//===- Utils.cpp ---- Misc utilities for code and data transformation -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements miscellaneous transformation routines for non-loop IR // structures. // //===----------------------------------------------------------------------===// #include "mlir/Transforms/Utils.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/AffineStructures.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Dominance.h" #include "mlir/Support/MathExtras.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/TypeSwitch.h" using namespace mlir; /// Return true if this operation dereferences one or more memref's. // Temporary utility: will be replaced when this is modeled through // side-effects/op traits. TODO static bool isMemRefDereferencingOp(Operation &op) { return isa(op); } /// Return the AffineMapAttr associated with memory 'op' on 'memref'. static NamedAttribute getAffineMapAttrForMemRef(Operation *op, Value memref) { return TypeSwitch(op) .Case( [=](auto op) { return op.getAffineMapAttrForMemRef(memref); }); } // Perform the replacement in `op`. LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef, Operation *op, ArrayRef extraIndices, AffineMap indexRemap, ArrayRef extraOperands, ArrayRef symbolOperands, bool allowNonDereferencingOps) { unsigned newMemRefRank = newMemRef.getType().cast().getRank(); (void)newMemRefRank; // unused in opt mode unsigned oldMemRefRank = oldMemRef.getType().cast().getRank(); (void)oldMemRefRank; // unused in opt mode if (indexRemap) { assert(indexRemap.getNumSymbols() == symbolOperands.size() && "symbolic operand count mismatch"); assert(indexRemap.getNumInputs() == extraOperands.size() + oldMemRefRank + symbolOperands.size()); assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); } else { assert(oldMemRefRank + extraIndices.size() == newMemRefRank); } // Assert same elemental type. assert(oldMemRef.getType().cast().getElementType() == newMemRef.getType().cast().getElementType()); SmallVector usePositions; for (const auto &opEntry : llvm::enumerate(op->getOperands())) { if (opEntry.value() == oldMemRef) usePositions.push_back(opEntry.index()); } // If memref doesn't appear, nothing to do. if (usePositions.empty()) return success(); if (usePositions.size() > 1) { // TODO: extend it for this case when needed (rare). assert(false && "multiple dereferencing uses in a single op not supported"); return failure(); } unsigned memRefOperandPos = usePositions.front(); OpBuilder builder(op); // The following checks if op is dereferencing memref and performs the access // index rewrites. if (!isMemRefDereferencingOp(*op)) { if (!allowNonDereferencingOps) // Failure: memref used in a non-dereferencing context (potentially // escapes); no replacement in these cases unless allowNonDereferencingOps // is set. return failure(); op->setOperand(memRefOperandPos, newMemRef); return success(); } // Perform index rewrites for the dereferencing op and then replace the op NamedAttribute oldMapAttrPair = getAffineMapAttrForMemRef(op, oldMemRef); AffineMap oldMap = oldMapAttrPair.second.cast().getValue(); unsigned oldMapNumInputs = oldMap.getNumInputs(); SmallVector oldMapOperands( op->operand_begin() + memRefOperandPos + 1, op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs); // Apply 'oldMemRefOperands = oldMap(oldMapOperands)'. SmallVector oldMemRefOperands; SmallVector affineApplyOps; oldMemRefOperands.reserve(oldMemRefRank); if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) { for (auto resultExpr : oldMap.getResults()) { auto singleResMap = AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), resultExpr); auto afOp = builder.create(op->getLoc(), singleResMap, oldMapOperands); oldMemRefOperands.push_back(afOp); affineApplyOps.push_back(afOp); } } else { oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end()); } // Construct new indices as a remap of the old ones if a remapping has been // provided. The indices of a memref come right after it, i.e., // at position memRefOperandPos + 1. SmallVector remapOperands; remapOperands.reserve(extraOperands.size() + oldMemRefRank + symbolOperands.size()); remapOperands.append(extraOperands.begin(), extraOperands.end()); remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end()); remapOperands.append(symbolOperands.begin(), symbolOperands.end()); SmallVector remapOutputs; remapOutputs.reserve(oldMemRefRank); if (indexRemap && indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) { // Remapped indices. for (auto resultExpr : indexRemap.getResults()) { auto singleResMap = AffineMap::get( indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr); auto afOp = builder.create(op->getLoc(), singleResMap, remapOperands); remapOutputs.push_back(afOp); affineApplyOps.push_back(afOp); } } else { // No remapping specified. remapOutputs.assign(remapOperands.begin(), remapOperands.end()); } SmallVector newMapOperands; newMapOperands.reserve(newMemRefRank); // Prepend 'extraIndices' in 'newMapOperands'. for (Value extraIndex : extraIndices) { assert(extraIndex.getDefiningOp()->getNumResults() == 1 && "single result op's expected to generate these indices"); assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) && "invalid memory op index"); newMapOperands.push_back(extraIndex); } // Append 'remapOutputs' to 'newMapOperands'. newMapOperands.append(remapOutputs.begin(), remapOutputs.end()); // Create new fully composed AffineMap for new op to be created. assert(newMapOperands.size() == newMemRefRank); auto newMap = builder.getMultiDimIdentityMap(newMemRefRank); // TODO: Avoid creating/deleting temporary AffineApplyOps here. fullyComposeAffineMapAndOperands(&newMap, &newMapOperands); newMap = simplifyAffineMap(newMap); canonicalizeMapAndOperands(&newMap, &newMapOperands); // Remove any affine.apply's that became dead as a result of composition. for (Value value : affineApplyOps) if (value.use_empty()) value.getDefiningOp()->erase(); OperationState state(op->getLoc(), op->getName()); // Construct the new operation using this memref. state.operands.reserve(op->getNumOperands() + extraIndices.size()); // Insert the non-memref operands. state.operands.append(op->operand_begin(), op->operand_begin() + memRefOperandPos); // Insert the new memref value. state.operands.push_back(newMemRef); // Insert the new memref map operands. state.operands.append(newMapOperands.begin(), newMapOperands.end()); // Insert the remaining operands unmodified. state.operands.append(op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs, op->operand_end()); // Result types don't change. Both memref's are of the same elemental type. state.types.reserve(op->getNumResults()); for (auto result : op->getResults()) state.types.push_back(result.getType()); // Add attribute for 'newMap', other Attributes do not change. auto newMapAttr = AffineMapAttr::get(newMap); for (auto namedAttr : op->getAttrs()) { if (namedAttr.first == oldMapAttrPair.first) state.attributes.push_back({namedAttr.first, newMapAttr}); else state.attributes.push_back(namedAttr); } // Create the new operation. auto *repOp = builder.createOperation(state); op->replaceAllUsesWith(repOp); op->erase(); return success(); } LogicalResult mlir::replaceAllMemRefUsesWith( Value oldMemRef, Value newMemRef, ArrayRef extraIndices, AffineMap indexRemap, ArrayRef extraOperands, ArrayRef symbolOperands, Operation *domInstFilter, Operation *postDomInstFilter, bool allowNonDereferencingOps, bool replaceInDeallocOp) { unsigned newMemRefRank = newMemRef.getType().cast().getRank(); (void)newMemRefRank; // unused in opt mode unsigned oldMemRefRank = oldMemRef.getType().cast().getRank(); (void)oldMemRefRank; if (indexRemap) { assert(indexRemap.getNumSymbols() == symbolOperands.size() && "symbol operand count mismatch"); assert(indexRemap.getNumInputs() == extraOperands.size() + oldMemRefRank + symbolOperands.size()); assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank); } else { assert(oldMemRefRank + extraIndices.size() == newMemRefRank); } // Assert same elemental type. assert(oldMemRef.getType().cast().getElementType() == newMemRef.getType().cast().getElementType()); std::unique_ptr domInfo; std::unique_ptr postDomInfo; if (domInstFilter) domInfo = std::make_unique( domInstFilter->getParentOfType()); if (postDomInstFilter) postDomInfo = std::make_unique( postDomInstFilter->getParentOfType()); // Walk all uses of old memref; collect ops to perform replacement. We use a // DenseSet since an operation could potentially have multiple uses of a // memref (although rare), and the replacement later is going to erase ops. DenseSet opsToReplace; for (auto *op : oldMemRef.getUsers()) { // Skip this use if it's not dominated by domInstFilter. if (domInstFilter && !domInfo->dominates(domInstFilter, op)) continue; // Skip this use if it's not post-dominated by postDomInstFilter. if (postDomInstFilter && !postDomInfo->postDominates(postDomInstFilter, op)) continue; // Skip dealloc's - no replacement is necessary, and a memref replacement // at other uses doesn't hurt these dealloc's. if (isa(op) && !replaceInDeallocOp) continue; // Check if the memref was used in a non-dereferencing context. It is fine // for the memref to be used in a non-dereferencing way outside of the // region where this replacement is happening. if (!isMemRefDereferencingOp(*op)) { if (!allowNonDereferencingOps) return failure(); // Currently we support the following non-dereferencing ops to be a // candidate for replacement: Dealloc, CallOp and ReturnOp. // TODO: Add support for other kinds of ops. if (!op->hasTrait()) return failure(); } // We'll first collect and then replace --- since replacement erases the op // that has the use, and that op could be postDomFilter or domFilter itself! opsToReplace.insert(op); } for (auto *op : opsToReplace) { if (failed(replaceAllMemRefUsesWith( oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands, symbolOperands, allowNonDereferencingOps))) llvm_unreachable("memref replacement guaranteed to succeed here"); } return success(); } /// Given an operation, inserts one or more single result affine /// apply operations, results of which are exclusively used by this operation /// operation. The operands of these newly created affine apply ops are /// guaranteed to be loop iterators or terminal symbols of a function. /// /// Before /// /// affine.for %i = 0 to #map(%N) /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) /// "send"(%idx, %A, ...) /// "compute"(%idx) /// /// After /// /// affine.for %i = 0 to #map(%N) /// %idx = affine.apply (d0) -> (d0 mod 2) (%i) /// "send"(%idx, %A, ...) /// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i) /// "compute"(%idx_) /// /// This allows applying different transformations on send and compute (for eg. /// different shifts/delays). /// /// Returns nullptr either if none of opInst's operands were the result of an /// affine.apply and thus there was no affine computation slice to create, or if /// all the affine.apply op's supplying operands to this opInst did not have any /// uses besides this opInst; otherwise returns the list of affine.apply /// operations created in output argument `sliceOps`. void mlir::createAffineComputationSlice( Operation *opInst, SmallVectorImpl *sliceOps) { // Collect all operands that are results of affine apply ops. SmallVector subOperands; subOperands.reserve(opInst->getNumOperands()); for (auto operand : opInst->getOperands()) if (isa_and_nonnull(operand.getDefiningOp())) subOperands.push_back(operand); // Gather sequence of AffineApplyOps reachable from 'subOperands'. SmallVector affineApplyOps; getReachableAffineApplyOps(subOperands, affineApplyOps); // Skip transforming if there are no affine maps to compose. if (affineApplyOps.empty()) return; // Check if all uses of the affine apply op's lie only in this op op, in // which case there would be nothing to do. bool localized = true; for (auto *op : affineApplyOps) { for (auto result : op->getResults()) { for (auto *user : result.getUsers()) { if (user != opInst) { localized = false; break; } } } } if (localized) return; OpBuilder builder(opInst); SmallVector composedOpOperands(subOperands); auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size()); fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands); // Create an affine.apply for each of the map results. sliceOps->reserve(composedMap.getNumResults()); for (auto resultExpr : composedMap.getResults()) { auto singleResMap = AffineMap::get(composedMap.getNumDims(), composedMap.getNumSymbols(), resultExpr); sliceOps->push_back(builder.create( opInst->getLoc(), singleResMap, composedOpOperands)); } // Construct the new operands that include the results from the composed // affine apply op above instead of existing ones (subOperands). So, they // differ from opInst's operands only for those operands in 'subOperands', for // which they will be replaced by the corresponding one from 'sliceOps'. SmallVector newOperands(opInst->getOperands()); for (unsigned i = 0, e = newOperands.size(); i < e; i++) { // Replace the subOperands from among the new operands. unsigned j, f; for (j = 0, f = subOperands.size(); j < f; j++) { if (newOperands[i] == subOperands[j]) break; } if (j < subOperands.size()) { newOperands[i] = (*sliceOps)[j]; } } for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) { opInst->setOperand(idx, newOperands[idx]); } } // TODO: Currently works for static memrefs with a single layout map. LogicalResult mlir::normalizeMemRef(AllocOp allocOp) { MemRefType memrefType = allocOp.getType(); OpBuilder b(allocOp); // Fetch a new memref type after normalizing the old memref to have an // identity map layout. MemRefType newMemRefType = normalizeMemRefType(memrefType, b, allocOp.symbolOperands().size()); if (newMemRefType == memrefType) // Either memrefType already had an identity map or the map couldn't be // transformed to an identity map. return failure(); Value oldMemRef = allocOp.getResult(); SmallVector symbolOperands(allocOp.symbolOperands()); AllocOp newAlloc = b.create(allocOp.getLoc(), newMemRefType, allocOp.alignmentAttr()); AffineMap layoutMap = memrefType.getAffineMaps().front(); // Replace all uses of the old memref. if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc, /*extraIndices=*/{}, /*indexRemap=*/layoutMap, /*extraOperands=*/{}, /*symbolOperands=*/symbolOperands, /*domInstFilter=*/nullptr, /*postDomInstFilter=*/nullptr, /*allowDereferencingOps=*/true))) { // If it failed (due to escapes for example), bail out. newAlloc.erase(); return failure(); } // Replace any uses of the original alloc op and erase it. All remaining uses // have to be dealloc's; RAMUW above would've failed otherwise. assert(llvm::all_of(oldMemRef.getUsers(), [](Operation *op) { return isa(op); })); oldMemRef.replaceAllUsesWith(newAlloc); allocOp.erase(); return success(); } MemRefType mlir::normalizeMemRefType(MemRefType memrefType, OpBuilder b, unsigned numSymbolicOperands) { unsigned rank = memrefType.getRank(); if (rank == 0) return memrefType; ArrayRef layoutMaps = memrefType.getAffineMaps(); if (layoutMaps.empty() || layoutMaps.front() == b.getMultiDimIdentityMap(rank)) { // Either no maps is associated with this memref or this memref has // a trivial (identity) map. return memrefType; } // We don't do any checks for one-to-one'ness; we assume that it is // one-to-one. // TODO: Only for static memref's for now. if (memrefType.getNumDynamicDims() > 0) return memrefType; // We have a single map that is not an identity map. Create a new memref // with the right shape and an identity layout map. ArrayRef shape = memrefType.getShape(); // FlatAffineConstraint may later on use symbolicOperands. FlatAffineConstraints fac(rank, numSymbolicOperands); for (unsigned d = 0; d < rank; ++d) { fac.addConstantLowerBound(d, 0); fac.addConstantUpperBound(d, shape[d] - 1); } // We compose this map with the original index (logical) space to derive // the upper bounds for the new index space. AffineMap layoutMap = layoutMaps.front(); unsigned newRank = layoutMap.getNumResults(); if (failed(fac.composeMatchingMap(layoutMap))) return memrefType; // TODO: Handle semi-affine maps. // Project out the old data dimensions. fac.projectOut(newRank, fac.getNumIds() - newRank - fac.getNumLocalIds()); SmallVector newShape(newRank); for (unsigned d = 0; d < newRank; ++d) { // The lower bound for the shape is always zero. auto ubConst = fac.getConstantUpperBound(d); // For a static memref and an affine map with no symbols, this is // always bounded. assert(ubConst.hasValue() && "should always have an upper bound"); if (ubConst.getValue() < 0) // This is due to an invalid map that maps to a negative space. return memrefType; newShape[d] = ubConst.getValue() + 1; } // Create the new memref type after trivializing the old layout map. MemRefType newMemRefType = MemRefType::Builder(memrefType) .setShape(newShape) .setAffineMaps(b.getMultiDimIdentityMap(newRank)); return newMemRefType; }