].getInductionVar(), lbMap); // Set the upper bound. if (mayBeConstantCount && mayBeConstantCount.getValue() < tileSizes[i]) { // Trip count is less than the tile size: upper bound is lower bound + // trip count. AffineMap ubMap = b.getSingleDimShiftAffineMap(mayBeConstantCount.getValue()); newLoops[width + i].setUpperBound( /*operands=*/newLoops[i].getInductionVar(), ubMap); } else if (largestDiv % tileSizes[i] != 0) { // Intra-tile loop ii goes from i to min(i + tileSize, ub_i). // Construct the upper bound map; the operands are the original operands // with 'i' (tile-space loop) appended to it. The new upper bound map is // the original one with an additional expression i + tileSize appended. // Add dim operands from original upper bound. SmallVector ubOperands; AffineBound ub = origLoops[i].getUpperBound(); ubOperands.reserve(ub.getNumOperands() + 1); AffineMap origUbMap = ub.getMap(); for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) ubOperands.push_back(ub.getOperand(j)); // Add dim operand for new loop upper bound. ubOperands.push_back(newLoops[i].getInductionVar()); // Add symbol operands from original upper bound. for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); SmallVector boundExprs; boundExprs.reserve(1 + origUbMap.getNumResults()); AffineExpr dim = b.getAffineDimExpr(origUbMap.getNumDims()); // The new upper bound map is the original one with an additional // expression i + tileSize appended. boundExprs.push_back(dim + tileSizes[i]); boundExprs.append(origUbMap.getResults().begin(), origUbMap.getResults().end()); AffineMap ubMap = AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols(), boundExprs, b.getContext()); newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap); } else { // No need of the min expression. AffineExpr dim = b.getAffineDimExpr(0); AffineMap ubMap = AffineMap::get(1, 0, dim + tileSizes[i]); newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap); } } } /// Tiles the specified band of perfectly nested loops creating tile-space loops /// and intra-tile loops. A band is a contiguous set of loops. // TODO: handle non hyper-rectangular spaces. LogicalResult mlir::tilePerfectlyNested(MutableArrayRef input, ArrayRef tileSizes, SmallVectorImpl *tiledNest) { performPreTilingChecks(input, tileSizes); MutableArrayRef origLoops = input; AffineForOp rootAffineForOp = origLoops[0]; // Note that width is at least one since band isn't empty. unsigned width = input.size(); SmallVector tiledLoops(2 * width); // Construct a tiled loop nest without setting their bounds. Bounds are // set later. constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops); SmallVector origLoopIVs; extractForInductionVars(input, &origLoopIVs); if (failed(checkIfHyperRectangular(input, rootAffineForOp, width))) return failure(); // Set loop bounds for the tiled loop nest. constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); // Replace original IVs with intra-tile loop IVs. for (unsigned i = 0; i < width; i++) origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); // Erase the old loop nest. rootAffineForOp.erase(); if (tiledNest) *tiledNest = std::move(tiledLoops); return success(); } /// Tiles the specified band of perfectly nested loops creating tile-space /// loops and intra-tile loops, using SSA values as tiling parameters. A band /// is a contiguous set of loops. // TODO: handle non hyper-rectangular spaces. LogicalResult mlir::tilePerfectlyNestedParametric(MutableArrayRef input, ArrayRef tileSizes, SmallVectorImpl *tiledNest) { performPreTilingChecks(input, tileSizes); MutableArrayRef origLoops = input; AffineForOp rootAffineForOp = origLoops[0]; // Note that width is at least one since band isn't empty. unsigned width = input.size(); SmallVector tiledLoops(2 * width); // Construct a tiled loop nest without setting their bounds. Bounds are // set later. constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops); SmallVector origLoopIVs; extractForInductionVars(input, &origLoopIVs); if (failed(checkIfHyperRectangular(input, rootAffineForOp, width))) return failure(); // Set loop bounds for the tiled loop nest. constructParametricallyTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); // Replace original IVs with intra-tile loop IVs. for (unsigned i = 0; i < width; i++) origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); // Erase the old loop nest. rootAffineForOp.erase(); if (tiledNest) *tiledNest = std::move(tiledLoops); return success(); } /// Collect perfectly nested loops starting from `rootForOps`. Loops are /// perfectly nested if each loop is the first and only non-terminator operation /// in the parent loop. Collect at most `maxLoops` loops and append them to /// `forOps`. template static void getPerfectlyNestedLoopsImpl( SmallVectorImpl &forOps, T rootForOp, unsigned maxLoops = std::numeric_limits::max()) { for (unsigned i = 0; i < maxLoops; ++i) { forOps.push_back(rootForOp); Block &body = rootForOp.region().front(); if (body.begin() != std::prev(body.end(), 2)) return; rootForOp = dyn_cast(&body.front()); if (!rootForOp) return; } } /// Get perfectly nested sequence of loops starting at root of loop nest /// (the first op being another AffineFor, and the second op - a terminator). /// A loop is perfectly nested iff: the first op in the loop's body is another /// AffineForOp, and the second op is a terminator). void mlir::getPerfectlyNestedLoops(SmallVectorImpl &nestedLoops, AffineForOp root) { getPerfectlyNestedLoopsImpl(nestedLoops, root); } void mlir::getPerfectlyNestedLoops(SmallVectorImpl &nestedLoops, scf::ForOp root) { getPerfectlyNestedLoopsImpl(nestedLoops, root); } /// Identify valid and profitable bands of loops to tile. This is currently just /// a temporary placeholder to test the mechanics of tiled code generation. /// Returns all maximal outermost perfect loop nests to tile. void mlir::getTileableBands(FuncOp f, std::vector> *bands) { // Get maximal perfect nest of 'affine.for' insts starting from root // (inclusive). for (AffineForOp forOp : f.getOps()) { SmallVector band; getPerfectlyNestedLoops(band, forOp); bands->push_back(band); } } /// Unrolls this loop completely. LogicalResult mlir::loopUnrollFull(AffineForOp forOp) { Optional mayBeConstantTripCount = getConstantTripCount(forOp); if (mayBeConstantTripCount.hasValue()) { uint64_t tripCount = mayBeConstantTripCount.getValue(); if (tripCount == 1) return promoteIfSingleIteration(forOp); return loopUnrollByFactor(forOp, tripCount); } return failure(); } /// Unrolls this loop by the specified factor or by the trip count (if constant) /// whichever is lower. LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp, uint64_t unrollFactor) { Optional mayBeConstantTripCount = getConstantTripCount(forOp); if (mayBeConstantTripCount.hasValue() && mayBeConstantTripCount.getValue() < unrollFactor) return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue()); return loopUnrollByFactor(forOp, unrollFactor); } /// Generates unrolled copies of AffineForOp or scf::ForOp 'loopBodyBlock', with /// associated 'forOpIV' by 'unrollFactor', calling 'ivRemapFn' to remap /// 'forOpIV' for each unrolled body. static void generateUnrolledLoop(Block *loopBodyBlock, Value forOpIV, uint64_t unrollFactor, function_ref ivRemapFn, ValueRange iterArgs, ValueRange yieldedValues) { // Builder to insert unrolled bodies just before the terminator of the body of // 'forOp'. auto builder = OpBuilder::atBlockTerminator(loopBodyBlock); // Keep a pointer to the last non-terminator operation in the original block // so that we know what to clone (since we are doing this in-place). Block::iterator srcBlockEnd = std::prev(loopBodyBlock->end(), 2); // Unroll the contents of 'forOp' (append unrollFactor - 1 additional copies). SmallVector lastYielded(yieldedValues); for (unsigned i = 1; i < unrollFactor; i++) { BlockAndValueMapping operandMap; // Prepare operand map. operandMap.map(iterArgs, lastYielded); // If the induction variable is used, create a remapping to the value for // this unrolled instance. if (!forOpIV.use_empty()) { Value ivUnroll = ivRemapFn(i, forOpIV, builder); operandMap.map(forOpIV, ivUnroll); } // Clone the original body of 'forOp'. for (auto it = loopBodyBlock->begin(); it != std::next(srcBlockEnd); it++) builder.clone(*it, operandMap); // Update yielded values. for (unsigned i = 0, e = lastYielded.size(); i < e; i++) lastYielded[i] = operandMap.lookup(yieldedValues[i]); } // Update operands of the yield statement. loopBodyBlock->getTerminator()->setOperands(lastYielded); } /// Unrolls this loop by the specified factor. Returns success if the loop /// is successfully unrolled. LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp, uint64_t unrollFactor) { assert(unrollFactor > 0 && "unroll factor should be positive"); if (unrollFactor == 1) return promoteIfSingleIteration(forOp); // Nothing in the loop body other than the terminator. if (llvm::hasSingleElement(forOp.getBody()->getOperations())) return success(); // Loops where the lower bound is a max expression isn't supported for // unrolling since the trip count can be expressed as an affine function when // both the lower bound and the upper bound are multi-result maps. However, // one meaningful way to do such unrolling would be to specialize the loop for // the 'hotspot' case and unroll that hotspot. if (forOp.getLowerBoundMap().getNumResults() != 1) return failure(); // If the trip count is lower than the unroll factor, no unrolled body. // TODO: option to specify cleanup loop unrolling. Optional mayBeConstantTripCount = getConstantTripCount(forOp); if (mayBeConstantTripCount.hasValue() && mayBeConstantTripCount.getValue() < unrollFactor) return failure(); // Generate the cleanup loop if trip count isn't a multiple of unrollFactor. if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) { OpBuilder builder(forOp->getBlock(), std::next(Block::iterator(forOp))); auto cleanupForOp = cast(builder.clone(*forOp)); AffineMap cleanupMap; SmallVector cleanupOperands; getCleanupLoopLowerBound(forOp, unrollFactor, cleanupMap, cleanupOperands); assert(cleanupMap && "cleanup loop lower bound map for single result lower bound maps " "can always be determined"); cleanupForOp.setLowerBound(cleanupOperands, cleanupMap); // Promote the loop body up if this has turned into a single iteration loop. promoteIfSingleIteration(cleanupForOp); // Adjust upper bound of the original loop; this is the same as the lower // bound of the cleanup loop. forOp.setUpperBound(cleanupOperands, cleanupMap); } // Scale the step of loop being unrolled by unroll factor. int64_t step = forOp.getStep(); forOp.setStep(step * unrollFactor); generateUnrolledLoop(forOp.getBody(), forOp.getInductionVar(), unrollFactor, [&](unsigned i, Value iv, OpBuilder b) { // iv' = iv + i * step auto d0 = b.getAffineDimExpr(0); auto bumpMap = AffineMap::get(1, 0, d0 + i * step); return b.create(forOp.getLoc(), bumpMap, iv); }, /*iterArgs=*/{}, /*yieldedValues=*/{}); // Promote the loop body up if this has turned into a single iteration loop. promoteIfSingleIteration(forOp); return success(); } /// Unrolls 'forOp' by 'unrollFactor', returns success if the loop is unrolled. LogicalResult mlir::loopUnrollByFactor(scf::ForOp forOp, uint64_t unrollFactor) { assert(unrollFactor > 0 && "expected positive unroll factor"); if (unrollFactor == 1) return promoteIfSingleIteration(forOp); // Return if the loop body is empty. if (llvm::hasSingleElement(forOp.getBody()->getOperations())) return success(); // Compute tripCount = ceilDiv((upperBound - lowerBound), step) and populate // 'upperBoundUnrolled' and 'stepUnrolled' for static and dynamic cases. OpBuilder boundsBuilder(forOp); auto loc = forOp.getLoc(); auto step = forOp.step(); Value upperBoundUnrolled; Value stepUnrolled; bool generateEpilogueLoop = true; auto lbCstOp = forOp.lowerBound().getDefiningOp(); auto ubCstOp = forOp.upperBound().getDefiningOp(); auto stepCstOp = forOp.step().getDefiningOp(); if (lbCstOp && ubCstOp && stepCstOp) { // Constant loop bounds computation. int64_t lbCst = lbCstOp.getValue(); int64_t ubCst = ubCstOp.getValue(); int64_t stepCst = stepCstOp.getValue(); assert(lbCst >= 0 && ubCst >= 0 && stepCst >= 0 && "expected positive loop bounds and step"); int64_t tripCount = mlir::ceilDiv(ubCst - lbCst, stepCst); int64_t tripCountEvenMultiple = tripCount - (tripCount % unrollFactor); int64_t upperBoundUnrolledCst = lbCst + tripCountEvenMultiple * stepCst; assert(upperBoundUnrolledCst <= ubCst); int64_t stepUnrolledCst = stepCst * unrollFactor; // Create constant for 'upperBoundUnrolled' and set epilogue loop flag. generateEpilogueLoop = upperBoundUnrolledCst < ubCst; if (generateEpilogueLoop) upperBoundUnrolled = boundsBuilder.create(loc, upperBoundUnrolledCst); else upperBoundUnrolled = ubCstOp; // Create constant for 'stepUnrolled'. stepUnrolled = stepCst == stepUnrolledCst ? step : boundsBuilder.create(loc, stepUnrolledCst); } else { // Dynamic loop bounds computation. // TODO: Add dynamic asserts for negative lb/ub/step, or // consider using ceilDiv from AffineApplyExpander. auto lowerBound = forOp.lowerBound(); auto upperBound = forOp.upperBound(); Value diff = boundsBuilder.create(loc, upperBound, lowerBound); Value tripCount = ceilDivPositive(boundsBuilder, loc, diff, step); Value unrollFactorCst = boundsBuilder.create(loc, unrollFactor); Value tripCountRem = boundsBuilder.create(loc, tripCount, unrollFactorCst); // Compute tripCountEvenMultiple = tripCount - (tripCount % unrollFactor) Value tripCountEvenMultiple = boundsBuilder.create(loc, tripCount, tripCountRem); // Compute upperBoundUnrolled = lowerBound + tripCountEvenMultiple * step upperBoundUnrolled = boundsBuilder.create( loc, lowerBound, boundsBuilder.create(loc, tripCountEvenMultiple, step)); // Scale 'step' by 'unrollFactor'. stepUnrolled = boundsBuilder.create(loc, step, unrollFactorCst); } // Create epilogue clean up loop starting at 'upperBoundUnrolled'. if (generateEpilogueLoop) { OpBuilder epilogueBuilder(forOp->getBlock(), std::next(Block::iterator(forOp))); auto epilogueForOp = cast(epilogueBuilder.clone(*forOp)); epilogueForOp.setLowerBound(upperBoundUnrolled); // Update uses of loop results. auto results = forOp.getResults(); auto epilogueResults = epilogueForOp.getResults(); auto epilogueIterOperands = epilogueForOp.getIterOperands(); for (auto e : llvm::zip(results, epilogueResults, epilogueIterOperands)) { std::get<0>(e).replaceAllUsesWith(std::get<1>(e)); epilogueForOp->replaceUsesOfWith(std::get<2>(e), std::get<0>(e)); } promoteIfSingleIteration(epilogueForOp); } // Create unrolled loop. forOp.setUpperBound(upperBoundUnrolled); forOp.setStep(stepUnrolled); auto iterArgs = ValueRange(forOp.getRegionIterArgs()); auto yieldedValues = forOp.getBody()->getTerminator()->getOperands(); generateUnrolledLoop( forOp.getBody(), forOp.getInductionVar(), unrollFactor, [&](unsigned i, Value iv, OpBuilder b) { // iv' = iv + step * i; auto stride = b.create(loc, step, b.create(loc, i)); return b.create(loc, iv, stride); }, iterArgs, yieldedValues); // Promote the loop body up if this has turned into a single iteration loop. promoteIfSingleIteration(forOp); return success(); } LogicalResult mlir::loopUnrollJamUpToFactor(AffineForOp forOp, uint64_t unrollJamFactor) { Optional mayBeConstantTripCount = getConstantTripCount(forOp); if (mayBeConstantTripCount.hasValue() && mayBeConstantTripCount.getValue() < unrollJamFactor) return loopUnrollJamByFactor(forOp, mayBeConstantTripCount.getValue()); return loopUnrollJamByFactor(forOp, unrollJamFactor); } /// Unrolls and jams this loop by the specified factor. LogicalResult mlir::loopUnrollJamByFactor(AffineForOp forOp, uint64_t unrollJamFactor) { // Gathers all maximal sub-blocks of operations that do not themselves // include a for op (a operation could have a descendant for op though // in its tree). Ignore the block terminators. struct JamBlockGatherer { // Store iterators to the first and last op of each sub-block found. std::vector> subBlocks; // This is a linear time walk. void walk(Operation *op) { for (auto ®ion : op->getRegions()) for (auto &block : region) walk(block); } void walk(Block &block) { for (auto it = block.begin(), e = std::prev(block.end()); it != e;) { auto subBlockStart = it; while (it != e && !isa(&*it)) ++it; if (it != subBlockStart) subBlocks.push_back({subBlockStart, std::prev(it)}); // Process all for ops that appear next. while (it != e && isa(&*it)) walk(&*it++); } } }; assert(unrollJamFactor > 0 && "unroll jam factor should be positive"); if (unrollJamFactor == 1) return promoteIfSingleIteration(forOp); // Nothing in the loop body other than the terminator. if (llvm::hasSingleElement(forOp.getBody()->getOperations())) return success(); // Loops where both lower and upper bounds are multi-result maps won't be // unrolled (since the trip can't be expressed as an affine function in // general). // TODO: this may not be common, but we could support the case // where the lower bound is a multi-result map and the ub is a single result // one. if (forOp.getLowerBoundMap().getNumResults() != 1) return failure(); Optional mayBeConstantTripCount = getConstantTripCount(forOp); // If the trip count is lower than the unroll jam factor, no unroll jam. if (mayBeConstantTripCount.hasValue() && mayBeConstantTripCount.getValue() < unrollJamFactor) { LLVM_DEBUG(llvm::dbgs() << "[failed] trip count < unroll-jam factor\n"); return failure(); } // Gather all sub-blocks to jam upon the loop being unrolled. JamBlockGatherer jbg; jbg.walk(forOp); auto &subBlocks = jbg.subBlocks; // Generate the cleanup loop if trip count isn't a multiple of // unrollJamFactor. if (getLargestDivisorOfTripCount(forOp) % unrollJamFactor != 0) { // Insert the cleanup loop right after 'forOp'. OpBuilder builder(forOp->getBlock(), std::next(Block::iterator(forOp))); auto cleanupAffineForOp = cast(builder.clone(*forOp)); // Adjust the lower bound of the cleanup loop; its upper bound is the same // as the original loop's upper bound. AffineMap cleanupMap; SmallVector cleanupOperands; getCleanupLoopLowerBound(forOp, unrollJamFactor, cleanupMap, cleanupOperands); cleanupAffineForOp.setLowerBound(cleanupOperands, cleanupMap); // Promote the cleanup loop if it has turned into a single iteration loop. promoteIfSingleIteration(cleanupAffineForOp); // Adjust the upper bound of the original loop - it will be the same as the // cleanup loop's lower bound. Its lower bound remains unchanged. forOp.setUpperBound(cleanupOperands, cleanupMap); } // Scale the step of loop being unroll-jammed by the unroll-jam factor. int64_t step = forOp.getStep(); forOp.setStep(step * unrollJamFactor); auto forOpIV = forOp.getInductionVar(); // Unroll and jam (appends unrollJamFactor - 1 additional copies). for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { // Operand map persists across all sub-blocks. BlockAndValueMapping operandMap; for (auto &subBlock : subBlocks) { // Builder to insert unroll-jammed bodies. Insert right at the end of // sub-block. OpBuilder builder(subBlock.first->getBlock(), std::next(subBlock.second)); // If the induction variable is used, create a remapping to the value for // this unrolled instance. if (!forOpIV.use_empty()) { // iv' = iv + i, i = 1 to unrollJamFactor-1. auto d0 = builder.getAffineDimExpr(0); auto bumpMap = AffineMap::get(1, 0, d0 + i * step); auto ivUnroll = builder.create(forOp.getLoc(), bumpMap, forOpIV); operandMap.map(forOpIV, ivUnroll); } // Clone the sub-block being unroll-jammed. for (auto it = subBlock.first; it != std::next(subBlock.second); ++it) builder.clone(*it, operandMap); } } // Promote the loop body up if this has turned into a single iteration loop. promoteIfSingleIteration(forOp); return success(); } /// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is /// nested within 'forOpA' as the only non-terminator operation in its block. void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) { assert(&*forOpA.getBody()->begin() == forOpB.getOperation()); auto &forOpABody = forOpA.getBody()->getOperations(); auto &forOpBBody = forOpB.getBody()->getOperations(); // 1) Splice forOpA's non-terminator operations (which is just forOpB) just // before forOpA (in ForOpA's parent's block) this should leave 'forOpA's // body containing only the terminator. forOpA->getBlock()->getOperations().splice(Block::iterator(forOpA), forOpABody, forOpABody.begin(), std::prev(forOpABody.end())); // 2) Splice forOpB's non-terminator operations into the beginning of forOpA's // body (this leaves forOpB's body containing only the terminator). forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(), std::prev(forOpBBody.end())); // 3) Splice forOpA into the beginning of forOpB's body. forOpBBody.splice(forOpBBody.begin(), forOpA->getBlock()->getOperations(), Block::iterator(forOpA)); } // Checks each dependence component against the permutation to see if the // desired loop interchange would violate dependences by making the // dependence component lexicographically negative. static bool checkLoopInterchangeDependences( const std::vector> &depCompsVec, ArrayRef loops, ArrayRef loopPermMap) { // Invert permutation map. unsigned maxLoopDepth = loops.size(); SmallVector loopPermMapInv; loopPermMapInv.resize(maxLoopDepth); for (unsigned i = 0; i < maxLoopDepth; ++i) loopPermMapInv[loopPermMap[i]] = i; // Check each dependence component against the permutation to see if the // desired loop interchange permutation would make the dependence vectors // lexicographically negative. // Example 1: [-1, 1][0, 0] // Example 2: [0, 0][-1, 1] for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) { const SmallVector &depComps = depCompsVec[i]; assert(depComps.size() >= maxLoopDepth); // Check if the first non-zero dependence component is positive. // This iterates through loops in the desired order. for (unsigned j = 0; j < maxLoopDepth; ++j) { unsigned permIndex = loopPermMapInv[j]; assert(depComps[permIndex].lb.hasValue()); int64_t depCompLb = depComps[permIndex].lb.getValue(); if (depCompLb > 0) break; if (depCompLb < 0) return false; } } return true; } /// Checks if the loop interchange permutation 'loopPermMap' of the perfectly /// nested sequence of loops in 'loops' would violate dependences. bool mlir::isValidLoopInterchangePermutation(ArrayRef loops, ArrayRef loopPermMap) { // Gather dependence components for dependences between all ops in loop nest // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth]. assert(loopPermMap.size() == loops.size()); unsigned maxLoopDepth = loops.size(); std::vector> depCompsVec; getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec); return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap); } /// Returns true if `loops` is a perfectly nested loop nest, where loops appear /// in it from outermost to innermost. bool LLVM_ATTRIBUTE_UNUSED mlir::isPerfectlyNested(ArrayRef loops) { assert(!loops.empty() && "no loops provided"); // We already know that the block can't be empty. auto hasTwoElements = [](Block *block) { auto secondOpIt = std::next(block->begin()); return secondOpIt != block->end() && &*secondOpIt == &block->back(); }; auto enclosingLoop = loops.front(); for (auto loop : loops.drop_front()) { auto parentForOp = dyn_cast(loop->getParentOp()); // parentForOp's body should be just this loop and the terminator. if (parentForOp != enclosingLoop || !hasTwoElements(parentForOp.getBody())) return false; enclosingLoop = loop; } return true; } // input[i] should move from position i -> permMap[i]. Returns the position in // `input` that becomes the new outermost loop. unsigned mlir::permuteLoops(MutableArrayRef input, ArrayRef permMap) { assert(input.size() == permMap.size() && "invalid permutation map size"); // Check whether the permutation spec is valid. This is a small vector - we'll // just sort and check if it's iota. SmallVector checkPermMap(permMap.begin(), permMap.end()); llvm::sort(checkPermMap); if (llvm::any_of(llvm::enumerate(checkPermMap), [](const auto &en) { return en.value() != en.index(); })) assert(false && "invalid permutation map"); // Nothing to do. if (input.size() < 2) return 0; assert(isPerfectlyNested(input) && "input not perfectly nested"); // Compute the inverse mapping, invPermMap: since input[i] goes to position // permMap[i], position i of the permuted nest is at input[invPermMap[i]]. SmallVector, 4> invPermMap; for (unsigned i = 0, e = input.size(); i < e; ++i) invPermMap.push_back({permMap[i], i}); llvm::sort(invPermMap); // Move the innermost loop body to the loop that would be the innermost in the // permuted nest (only if the innermost loop is going to change). if (permMap.back() != input.size() - 1) { auto *destBody = input[invPermMap.back().second].getBody(); auto *srcBody = input.back().getBody(); destBody->getOperations().splice(destBody->begin(), srcBody->getOperations(), srcBody->begin(), std::prev(srcBody->end())); } // We'll move each loop in `input` in the reverse order so that its body is // empty when we are moving it; this incurs zero copies and no erasing. for (int i = input.size() - 1; i >= 0; --i) { // If this has to become the outermost loop after permutation, add it to the // parent block of the original root. if (permMap[i] == 0) { // If the root remains the same, nothing to do. if (i == 0) continue; // Make input[i] the new outermost loop moving it into parentBlock. auto *parentBlock = input[0]->getBlock(); parentBlock->getOperations().splice(Block::iterator(input[0]), input[i]->getBlock()->getOperations(), Block::iterator(input[i])); continue; } // If the parent in the permuted order is the same as in the original, // nothing to do. unsigned parentPosInInput = invPermMap[permMap[i] - 1].second; if (i > 0 && static_cast(i - 1) == parentPosInInput) continue; // Move input[i] to its surrounding loop in the transformed nest. auto *destBody = input[parentPosInInput].getBody(); destBody->getOperations().splice(destBody->begin(), input[i]->getBlock()->getOperations(), Block::iterator(input[i])); } return invPermMap[0].second; } // Sinks all sequential loops to the innermost levels (while preserving // relative order among them) and moves all parallel loops to the // outermost (while again preserving relative order among them). AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) { SmallVector loops; getPerfectlyNestedLoops(loops, forOp); if (loops.size() < 2) return forOp; // Gather dependence components for dependences between all ops in loop nest // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth]. unsigned maxLoopDepth = loops.size(); std::vector> depCompsVec; getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec); // Mark loops as either parallel or sequential. SmallVector isParallelLoop(maxLoopDepth, true); for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) { SmallVector &depComps = depCompsVec[i]; assert(depComps.size() >= maxLoopDepth); for (unsigned j = 0; j < maxLoopDepth; ++j) { DependenceComponent &depComp = depComps[j]; assert(depComp.lb.hasValue() && depComp.ub.hasValue()); if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0) isParallelLoop[j] = false; } } // Count the number of parallel loops. unsigned numParallelLoops = 0; for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i) if (isParallelLoop[i]) ++numParallelLoops; // Compute permutation of loops that sinks sequential loops (and thus raises // parallel loops) while preserving relative order. SmallVector loopPermMap(maxLoopDepth); unsigned nextSequentialLoop = numParallelLoops; unsigned nextParallelLoop = 0; for (unsigned i = 0; i < maxLoopDepth; ++i) { if (isParallelLoop[i]) { loopPermMap[i] = nextParallelLoop++; } else { loopPermMap[i] = nextSequentialLoop++; } } // Check if permutation 'loopPermMap' would violate dependences. if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap)) return forOp; // Perform loop interchange according to permutation 'loopPermMap'. unsigned loopNestRootIndex = permuteLoops(loops, loopPermMap); return loops[loopNestRootIndex]; } // Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the // lower (resp. upper) loop bound. When called for both the lower and upper // bounds, the resulting IR resembles: // // ```mlir // affine.for %i = max (`iv, ...) to min (`iv` + `offset`) { // ... // } // ``` static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map, SmallVector *operands, int64_t offset = 0) { auto bounds = llvm::to_vector<4>(map->getResults()); bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset); operands->insert(operands->begin() + map->getNumDims(), iv); *map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds, b.getContext()); canonicalizeMapAndOperands(map, operands); } // Stripmines `forOp` by `factor` and sinks it under each of the `targets`. // Stripmine-sink is a primitive building block for generalized tiling of // imperfectly nested loops. // This transformation is purely mechanical and does not check legality, // profitability or even structural correctness. It is the user's // responsibility to specify `targets` that are dominated by `forOp`. // Returns the new AffineForOps, one per `targets`, nested immediately under // each of the `targets`. static SmallVector stripmineSink(AffineForOp forOp, uint64_t factor, ArrayRef targets) { auto originalStep = forOp.getStep(); auto scaledStep = originalStep * factor; forOp.setStep(scaledStep); OpBuilder b(forOp->getBlock(), std::next(Block::iterator(forOp))); // Lower-bound map creation. auto lbMap = forOp.getLowerBoundMap(); SmallVector lbOperands(forOp.getLowerBoundOperands()); augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands); // Upper-bound map creation. auto ubMap = forOp.getUpperBoundMap(); SmallVector ubOperands(forOp.getUpperBoundOperands()); augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands, /*offset=*/scaledStep); auto iv = forOp.getInductionVar(); SmallVector innerLoops; for (auto t : targets) { // Insert newForOp before the terminator of `t`. auto b = OpBuilder::atBlockTerminator(t.getBody()); auto newForOp = b.create(t.getLoc(), lbOperands, lbMap, ubOperands, ubMap, originalStep); auto begin = t.getBody()->begin(); // Skip terminator and `newForOp` which is just before the terminator. auto nOps = t.getBody()->getOperations().size() - 2; newForOp.getBody()->getOperations().splice( newForOp.getBody()->getOperations().begin(), t.getBody()->getOperations(), begin, std::next(begin, nOps)); replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(), newForOp.region()); innerLoops.push_back(newForOp); } return innerLoops; } static Loops stripmineSink(scf::ForOp forOp, Value factor, ArrayRef targets) { auto originalStep = forOp.step(); auto iv = forOp.getInductionVar(); OpBuilder b(forOp); forOp.setStep(b.create(forOp.getLoc(), originalStep, factor)); Loops innerLoops; for (auto t : targets) { // Save information for splicing ops out of t when done auto begin = t.getBody()->begin(); auto nOps = t.getBody()->getOperations().size(); // Insert newForOp before the terminator of `t`. auto b = OpBuilder::atBlockTerminator((t.getBody())); Value stepped = b.create(t.getLoc(), iv, forOp.step()); Value less = b.create(t.getLoc(), CmpIPredicate::slt, forOp.upperBound(), stepped); Value ub = b.create(t.getLoc(), less, forOp.upperBound(), stepped); // Splice [begin, begin + nOps - 1) into `newForOp` and replace uses. auto newForOp = b.create(t.getLoc(), iv, ub, originalStep); newForOp.getBody()->getOperations().splice( newForOp.getBody()->getOperations().begin(), t.getBody()->getOperations(), begin, std::next(begin, nOps - 1)); replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(), newForOp.region()); innerLoops.push_back(newForOp); } return innerLoops; } // Stripmines a `forOp` by `factor` and sinks it under a single `target`. // Returns the new AffineForOps, nested immediately under `target`. template static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) { // TODO: Use cheap structural assertions that targets are nested under // forOp and that targets are not nested under each other when DominanceInfo // exposes the capability. It seems overkill to construct a whole function // dominance tree at this point. auto res = stripmineSink(forOp, factor, ArrayRef{target}); assert(res.size() == 1 && "Expected 1 inner forOp"); return res[0]; } template static SmallVector, 8> tileImpl(ArrayRef forOps, ArrayRef sizes, ArrayRef targets) { SmallVector, 8> res; SmallVector currentTargets(targets.begin(), targets.end()); for (auto it : llvm::zip(forOps, sizes)) { auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets); res.push_back(step); currentTargets = step; } return res; } SmallVector, 8> mlir::tile(ArrayRef forOps, ArrayRef sizes, ArrayRef targets) { return tileImpl(forOps, sizes, targets); } SmallVector mlir::tile(ArrayRef forOps, ArrayRef sizes, ArrayRef targets) { return tileImpl(forOps, sizes, targets); } template static SmallVector tileImpl(ArrayRef forOps, ArrayRef sizes, ForType target) { SmallVector res; for (auto loops : tile(forOps, sizes, ArrayRef{target})) { assert(loops.size() == 1); res.push_back(loops[0]); } return res; } SmallVector mlir::tile(ArrayRef forOps, ArrayRef sizes, AffineForOp target) { return tileImpl(forOps, sizes, target); } Loops mlir::tile(ArrayRef forOps, ArrayRef sizes, scf::ForOp target) { return tileImpl(forOps, sizes, target); } Loops mlir::tilePerfectlyNested(scf::ForOp rootForOp, ArrayRef sizes) { // Collect perfectly nested loops. If more size values provided than nested // loops available, truncate `sizes`. SmallVector forOps; forOps.reserve(sizes.size()); getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size()); if (forOps.size() < sizes.size()) sizes = sizes.take_front(forOps.size()); return ::tile(forOps, sizes, forOps.back()); } // Hoist the ops within `outer` that appear before `inner`. // Such ops include the ops that have been introduced by parametric tiling. // Ops that come from triangular loops (i.e. that belong to the program slice // rooted at `outer`) and ops that have side effects cannot be hoisted. // Return failure when any op fails to hoist. static LogicalResult hoistOpsBetween(scf::ForOp outer, scf::ForOp inner) { SetVector forwardSlice; getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) { return op != inner.getOperation(); }); LogicalResult status = success(); SmallVector toHoist; for (auto &op : outer.getBody()->without_terminator()) { // Stop when encountering the inner loop. if (&op == inner.getOperation()) break; // Skip over non-hoistable ops. if (forwardSlice.count(&op) > 0) { status = failure(); continue; } // Skip scf::ForOp, these are not considered a failure. if (op.getNumRegions() > 0) continue; // Skip other ops with regions. if (op.getNumRegions() > 0) { status = failure(); continue; } // Skip if op has side effects. // TODO: loads to immutable memory regions are ok. if (!MemoryEffectOpInterface::hasNoEffect(&op)) { status = failure(); continue; } toHoist.push_back(&op); } auto *outerForOp = outer.getOperation(); for (auto *op : toHoist) op->moveBefore(outerForOp); return status; } // Traverse the interTile and intraTile loops and try to hoist ops such that // bands of perfectly nested loops are isolated. // Return failure if either perfect interTile or perfect intraTile bands cannot // be formed. static LogicalResult tryIsolateBands(const TileLoops &tileLoops) { LogicalResult status = success(); const Loops &interTile = tileLoops.first; const Loops &intraTile = tileLoops.second; auto size = interTile.size(); assert(size == intraTile.size()); if (size <= 1) return success(); for (unsigned s = 1; s < size; ++s) status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s]) : failure(); for (unsigned s = 1; s < size; ++s) status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s]) : failure(); return status; } TileLoops mlir::extractFixedOuterLoops(scf::ForOp rootForOp, ArrayRef sizes) { // Collect perfectly nested loops. If more size values provided than nested // loops available, truncate `sizes`. SmallVector forOps; forOps.reserve(sizes.size()); getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size()); if (forOps.size() < sizes.size()) sizes = sizes.take_front(forOps.size()); // Compute the tile sizes such that i-th outer loop executes size[i] // iterations. Given that the loop current executes // numIterations = ceildiv((upperBound - lowerBound), step) // iterations, we need to tile with size ceildiv(numIterations, size[i]). SmallVector tileSizes; tileSizes.reserve(sizes.size()); for (unsigned i = 0, e = sizes.size(); i < e; ++i) { assert(sizes[i] > 0 && "expected strictly positive size for strip-mining"); auto forOp = forOps[i]; OpBuilder builder(forOp); auto loc = forOp.getLoc(); Value diff = builder.create(loc, forOp.upperBound(), forOp.lowerBound()); Value numIterations = ceilDivPositive(builder, loc, diff, forOp.step()); Value iterationsPerBlock = ceilDivPositive(builder, loc, numIterations, sizes[i]); tileSizes.push_back(iterationsPerBlock); } // Call parametric tiling with the given sizes. auto intraTile = tile(forOps, tileSizes, forOps.back()); TileLoops tileLoops = std::make_pair(forOps, intraTile); // TODO: for now we just ignore the result of band isolation. // In the future, mapping decisions may be impacted by the ability to // isolate perfectly nested bands. tryIsolateBands(tileLoops); return tileLoops; } /// Return the new lower bound, upper bound, and step in that order. Insert any /// additional bounds calculations before the given builder and any additional /// conversion back to the original loop induction value inside the given Block. static LoopParams normalizeLoop(OpBuilder &boundsBuilder, OpBuilder &insideLoopBuilder, Location loc, Value lowerBound, Value upperBound, Value step, Value inductionVar) { // Check if the loop is already known to have a constant zero lower bound or // a constant one step. bool isZeroBased = false; if (auto ubCst = lowerBound.getDefiningOp()) isZeroBased = ubCst.getValue() == 0; bool isStepOne = false; if (auto stepCst = step.getDefiningOp()) isStepOne = stepCst.getValue() == 1; // Compute the number of iterations the loop executes: ceildiv(ub - lb, step) // assuming the step is strictly positive. Update the bounds and the step // of the loop to go from 0 to the number of iterations, if necessary. // TODO: introduce support for negative steps or emit dynamic asserts // on step positivity, whatever gets implemented first. if (isZeroBased && isStepOne) return {/*lowerBound=*/lowerBound, /*upperBound=*/upperBound, /*step=*/step}; Value diff = boundsBuilder.create(loc, upperBound, lowerBound); Value newUpperBound = ceilDivPositive(boundsBuilder, loc, diff, step); Value newLowerBound = isZeroBased ? lowerBound : boundsBuilder.create(loc, 0); Value newStep = isStepOne ? step : boundsBuilder.create(loc, 1); // Insert code computing the value of the original loop induction variable // from the "normalized" one. Value scaled = isStepOne ? inductionVar : insideLoopBuilder.create(loc, inductionVar, step); Value shifted = isZeroBased ? scaled : insideLoopBuilder.create(loc, scaled, lowerBound); SmallPtrSet preserve{scaled.getDefiningOp(), shifted.getDefiningOp()}; inductionVar.replaceAllUsesExcept(shifted, preserve); return {/*lowerBound=*/newLowerBound, /*upperBound=*/newUpperBound, /*step=*/newStep}; } /// Transform a loop with a strictly positive step /// for %i = %lb to %ub step %s /// into a 0-based loop with step 1 /// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 { /// %i = %ii * %s + %lb /// Insert the induction variable remapping in the body of `inner`, which is /// expected to be either `loop` or another loop perfectly nested under `loop`. /// Insert the definition of new bounds immediate before `outer`, which is /// expected to be either `loop` or its parent in the loop nest. static void normalizeLoop(scf::ForOp loop, scf::ForOp outer, scf::ForOp inner) { OpBuilder builder(outer); OpBuilder innerBuilder = OpBuilder::atBlockBegin(inner.getBody()); auto loopPieces = normalizeLoop(builder, innerBuilder, loop.getLoc(), loop.lowerBound(), loop.upperBound(), loop.step(), loop.getInductionVar()); loop.setLowerBound(loopPieces.lowerBound); loop.setUpperBound(loopPieces.upperBound); loop.setStep(loopPieces.step); } void mlir::coalesceLoops(MutableArrayRef loops) { if (loops.size() < 2) return; scf::ForOp innermost = loops.back(); scf::ForOp outermost = loops.front(); // 1. Make sure all loops iterate from 0 to upperBound with step 1. This // allows the following code to assume upperBound is the number of iterations. for (auto loop : loops) normalizeLoop(loop, outermost, innermost); // 2. Emit code computing the upper bound of the coalesced loop as product // of the number of iterations of all loops. OpBuilder builder(outermost); Location loc = outermost.getLoc(); Value upperBound = outermost.upperBound(); for (auto loop : loops.drop_front()) upperBound = builder.create(loc, upperBound, loop.upperBound()); outermost.setUpperBound(upperBound); builder.setInsertionPointToStart(outermost.getBody()); // 3. Remap induction variables. For each original loop, the value of the // induction variable can be obtained by dividing the induction variable of // the linearized loop by the total number of iterations of the loops nested // in it modulo the number of iterations in this loop (remove the values // related to the outer loops): // iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i. // Compute these iteratively from the innermost loop by creating a "running // quotient" of division by the range. Value previous = outermost.getInductionVar(); for (unsigned i = 0, e = loops.size(); i < e; ++i) { unsigned idx = loops.size() - i - 1; if (i != 0) previous = builder.create(loc, previous, loops[idx + 1].upperBound()); Value iv = (i == e - 1) ? previous : builder.create( loc, previous, loops[idx].upperBound()); replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv, loops.back().region()); } // 4. Move the operations from the innermost just above the second-outermost // loop, delete the extra terminator and the second-outermost loop. scf::ForOp second = loops[1]; innermost.getBody()->back().erase(); outermost.getBody()->getOperations().splice( Block::iterator(second.getOperation()), innermost.getBody()->getOperations()); second.erase(); } void mlir::collapseParallelLoops( scf::ParallelOp loops, ArrayRef> combinedDimensions) { OpBuilder outsideBuilder(loops); Location loc = loops.getLoc(); // Normalize ParallelOp's iteration pattern. SmallVector normalizedLowerBounds; SmallVector normalizedSteps; SmallVector normalizedUpperBounds; for (unsigned i = 0, e = loops.getNumLoops(); i < e; ++i) { OpBuilder insideLoopBuilder = OpBuilder::atBlockBegin(loops.getBody()); auto resultBounds = normalizeLoop(outsideBuilder, insideLoopBuilder, loc, loops.lowerBound()[i], loops.upperBound()[i], loops.step()[i], loops.getBody()->getArgument(i)); normalizedLowerBounds.push_back(resultBounds.lowerBound); normalizedUpperBounds.push_back(resultBounds.upperBound); normalizedSteps.push_back(resultBounds.step); } // Combine iteration spaces. SmallVector lowerBounds; SmallVector steps; SmallVector upperBounds; auto cst0 = outsideBuilder.create(loc, 0); auto cst1 = outsideBuilder.create(loc, 1); for (unsigned i = 0, e = combinedDimensions.size(); i < e; ++i) { Value newUpperBound = outsideBuilder.create(loc, 1); for (auto idx : combinedDimensions[i]) { newUpperBound = outsideBuilder.create(loc, newUpperBound, normalizedUpperBounds[idx]); } lowerBounds.push_back(cst0); steps.push_back(cst1); upperBounds.push_back(newUpperBound); } // Create new ParallelLoop with conversions to the original induction values. // The loop below uses divisions to get the relevant range of values in the // new induction value that represent each range of the original induction // value. The remainders then determine based on that range, which iteration // of the original induction value this represents. This is a normalized value // that is un-normalized already by the previous logic. auto newPloop = outsideBuilder.create( loc, lowerBounds, upperBounds, steps, [&](OpBuilder &insideBuilder, Location, ValueRange ploopIVs) { for (unsigned i = 0, e = combinedDimensions.size(); i < e; ++i) { Value previous = ploopIVs[i]; unsigned numberCombinedDimensions = combinedDimensions[i].size(); // Iterate over all except the last induction value. for (unsigned j = 0, e = numberCombinedDimensions - 1; j < e; ++j) { unsigned idx = combinedDimensions[i][j]; // Determine the current induction value's current loop iteration Value iv = insideBuilder.create( loc, previous, normalizedUpperBounds[idx]); replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx), iv, loops.region()); // Remove the effect of the current induction value to prepare for // the next value. previous = insideBuilder.create( loc, previous, normalizedUpperBounds[idx]); } // The final induction value is just the remaining value. unsigned idx = combinedDimensions[i][numberCombinedDimensions - 1]; replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx), previous, loops.region()); } }); // Replace the old loop with the new loop. loops.getBody()->back().erase(); newPloop.getBody()->getOperations().splice( Block::iterator(newPloop.getBody()->back()), loops.getBody()->getOperations()); loops.erase(); } void mlir::mapLoopToProcessorIds(scf::ForOp forOp, ArrayRef processorId, ArrayRef numProcessors) { assert(processorId.size() == numProcessors.size()); if (processorId.empty()) return; OpBuilder b(forOp); Location loc(forOp.getLoc()); Value mul = processorId.front(); for (unsigned i = 1, e = processorId.size(); i < e; ++i) mul = b.create(loc, b.create(loc, mul, numProcessors[i]), processorId[i]); Value lb = b.create(loc, forOp.lowerBound(), b.create(loc, forOp.step(), mul)); forOp.setLowerBound(lb); Value step = forOp.step(); for (auto numProcs : numProcessors) step = b.create(loc, step, numProcs); forOp.setStep(step); } /// Given a memref region, determine the lowest depth at which transfers can be /// placed for it, and return the corresponding block, start and end positions /// in the block for placing incoming (read) and outgoing (write) copies /// respectively. The lowest depth depends on whether the region being accessed /// is hoistable with respect to one or more immediately surrounding loops. static void findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block, Block::iterator &begin, Block::iterator &end, Block **copyPlacementBlock, Block::iterator *copyInPlacementStart, Block::iterator *copyOutPlacementStart) { const auto *cst = region.getConstraints(); SmallVector symbols; cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols); SmallVector enclosingFors; getLoopIVs(*block.begin(), &enclosingFors); // Walk up loop parents till we find an IV on which this region is // symbolic/variant. auto it = enclosingFors.rbegin(); for (auto e = enclosingFors.rend(); it != e; ++it) { // TODO: also need to be checking this for regions symbols that // aren't loop IVs, whether we are within their resp. defs' dominance scope. if (llvm::is_contained(symbols, it->getInductionVar())) break; } if (it != enclosingFors.rbegin()) { auto lastInvariantIV = *std::prev(it); *copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation()); *copyOutPlacementStart = std::next(*copyInPlacementStart); *copyPlacementBlock = lastInvariantIV->getBlock(); } else { *copyInPlacementStart = begin; *copyOutPlacementStart = end; *copyPlacementBlock = █ } } // Info comprising stride and number of elements transferred every stride. struct StrideInfo { int64_t stride; int64_t numEltPerStride; }; /// Returns striding information for a copy/transfer of this region with /// potentially multiple striding levels from outermost to innermost. For an /// n-dimensional region, there can be at most n-1 levels of striding /// successively nested. // TODO: make this work with non-identity layout maps. static void getMultiLevelStrides(const MemRefRegion ®ion, ArrayRef bufferShape, SmallVectorImpl *strideInfos) { if (bufferShape.size() <= 1) return; int64_t numEltPerStride = 1; int64_t stride = 1; for (int d = bufferShape.size() - 1; d >= 1; d--) { int64_t dimSize = region.memref.getType().cast().getDimSize(d); stride *= dimSize; numEltPerStride *= bufferShape[d]; // A stride is needed only if the region has a shorter extent than the // memref along the dimension *and* has an extent greater than one along the // next major dimension. if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) { strideInfos->push_back({stride, numEltPerStride}); } } } /// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and /// returns the outermost AffineForOp of the copy loop nest. `lbMaps` and /// `ubMaps` along with `lbOperands` and `ubOperands` hold the lower and upper /// bound information for the copy loop nest. `fastBufOffsets` contain the /// expressions to be subtracted out from the respective copy loop iterators in /// order to index the fast buffer. If `copyOut' is true, generates a copy-out; /// otherwise a copy-in. Builder `b` should be set to the point the copy nest is /// inserted. // /// The copy-in nest is generated as follows as an example for a 2-d region: /// for x = ... /// for y = ... /// fast_buf[x - offset_x][y - offset_y] = memref[x][y] /// static AffineForOp generatePointWiseCopy(Location loc, Value memref, Value fastMemRef, ArrayRef lbMaps, ArrayRef lbOperands, ArrayRef ubMaps, ArrayRef ubOperands, ArrayRef fastBufOffsets, bool isCopyOut, OpBuilder b) { assert(llvm::all_of(lbMaps, [&](AffineMap lbMap) { return lbMap.getNumInputs() == lbOperands.size(); })); assert(llvm::all_of(ubMaps, [&](AffineMap ubMap) { return ubMap.getNumInputs() == ubOperands.size(); })); unsigned rank = memref.getType().cast().getRank(); assert(lbMaps.size() == rank && "wrong number of lb maps"); assert(ubMaps.size() == rank && "wrong number of ub maps"); SmallVector memIndices; SmallVector fastBufExprs; SmallVector fastBufMapOperands; AffineForOp copyNestRoot; SmallVector mayBeDeadApplys; for (unsigned d = 0; d < rank; ++d) { auto forOp = createCanonicalizedAffineForOp(b, loc, lbOperands, lbMaps[d], ubOperands, ubMaps[d]); if (d == 0) copyNestRoot = forOp; b = OpBuilder::atBlockTerminator(forOp.getBody()); auto fastBufOffsetMap = AffineMap::get(lbOperands.size(), 0, fastBufOffsets[d]); auto offset = b.create(loc, fastBufOffsetMap, lbOperands); // Construct the subscript for the fast memref being copied into/from: // x - offset_x. fastBufExprs.push_back(b.getAffineDimExpr(2 * d + 1) - b.getAffineDimExpr(2 * d)); fastBufMapOperands.push_back(offset); fastBufMapOperands.push_back(forOp.getInductionVar()); mayBeDeadApplys.push_back(offset); // Subscript for the slow memref being copied. memIndices.push_back(forOp.getInductionVar()); } auto fastBufMap = AffineMap::get(2 * rank, /*symbolCount=*/0, fastBufExprs, b.getContext()); fullyComposeAffineMapAndOperands(&fastBufMap, &fastBufMapOperands); fastBufMap = simplifyAffineMap(fastBufMap); canonicalizeMapAndOperands(&fastBufMap, &fastBufMapOperands); // Drop any dead affine.applys. for (auto applyOp : mayBeDeadApplys) if (applyOp.use_empty()) applyOp.erase(); if (!isCopyOut) { // Copy in. auto load = b.create(loc, memref, memIndices); b.create(loc, load, fastMemRef, fastBufMap, fastBufMapOperands); return copyNestRoot; } // Copy out. auto load = b.create(loc, fastMemRef, fastBufMap, fastBufMapOperands); b.create(loc, load, memref, memIndices); return copyNestRoot; } static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED emitRemarkForBlock(Block &block) { return block.getParentOp()->emitRemark(); } /// Creates a buffer in the faster memory space for the specified memref region; /// generates a copy from the lower memory space to this one, and replaces all /// loads/stores in the block range [`begin', `end') of `block' to load/store /// from that buffer. Returns failure if copies could not be generated due to /// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart` /// in copyPlacementBlock specify the insertion points where the incoming copies /// and outgoing copies, respectively, should be inserted (the insertion happens /// right before the insertion point). Since `begin` can itself be invalidated /// due to the memref rewriting done from this method, the output argument /// `nBegin` is set to its replacement (set to `begin` if no invalidation /// happens). Since outgoing copies could have been inserted at `end`, the /// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the /// size of the fast buffer allocated. static LogicalResult generateCopy( const MemRefRegion ®ion, Block *block, Block::iterator begin, Block::iterator end, Block *copyPlacementBlock, Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart, AffineCopyOptions copyOptions, DenseMap &fastBufferMap, DenseSet ©Nests, uint64_t *sizeInBytes, Block::iterator *nBegin, Block::iterator *nEnd) { *nBegin = begin; *nEnd = end; FuncOp f = begin->getParentOfType(); OpBuilder topBuilder(f.getBody()); Value zeroIndex = topBuilder.create(f.getLoc(), 0); if (begin == end) return success(); // Is the copy out point at the end of the block where we are doing // explicit copying. bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart); // Copies for read regions are going to be inserted at 'begin'. OpBuilder prologue(copyPlacementBlock, copyInPlacementStart); // Copies for write regions are going to be inserted at 'end'. OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart); OpBuilder &b = region.isWrite() ? epilogue : prologue; // Builder to create constants at the top level. auto func = copyPlacementBlock->getParent()->getParentOfType(); OpBuilder top(func.getBody()); auto loc = region.loc; auto memref = region.memref; auto memRefType = memref.getType().cast(); auto layoutMaps = memRefType.getAffineMaps(); if (layoutMaps.size() > 1 || (layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) { LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n"); return failure(); } // Indices to use for the copying. // Indices for the original memref being copied from/to. SmallVector memIndices; // Indices for the faster buffer being copied into/from. SmallVector bufIndices; unsigned rank = memRefType.getRank(); SmallVector fastBufferShape; // Compute the extents of the buffer. std::vector> lbs; SmallVector lbDivisors; lbs.reserve(rank); Optional numElements = region.getConstantBoundingSizeAndShape( &fastBufferShape, &lbs, &lbDivisors); if (!numElements.hasValue()) { LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n"); return failure(); } if (numElements.getValue() == 0) { LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n"); *sizeInBytes = 0; return success(); } SmallVector lbMaps(rank), ubMaps(rank); for (unsigned i = 0; i < rank; ++i) region.getLowerAndUpperBound(i, lbMaps[i], ubMaps[i]); const FlatAffineConstraints *cst = region.getConstraints(); // 'regionSymbols' hold values that this memory region is symbolic/parametric // on; these typically include loop IVs surrounding the level at which the // copy generation is being done or other valid symbols in MLIR. SmallVector regionSymbols; cst->getIdValues(rank, cst->getNumIds(), ®ionSymbols); // Construct the index expressions for the fast memory buffer. The index // expression for a particular dimension of the fast buffer is obtained by // subtracting out the lower bound on the original memref's data region // along the corresponding dimension. // Index start offsets for faster memory buffer relative to the original. SmallVector fastBufOffsets; fastBufOffsets.reserve(rank); for (unsigned d = 0; d < rank; d++) { assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); AffineExpr offset = top.getAffineConstantExpr(0); for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) offset = offset + lbs[d][j] * top.getAffineDimExpr(j); assert(lbDivisors[d] > 0); offset = (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); // Set copy start location for this dimension in the lower memory space // memref. if (auto caf = offset.dyn_cast()) { auto indexVal = caf.getValue(); if (indexVal == 0) { memIndices.push_back(zeroIndex); } else { memIndices.push_back( top.create(loc, indexVal).getResult()); } } else { // The coordinate for the start location is just the lower bound along the // corresponding dimension on the memory region (stored in 'offset'). auto map = AffineMap::get( cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset); memIndices.push_back(b.create(loc, map, regionSymbols)); } // The fast buffer is copied into at location zero; addressing is relative. bufIndices.push_back(zeroIndex); // Record the offsets since they are needed to remap the memory accesses of // the original memref further below. fastBufOffsets.push_back(offset); } // The faster memory space buffer. Value fastMemRef; // Check if a buffer was already created. bool existingBuf = fastBufferMap.count(memref) > 0; if (!existingBuf) { AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank); auto fastMemRefType = MemRefType::get(fastBufferShape, memRefType.getElementType(), fastBufferLayout, copyOptions.fastMemorySpace); // Create the fast memory space buffer just before the 'affine.for' // operation. fastMemRef = prologue.create(loc, fastMemRefType).getResult(); // Record it. fastBufferMap[memref] = fastMemRef; // fastMemRefType is a constant shaped memref. *sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue(); LLVM_DEBUG(emitRemarkForBlock(*block) << "Creating fast buffer of type " << fastMemRefType << " and size " << llvm::divideCeil(*sizeInBytes, 1024) << " KiB\n"); } else { // Reuse the one already created. fastMemRef = fastBufferMap[memref]; *sizeInBytes = 0; } auto numElementsSSA = top.create(loc, numElements.getValue()); Value dmaStride = nullptr; Value numEltPerDmaStride = nullptr; if (copyOptions.generateDma) { SmallVector dmaStrideInfos; getMultiLevelStrides(region, fastBufferShape, &dmaStrideInfos); // TODO: use all stride levels once DmaStartOp is extended for // multi-level strides. if (dmaStrideInfos.size() > 1) { LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n"); return failure(); } if (!dmaStrideInfos.empty()) { dmaStride = top.create(loc, dmaStrideInfos[0].stride); numEltPerDmaStride = top.create(loc, dmaStrideInfos[0].numEltPerStride); } } // Record the last operation where we want the memref replacement to end. We // later do the memref replacement only in [begin, postDomFilter] so // that the original memref's used in the data movement code themselves don't // get replaced. auto postDomFilter = std::prev(end); // Create fully composed affine maps for each memref. auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size()); fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices); auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size()); fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices); if (!copyOptions.generateDma) { // Point-wise copy generation. auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, lbMaps, /*lbOperands=*/regionSymbols, ubMaps, /*ubOperands=*/regionSymbols, fastBufOffsets, /*isCopyOut=*/region.isWrite(), b); // Record this so that we can skip it from yet another copy. copyNests.insert(copyNest); // Since new ops are being appended (for copy out's), adjust the end to // mark end of block range being processed if necessary. if (region.isWrite() && isCopyOutAtEndOfBlock) *nEnd = Block::iterator(copyNest.getOperation()); } else { // DMA generation. // Create a tag (single element 1-d memref) for the DMA. auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {}, copyOptions.tagMemorySpace); auto tagMemRef = prologue.create(loc, tagMemRefType); SmallVector tagIndices({zeroIndex}); auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size()); fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices); if (!region.isWrite()) { // DMA non-blocking read from original buffer to fast buffer. b.create(loc, memref, memAffineMap, memIndices, fastMemRef, bufAffineMap, bufIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA, dmaStride, numEltPerDmaStride); } else { // DMA non-blocking write from fast buffer to the original memref. auto op = b.create( loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap, memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA, dmaStride, numEltPerDmaStride); // Since new ops may be appended at 'end' (for outgoing DMAs), adjust the // end to mark end of block range being processed. if (isCopyOutAtEndOfBlock) *nEnd = Block::iterator(op.getOperation()); } // Matching DMA wait to block on completion; tag always has a 0 index. b.create(loc, tagMemRef, tagAffineMap, zeroIndex, numElementsSSA); // Generate dealloc for the tag. auto tagDeallocOp = epilogue.create(loc, tagMemRef); if (*nEnd == end && isCopyOutAtEndOfBlock) // Since new ops are being appended (for outgoing DMAs), adjust the end to // mark end of range of the original. *nEnd = Block::iterator(tagDeallocOp.getOperation()); } // Generate dealloc for the buffer. if (!existingBuf) { auto bufDeallocOp = epilogue.create(loc, fastMemRef); // When generating pointwise copies, `nEnd' has to be set to deallocOp on // the fast buffer (since it marks the new end insertion point). if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock) *nEnd = Block::iterator(bufDeallocOp.getOperation()); } // Replace all uses of the old memref with the faster one while remapping // access indices (subtracting out lower bound offsets for each dimension). // Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT], // index remap will be (%i, %j) -> (%i - %iT, %j - %jT), // i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j), // and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'. // d2, d3 correspond to the original indices (%i, %j). SmallVector remapExprs; remapExprs.reserve(rank); for (unsigned i = 0; i < rank; i++) { // The starting operands of indexRemap will be regionSymbols (the symbols on // which the memref region is parametric); then those corresponding to // the memref's original indices follow. auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i); remapExprs.push_back(dimExpr - fastBufOffsets[i]); } auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs, b.getContext()); // Record the begin since it may be invalidated by memref replacement. Block::iterator prevOfBegin; bool isBeginAtStartOfBlock = (begin == block->begin()); if (!isBeginAtStartOfBlock) prevOfBegin = std::prev(begin); // *Only* those uses within the range [begin, end) of 'block' are replaced. replaceAllMemRefUsesWith(memref, fastMemRef, /*extraIndices=*/{}, indexRemap, /*extraOperands=*/regionSymbols, /*symbolOperands=*/{}, /*domInstFilter=*/&*begin, /*postDomInstFilter=*/&*postDomFilter); *nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin); return success(); } /// Construct the memref region to just include the entire memref. Returns false /// dynamic shaped memref's for now. `numParamLoopIVs` is the number of /// enclosing loop IVs of `op` (starting from the outermost) that the region /// is parametric on. static bool getFullMemRefAsRegion(Operation *op, unsigned numParamLoopIVs, MemRefRegion *region) { unsigned rank; if (auto loadOp = dyn_cast(op)) { rank = loadOp.getMemRefType().getRank(); region->memref = loadOp.getMemRef(); region->setWrite(false); } else if (auto storeOp = dyn_cast(op)) { rank = storeOp.getMemRefType().getRank(); region->memref = storeOp.getMemRef(); region->setWrite(true); } else { assert(false && "expected load or store op"); return false; } auto memRefType = region->memref.getType().cast(); if (!memRefType.hasStaticShape()) return false; auto *regionCst = region->getConstraints(); // Just get the first numSymbols IVs, which the memref region is parametric // on. SmallVector ivs; getLoopIVs(*op, &ivs); ivs.resize(numParamLoopIVs); SmallVector symbols; extractForInductionVars(ivs, &symbols); regionCst->reset(rank, numParamLoopIVs, 0); regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols); // Memref dim sizes provide the bounds. for (unsigned d = 0; d < rank; d++) { auto dimSize = memRefType.getDimSize(d); assert(dimSize > 0 && "filtered dynamic shapes above"); regionCst->addConstantLowerBound(d, 0); regionCst->addConstantUpperBound(d, dimSize - 1); } return true; } /// Performs explicit copying for the contiguous sequence of operations in the /// block iterator range [`begin', `end'), where `end' can't be past the /// terminator of the block (since additional operations are potentially /// inserted right before `end`. Returns the total size of fast memory space /// buffers used. `copyOptions` provides various parameters, and the output /// argument `copyNests` is the set of all copy nests inserted, each represented /// by its root affine.for. Since we generate alloc's and dealloc's for all fast /// buffers (before and after the range of operations resp. or at a hoisted /// position), all of the fast memory capacity is assumed to be available for /// processing this block range. When 'filterMemRef' is specified, copies are /// only generated for the provided MemRef. uint64_t mlir::affineDataCopyGenerate(Block::iterator begin, Block::iterator end, const AffineCopyOptions ©Options, Optional filterMemRef, DenseSet ©Nests) { if (begin == end) return 0; assert(begin->getBlock() == std::prev(end)->getBlock() && "Inconsistent block begin/end args"); assert(end != end->getBlock()->end() && "end can't be the block terminator"); Block *block = begin->getBlock(); // Copies will be generated for this depth, i.e., symbolic in all loops // surrounding the this block range. unsigned copyDepth = getNestingDepth(&*begin); LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth << "\n"); LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n"); LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n"); // List of memory regions to copy for. We need a map vector to have a // guaranteed iteration order to write test cases. CHECK-DAG doesn't help here // since the alloc's for example are identical except for the SSA id. SmallMapVector, 4> readRegions; SmallMapVector, 4> writeRegions; // Map from original memref's to the fast buffers that their accesses are // replaced with. DenseMap fastBufferMap; // To check for errors when walking the block. bool error = false; // Walk this range of operations to gather all memory regions. block->walk(begin, end, [&](Operation *opInst) { // Gather regions to allocate to buffers in faster memory space. if (auto loadOp = dyn_cast(opInst)) { if ((filterMemRef.hasValue() && filterMemRef != loadOp.getMemRef()) || (loadOp.getMemRefType().getMemorySpace() != copyOptions.slowMemorySpace)) return; } else if (auto storeOp = dyn_cast(opInst)) { if ((filterMemRef.hasValue() && filterMemRef != storeOp.getMemRef()) || storeOp.getMemRefType().getMemorySpace() != copyOptions.slowMemorySpace) return; } else { // Neither load nor a store op. return; } // Compute the MemRefRegion accessed. auto region = std::make_unique(opInst->getLoc()); if (failed(region->compute(opInst, copyDepth, /*sliceState=*/nullptr, /*addMemRefDimBounds=*/false))) { LLVM_DEBUG(llvm::dbgs() << "Error obtaining memory region: semi-affine maps?\n"); LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n"); if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) { LLVM_DEBUG( opInst->emitError("non-constant memref sizes not yet supported")); error = true; return; } } // Each memref has a single buffer associated with it irrespective of how // many load's and store's happen on it. // TODO: in the future, when regions don't intersect and satisfy // other properties (based on load/store regions), we could consider // multiple buffers per memref. // Add to the appropriate region if it's not already in it, or take a // bounding box union with the existing one if it's already in there. // Note that a memref may have both read and write regions - so update the // region in the other list if one exists (write in case of read and vice // versa) since there is a single bounding box for a memref across all reads // and writes that happen on it. // Attempts to update; returns true if 'region' exists in targetRegions. auto updateRegion = [&](const SmallMapVector, 4> &targetRegions) { const auto it = targetRegions.find(region->memref); if (it == targetRegions.end()) return false; // Perform a union with the existing region. if (failed(it->second->unionBoundingBox(*region))) { LLVM_DEBUG(llvm::dbgs() << "Memory region bounding box failed; " "over-approximating to the entire memref\n"); // If the union fails, we will overapproximate. if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) { LLVM_DEBUG(opInst->emitError( "non-constant memref sizes not yet supported")); error = true; return true; } it->second->getConstraints()->clearAndCopyFrom( *region->getConstraints()); } else { // Union was computed and stored in 'it->second': copy to 'region'. region->getConstraints()->clearAndCopyFrom( *it->second->getConstraints()); } return true; }; bool existsInRead = updateRegion(readRegions); if (error) return; bool existsInWrite = updateRegion(writeRegions); if (error) return; // Finally add it to the region list. if (region->isWrite() && !existsInWrite) { writeRegions[region->memref] = std::move(region); } else if (!region->isWrite() && !existsInRead) { readRegions[region->memref] = std::move(region); } }); if (error) { begin->emitError( "copy generation failed for one or more memref's in this block\n"); return 0; } uint64_t totalCopyBuffersSizeInBytes = 0; bool ret = true; auto processRegions = [&](const SmallMapVector, 4> ®ions) { for (const auto ®ionEntry : regions) { // For each region, hoist copy in/out past all hoistable // 'affine.for's. Block::iterator copyInPlacementStart, copyOutPlacementStart; Block *copyPlacementBlock; findHighestBlockForPlacement( *regionEntry.second, *block, begin, end, ©PlacementBlock, ©InPlacementStart, ©OutPlacementStart); uint64_t sizeInBytes; Block::iterator nBegin, nEnd; LogicalResult iRet = generateCopy( *regionEntry.second, block, begin, end, copyPlacementBlock, copyInPlacementStart, copyOutPlacementStart, copyOptions, fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd); if (succeeded(iRet)) { // begin/end could have been invalidated, and need update. begin = nBegin; end = nEnd; totalCopyBuffersSizeInBytes += sizeInBytes; } ret = ret & succeeded(iRet); } }; processRegions(readRegions); processRegions(writeRegions); if (!ret) { begin->emitError( "copy generation failed for one or more memref's in this block\n"); return totalCopyBuffersSizeInBytes; } // For a range of operations, a note will be emitted at the caller. AffineForOp forOp; uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024); if (llvm::DebugFlag && (forOp = dyn_cast(&*begin))) { forOp.emitRemark() << sizeInKib << " KiB of copy buffers in fast memory space for this block\n"; } if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) { StringRef str = "Total size of all copy buffers' for this block " "exceeds fast memory capacity\n"; block->getParentOp()->emitWarning(str); } return totalCopyBuffersSizeInBytes; } // A convenience version of affineDataCopyGenerate for all ops in the body of // an AffineForOp. uint64_t mlir::affineDataCopyGenerate(AffineForOp forOp, const AffineCopyOptions ©Options, Optional filterMemRef, DenseSet ©Nests) { return affineDataCopyGenerate(forOp.getBody()->begin(), std::prev(forOp.getBody()->end()), copyOptions, filterMemRef, copyNests); } LogicalResult mlir::generateCopyForMemRegion( const MemRefRegion &memrefRegion, Operation *analyzedOp, const AffineCopyOptions ©Options, CopyGenerateResult &result) { Block *block = analyzedOp->getBlock(); auto begin = analyzedOp->getIterator(); auto end = std::next(begin); DenseMap fastBufferMap; DenseSet copyNests; auto err = generateCopy(memrefRegion, block, begin, end, block, begin, end, copyOptions, fastBufferMap, copyNests, &result.sizeInBytes, &begin, &end); if (failed(err)) return err; result.alloc = fastBufferMap.find(memrefRegion.memref)->second.getDefiningOp(); assert(copyNests.size() <= 1 && "At most one copy nest is expected."); result.copyNest = copyNests.empty() ? nullptr : *copyNests.begin(); return success(); } /// Gathers all AffineForOps in 'block' at 'currLoopDepth' in 'depthToLoops'. static void gatherLoopsInBlock(Block *block, unsigned currLoopDepth, std::vector> &depthToLoops) { // Add a new empty level to output if it doesn't exist level already. assert(currLoopDepth <= depthToLoops.size() && "Unexpected currLoopDepth"); if (currLoopDepth == depthToLoops.size()) depthToLoops.push_back(SmallVector()); for (auto &op : *block) { if (auto forOp = dyn_cast(op)) { depthToLoops[currLoopDepth].push_back(forOp); gatherLoopsInBlock(forOp.getBody(), currLoopDepth + 1, depthToLoops); } } } /// Gathers all AffineForOps in 'func' grouped by loop depth. void mlir::gatherLoops(FuncOp func, std::vector> &depthToLoops) { for (auto &block : func) gatherLoopsInBlock(&block, /*currLoopDepth=*/0, depthToLoops); // Remove last loop level from output since it's empty. if (!depthToLoops.empty()) { assert(depthToLoops.back().empty() && "Last loop level is not empty?"); depthToLoops.pop_back(); } } // TODO: if necessary, this can be extended to also compose in any // affine.applys, fold to constant if all result dimensions of the map are // constant (canonicalizeMapAndOperands below already does this for single // result bound maps), and use simplifyMap to perform algebraic simplification. AffineForOp mlir::createCanonicalizedAffineForOp( OpBuilder b, Location loc, ValueRange lbOperands, AffineMap lbMap, ValueRange ubOperands, AffineMap ubMap, int64_t step) { SmallVector lowerOperands(lbOperands); SmallVector upperOperands(ubOperands); fullyComposeAffineMapAndOperands(&lbMap, &lowerOperands); canonicalizeMapAndOperands(&lbMap, &lowerOperands); lbMap = removeDuplicateExprs(lbMap); fullyComposeAffineMapAndOperands(&ubMap, &upperOperands); canonicalizeMapAndOperands(&ubMap, &upperOperands); ubMap = removeDuplicateExprs(ubMap); return b.create(loc, lowerOperands, lbMap, upperOperands, ubMap, step); } /// Creates an AffineIfOp that encodes the conditional to choose between /// the constant trip count version and an unknown trip count version of this /// nest of loops. This is used to separate partial and full tiles if `loops` /// has the intra-tile loops. The affine.if op is inserted at the builder /// insertion point of `b`. static AffineIfOp createSeparationCondition(MutableArrayRef loops, OpBuilder b) { if (loops.empty()) return nullptr; auto *context = loops[0].getContext(); FlatAffineConstraints cst; SmallVector ops; ops.reserve(loops.size()); for (AffineForOp forOp : loops) ops.push_back(forOp); getIndexSet(ops, &cst); // Remove constraints that are independent of these loop IVs. cst.removeIndependentConstraints(/*pos=*/0, /*num=*/loops.size()); // Construct the constraint set representing the guard for full tiles. The // lower bound (and upper bound) corresponding to the full tile should be // larger (and resp. smaller) than any other lower (or upper bound). SmallVector fullTileLb, fullTileUb; for (auto loop : loops) { (void)loop; // TODO: Non-unit stride is not an issue to generalize to. assert(loop.getStep() == 1 && "point loop step expected to be one"); // Mark everything symbols for the purpose of finding a constant diff pair. cst.setDimSymbolSeparation(/*newSymbolCount=*/cst.getNumDimAndSymbolIds() - 1); unsigned fullTileLbPos, fullTileUbPos; if (!cst.getConstantBoundOnDimSize(0, /*lb=*/nullptr, /*lbFloorDivisor=*/nullptr, /*ub=*/nullptr, &fullTileLbPos, &fullTileUbPos)) { LLVM_DEBUG(llvm::dbgs() << "Can't get constant diff pair for a loop\n"); return nullptr; } SmallVector lbIndices, ubIndices; cst.getLowerAndUpperBoundIndices(/*pos=*/0, &lbIndices, &ubIndices); auto fLb = cst.getInequality(fullTileLbPos); auto fUb = cst.getInequality(fullTileUbPos); fullTileLb.assign(fLb.begin(), fLb.end()); fullTileUb.assign(fUb.begin(), fUb.end()); // Full tile lower bound should be >= than any other lower bound. for (auto lbIndex : lbIndices) for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i) cst.atIneq(lbIndex, i) = fullTileLb[i] - cst.atIneq(lbIndex, i); // Full tile upper bound should be <= any other upper bound. for (auto ubIndex : ubIndices) for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i) cst.atIneq(ubIndex, i) -= fullTileUb[i]; cst.removeId(0); } // The previous step leads to all zeros for the full tile lb and ub position // itself; remove those and any other duplicates / trivial redundancies. cst.removeTrivialRedundancy(); // Turn everything into dims conservatively since we earlier turned all // trailing ids past point loop IV into symbols. Some of these could be outer // loop IVs; we'll canonicalize anyway. cst.setDimSymbolSeparation(0); IntegerSet ifCondSet = cst.getAsIntegerSet(context); // ifCondSet can be null if cst was empty -- this can happen if all loops // in the nest have constant trip counts. if (!ifCondSet) return nullptr; SmallVector setOperands; cst.getIdValues(0, cst.getNumDimAndSymbolIds(), &setOperands); canonicalizeSetAndOperands(&ifCondSet, &setOperands); return b.create(loops[0].getLoc(), ifCondSet, setOperands, /*withElseRegion=*/true); } /// Create the full tile loop nest (along with its body). static LogicalResult createFullTiles(MutableArrayRef inputNest, SmallVectorImpl &fullTileLoops, OpBuilder b) { fullTileLoops.reserve(inputNest.size()); // For each loop in the original nest identify a lower/upper bound pair such // that their difference is a constant. FlatAffineConstraints cst; for (auto loop : inputNest) { // TODO: straightforward to generalize to a non-unit stride. if (loop.getStep() != 1) { LLVM_DEBUG(llvm::dbgs() << "[tile separation] non-unit stride not implemented\n"); return failure(); } SmallVector loopOp{loop.getOperation()}; getIndexSet(loopOp, &cst); // We will mark everything other than this loop IV as symbol for getting a // pair of with a constant difference. cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - 1); unsigned lbPos, ubPos; if (!cst.getConstantBoundOnDimSize(/*pos=*/0, /*lb=*/nullptr, /*lbDivisor=*/nullptr, /*ub=*/nullptr, &lbPos, &ubPos) || lbPos == ubPos) { LLVM_DEBUG(llvm::dbgs() << "[tile separation] Can't get constant diff / " "equalities not yet handled\n"); return failure(); } // Set all identifiers as dimensions uniformly since some of those marked as // symbols above could be outer loop IVs (corresponding tile space IVs). cst.setDimSymbolSeparation(/*newSymbolCount=*/0); AffineValueMap lbVmap, ubVmap; cst.getIneqAsAffineValueMap(/*pos=*/0, lbPos, lbVmap, b.getContext()); cst.getIneqAsAffineValueMap(/*pos=*/0, ubPos, ubVmap, b.getContext()); AffineForOp fullTileLoop = createCanonicalizedAffineForOp( b, loop.getLoc(), lbVmap.getOperands(), lbVmap.getAffineMap(), ubVmap.getOperands(), ubVmap.getAffineMap()); b = OpBuilder::atBlockTerminator(fullTileLoop.getBody()); fullTileLoops.push_back(fullTileLoop); } // Add the body for the full tile loop nest. BlockAndValueMapping operandMap; for (auto loopEn : llvm::enumerate(inputNest)) operandMap.map(loopEn.value().getInductionVar(), fullTileLoops[loopEn.index()].getInductionVar()); b = OpBuilder::atBlockTerminator(fullTileLoops.back().getBody()); for (auto &op : inputNest.back().getBody()->without_terminator()) b.clone(op, operandMap); return success(); } LogicalResult mlir::separateFullTiles(MutableArrayRef inputNest, SmallVectorImpl *fullTileNest) { if (inputNest.empty()) return success(); auto firstLoop = inputNest[0]; // Each successive for op has to be nested in the other. auto prevLoop = firstLoop; for (auto loop : inputNest.drop_front(1)) { assert(loop->getParentOp() == prevLoop && "input not contiguously nested"); prevLoop = loop; } // Create the full tile loop nest. SmallVector fullTileLoops; OpBuilder b(firstLoop); if (failed(createFullTiles(inputNest, fullTileLoops, b))) { if (!fullTileLoops.empty()) fullTileLoops.front().erase(); return failure(); } // Create and insert the version select right before the root of the nest. b = OpBuilder(firstLoop); AffineIfOp ifOp = createSeparationCondition(inputNest, b); if (!ifOp) { fullTileLoops.front().erase(); LLVM_DEBUG(llvm::dbgs() << "All tiles are full tiles, or failure creating " "separation condition\n"); return failure(); } // Move the full tile into the then block. Block *thenBlock = ifOp.getThenBlock(); AffineForOp outermostFullTileLoop = fullTileLoops[0]; thenBlock->getOperations().splice( std::prev(thenBlock->end()), outermostFullTileLoop->getBlock()->getOperations(), Block::iterator(outermostFullTileLoop)); // Move the partial tile into the else block. The partial tile is the same as // the original loop nest. Block *elseBlock = ifOp.getElseBlock(); elseBlock->getOperations().splice(std::prev(elseBlock->end()), firstLoop->getBlock()->getOperations(), Block::iterator(firstLoop)); if (fullTileNest) *fullTileNest = std::move(fullTileLoops); return success(); }