//===- OpDefinitionsGen.cpp - MLIR op definitions generator ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // OpDefinitionsGen uses the description of operations to generate C++ // definitions for ops. // //===----------------------------------------------------------------------===// #include "OpFormatGen.h" #include "mlir/TableGen/CodeGenHelpers.h" #include "mlir/TableGen/Format.h" #include "mlir/TableGen/GenInfo.h" #include "mlir/TableGen/Interfaces.h" #include "mlir/TableGen/OpClass.h" #include "mlir/TableGen/OpTrait.h" #include "mlir/TableGen/Operator.h" #include "mlir/TableGen/SideEffects.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Regex.h" #include "llvm/Support/Signals.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #define DEBUG_TYPE "mlir-tblgen-opdefgen" using namespace llvm; using namespace mlir; using namespace mlir::tblgen; cl::OptionCategory opDefGenCat("Options for -gen-op-defs and -gen-op-decls"); static cl::opt opIncFilter( "op-include-regex", cl::desc("Regex of name of op's to include (no filter if empty)"), cl::cat(opDefGenCat)); static cl::opt opExcFilter( "op-exclude-regex", cl::desc("Regex of name of op's to exclude (no filter if empty)"), cl::cat(opDefGenCat)); static const char *const tblgenNamePrefix = "tblgen_"; static const char *const generatedArgName = "odsArg"; static const char *const builder = "odsBuilder"; static const char *const builderOpState = "odsState"; // The logic to calculate the actual value range for a declared operand/result // of an op with variadic operands/results. Note that this logic is not for // general use; it assumes all variadic operands/results must have the same // number of values. // // {0}: The list of whether each declared operand/result is variadic. // {1}: The total number of non-variadic operands/results. // {2}: The total number of variadic operands/results. // {3}: The total number of actual values. // {4}: "operand" or "result". const char *sameVariadicSizeValueRangeCalcCode = R"( bool isVariadic[] = {{{0}}; int prevVariadicCount = 0; for (unsigned i = 0; i < index; ++i) if (isVariadic[i]) ++prevVariadicCount; // Calculate how many dynamic values a static variadic {4} corresponds to. // This assumes all static variadic {4}s have the same dynamic value count. int variadicSize = ({3} - {1}) / {2}; // `index` passed in as the parameter is the static index which counts each // {4} (variadic or not) as size 1. So here for each previous static variadic // {4}, we need to offset by (variadicSize - 1) to get where the dynamic // value pack for this static {4} starts. int start = index + (variadicSize - 1) * prevVariadicCount; int size = isVariadic[index] ? variadicSize : 1; return {{start, size}; )"; // The logic to calculate the actual value range for a declared operand/result // of an op with variadic operands/results. Note that this logic is assumes // the op has an attribute specifying the size of each operand/result segment // (variadic or not). // // {0}: The name of the attribute specifying the segment sizes. const char *adapterSegmentSizeAttrInitCode = R"( assert(odsAttrs && "missing segment size attribute for op"); auto sizeAttr = odsAttrs.get("{0}").cast<::mlir::DenseIntElementsAttr>(); )"; const char *opSegmentSizeAttrInitCode = R"( auto sizeAttr = getOperation()->getAttrOfType<::mlir::DenseIntElementsAttr>("{0}"); )"; const char *attrSizedSegmentValueRangeCalcCode = R"( unsigned start = 0; for (unsigned i = 0; i < index; ++i) start += (*(sizeAttr.begin() + i)).getZExtValue(); unsigned size = (*(sizeAttr.begin() + index)).getZExtValue(); return {start, size}; )"; // The logic to build a range of either operand or result values. // // {0}: The begin iterator of the actual values. // {1}: The call to generate the start and length of the value range. const char *valueRangeReturnCode = R"( auto valueRange = {1}; return {{std::next({0}, valueRange.first), std::next({0}, valueRange.first + valueRange.second)}; )"; static const char *const opCommentHeader = R"( //===----------------------------------------------------------------------===// // {0} {1} //===----------------------------------------------------------------------===// )"; //===----------------------------------------------------------------------===// // Utility structs and functions //===----------------------------------------------------------------------===// // Replaces all occurrences of `match` in `str` with `substitute`. static std::string replaceAllSubstrs(std::string str, const std::string &match, const std::string &substitute) { std::string::size_type scanLoc = 0, matchLoc = std::string::npos; while ((matchLoc = str.find(match, scanLoc)) != std::string::npos) { str = str.replace(matchLoc, match.size(), substitute); scanLoc = matchLoc + substitute.size(); } return str; } // Returns whether the record has a value of the given name that can be returned // via getValueAsString. static inline bool hasStringAttribute(const Record &record, StringRef fieldName) { auto valueInit = record.getValueInit(fieldName); return isa(valueInit); } static std::string getArgumentName(const Operator &op, int index) { const auto &operand = op.getOperand(index); if (!operand.name.empty()) return std::string(operand.name); else return std::string(formatv("{0}_{1}", generatedArgName, index)); } // Returns true if we can use unwrapped value for the given `attr` in builders. static bool canUseUnwrappedRawValue(const tblgen::Attribute &attr) { return attr.getReturnType() != attr.getStorageType() && // We need to wrap the raw value into an attribute in the builder impl // so we need to make sure that the attribute specifies how to do that. !attr.getConstBuilderTemplate().empty(); } //===----------------------------------------------------------------------===// // Op emitter //===----------------------------------------------------------------------===// namespace { // Helper class to emit a record into the given output stream. class OpEmitter { public: static void emitDecl(const Operator &op, raw_ostream &os); static void emitDef(const Operator &op, raw_ostream &os); private: OpEmitter(const Operator &op); void emitDecl(raw_ostream &os); void emitDef(raw_ostream &os); // Generates the OpAsmOpInterface for this operation if possible. void genOpAsmInterface(); // Generates the `getOperationName` method for this op. void genOpNameGetter(); // Generates getters for the attributes. void genAttrGetters(); // Generates setter for the attributes. void genAttrSetters(); // Generates getters for named operands. void genNamedOperandGetters(); // Generates setters for named operands. void genNamedOperandSetters(); // Generates getters for named results. void genNamedResultGetters(); // Generates getters for named regions. void genNamedRegionGetters(); // Generates getters for named successors. void genNamedSuccessorGetters(); // Generates builder methods for the operation. void genBuilder(); // Generates the build() method that takes each operand/attribute // as a stand-alone parameter. void genSeparateArgParamBuilder(); // Generates the build() method that takes each operand/attribute as a // stand-alone parameter. The generated build() method uses first operand's // type as all results' types. void genUseOperandAsResultTypeSeparateParamBuilder(); // Generates the build() method that takes all operands/attributes // collectively as one parameter. The generated build() method uses first // operand's type as all results' types. void genUseOperandAsResultTypeCollectiveParamBuilder(); // Generates the build() method that takes aggregate operands/attributes // parameters. This build() method uses inferred types as result types. // Requires: The type needs to be inferable via InferTypeOpInterface. void genInferredTypeCollectiveParamBuilder(); // Generates the build() method that takes each operand/attribute as a // stand-alone parameter. The generated build() method uses first attribute's // type as all result's types. void genUseAttrAsResultTypeBuilder(); // Generates the build() method that takes all result types collectively as // one parameter. Similarly for operands and attributes. void genCollectiveParamBuilder(); // The kind of parameter to generate for result types in builders. enum class TypeParamKind { None, // No result type in parameter list. Separate, // A separate parameter for each result type. Collective, // An ArrayRef for all result types. }; // The kind of parameter to generate for attributes in builders. enum class AttrParamKind { WrappedAttr, // A wrapped MLIR Attribute instance. UnwrappedValue, // A raw value without MLIR Attribute wrapper. }; // Builds the parameter list for build() method of this op. This method writes // to `paramList` the comma-separated parameter list and updates // `resultTypeNames` with the names for parameters for specifying result // types. The given `typeParamKind` and `attrParamKind` controls how result // types and attributes are placed in the parameter list. void buildParamList(llvm::SmallVectorImpl ¶mList, SmallVectorImpl &resultTypeNames, TypeParamKind typeParamKind, AttrParamKind attrParamKind = AttrParamKind::WrappedAttr); // Adds op arguments and regions into operation state for build() methods. void genCodeForAddingArgAndRegionForBuilder(OpMethodBody &body, bool isRawValueAttr = false); // Generates canonicalizer declaration for the operation. void genCanonicalizerDecls(); // Generates the folder declaration for the operation. void genFolderDecls(); // Generates the parser for the operation. void genParser(); // Generates the printer for the operation. void genPrinter(); // Generates verify method for the operation. void genVerifier(); // Generates verify statements for operands and results in the operation. // The generated code will be attached to `body`. void genOperandResultVerifier(OpMethodBody &body, Operator::value_range values, StringRef valueKind); // Generates verify statements for regions in the operation. // The generated code will be attached to `body`. void genRegionVerifier(OpMethodBody &body); // Generates verify statements for successors in the operation. // The generated code will be attached to `body`. void genSuccessorVerifier(OpMethodBody &body); // Generates the traits used by the object. void genTraits(); // Generate the OpInterface methods for all interfaces. void genOpInterfaceMethods(); // Generate op interface methods for the given interface. void genOpInterfaceMethods(const tblgen::InterfaceOpTrait *trait); // Generate op interface method for the given interface method. If // 'declaration' is true, generates a declaration, else a definition. OpMethod *genOpInterfaceMethod(const tblgen::InterfaceMethod &method, bool declaration = true); // Generate the side effect interface methods. void genSideEffectInterfaceMethods(); // Generate the type inference interface methods. void genTypeInterfaceMethods(); private: // The TableGen record for this op. // TODO: OpEmitter should not have a Record directly, // it should rather go through the Operator for better abstraction. const Record &def; // The wrapper operator class for querying information from this op. Operator op; // The C++ code builder for this op OpClass opClass; // The format context for verification code generation. FmtContext verifyCtx; }; } // end anonymous namespace // Populate the format context `ctx` with substitutions of attributes, operands // and results. // - attrGet corresponds to the name of the function to call to get value of // attribute (the generated function call returns an Attribute); // - operandGet corresponds to the name of the function with which to retrieve // an operand (the generated function call returns an OperandRange); // - resultGet corresponds to the name of the function to get an result (the // generated function call returns a ValueRange); static void populateSubstitutions(const Operator &op, const char *attrGet, const char *operandGet, const char *resultGet, FmtContext &ctx) { // Populate substitutions for attributes and named operands. for (const auto &namedAttr : op.getAttributes()) ctx.addSubst(namedAttr.name, formatv("{0}(\"{1}\")", attrGet, namedAttr.name)); for (int i = 0, e = op.getNumOperands(); i < e; ++i) { auto &value = op.getOperand(i); if (value.name.empty()) continue; if (value.isVariadic()) ctx.addSubst(value.name, formatv("{0}({1})", operandGet, i)); else ctx.addSubst(value.name, formatv("(*{0}({1}).begin())", operandGet, i)); } // Populate substitutions for results. for (int i = 0, e = op.getNumResults(); i < e; ++i) { auto &value = op.getResult(i); if (value.name.empty()) continue; if (value.isVariadic()) ctx.addSubst(value.name, formatv("{0}({1})", resultGet, i)); else ctx.addSubst(value.name, formatv("(*{0}({1}).begin())", resultGet, i)); } } // Generate attribute verification. If emitVerificationRequiringOp is set then // only verification for attributes whose value depend on op being known are // emitted, else only verification that doesn't depend on the op being known are // generated. // - emitErrorPrefix is the prefix for the error emitting call which consists // of the entire function call up to start of error message fragment; // - emitVerificationRequiringOp specifies whether verification should be // emitted for verification that require the op to exist; static void genAttributeVerifier(const Operator &op, const char *attrGet, const Twine &emitErrorPrefix, bool emitVerificationRequiringOp, FmtContext &ctx, OpMethodBody &body) { for (const auto &namedAttr : op.getAttributes()) { const auto &attr = namedAttr.attr; if (attr.isDerivedAttr()) continue; auto attrName = namedAttr.name; bool allowMissingAttr = attr.hasDefaultValue() || attr.isOptional(); auto attrPred = attr.getPredicate(); auto condition = attrPred.isNull() ? "" : attrPred.getCondition(); // There is a condition to emit only if the use of $_op and whether to // emit verifications for op matches. bool hasConditionToEmit = (!(condition.find("$_op") != StringRef::npos) ^ emitVerificationRequiringOp); // Prefix with `tblgen_` to avoid hiding the attribute accessor. auto varName = tblgenNamePrefix + attrName; // If the attribute is // 1. Required (not allowed missing) and not in op verification, or // 2. Has a condition that will get verified // then the variable will be used. // // Therefore, for optional attributes whose verification requires that an // op already exists for verification/emitVerificationRequiringOp is set // has nothing that can be verified here. if ((allowMissingAttr || emitVerificationRequiringOp) && !hasConditionToEmit) continue; body << formatv(" {\n auto {0} = {1}(\"{2}\");\n", varName, attrGet, attrName); if (!emitVerificationRequiringOp && !allowMissingAttr) { body << " if (!" << varName << ") return " << emitErrorPrefix << "\"requires attribute '" << attrName << "'\");\n"; } if (!hasConditionToEmit) { body << " }\n"; continue; } if (allowMissingAttr) { // If the attribute has a default value, then only verify the predicate if // set. This does effectively assume that the default value is valid. // TODO: verify the debug value is valid (perhaps in debug mode only). body << " if (" << varName << ") {\n"; } body << tgfmt(" if (!($0)) return $1\"attribute '$2' " "failed to satisfy constraint: $3\");\n", /*ctx=*/nullptr, tgfmt(condition, &ctx.withSelf(varName)), emitErrorPrefix, attrName, attr.getDescription()); if (allowMissingAttr) body << " }\n"; body << " }\n"; } } OpEmitter::OpEmitter(const Operator &op) : def(op.getDef()), op(op), opClass(op.getCppClassName(), op.getExtraClassDeclaration()) { verifyCtx.withOp("(*this->getOperation())"); genTraits(); // Generate C++ code for various op methods. The order here determines the // methods in the generated file. genOpAsmInterface(); genOpNameGetter(); genNamedOperandGetters(); genNamedOperandSetters(); genNamedResultGetters(); genNamedRegionGetters(); genNamedSuccessorGetters(); genAttrGetters(); genAttrSetters(); genBuilder(); genParser(); genPrinter(); genVerifier(); genCanonicalizerDecls(); genFolderDecls(); genTypeInterfaceMethods(); genOpInterfaceMethods(); generateOpFormat(op, opClass); genSideEffectInterfaceMethods(); } void OpEmitter::emitDecl(const Operator &op, raw_ostream &os) { OpEmitter(op).emitDecl(os); } void OpEmitter::emitDef(const Operator &op, raw_ostream &os) { OpEmitter(op).emitDef(os); } void OpEmitter::emitDecl(raw_ostream &os) { opClass.writeDeclTo(os); } void OpEmitter::emitDef(raw_ostream &os) { opClass.writeDefTo(os); } void OpEmitter::genAttrGetters() { FmtContext fctx; fctx.withBuilder("::mlir::Builder(this->getContext())"); Dialect opDialect = op.getDialect(); // Emit the derived attribute body. auto emitDerivedAttr = [&](StringRef name, Attribute attr) { auto *method = opClass.addMethodAndPrune(attr.getReturnType(), name); if (!method) return; auto &body = method->body(); body << " " << attr.getDerivedCodeBody() << "\n"; }; // Emit with return type specified. auto emitAttrWithReturnType = [&](StringRef name, Attribute attr) { auto *method = opClass.addMethodAndPrune(attr.getReturnType(), name); auto &body = method->body(); body << " auto attr = " << name << "Attr();\n"; if (attr.hasDefaultValue()) { // Returns the default value if not set. // TODO: this is inefficient, we are recreating the attribute for every // call. This should be set instead. std::string defaultValue = std::string( tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue())); body << " if (!attr)\n return " << tgfmt(attr.getConvertFromStorageCall(), &fctx.withSelf(defaultValue)) << ";\n"; } body << " return " << tgfmt(attr.getConvertFromStorageCall(), &fctx.withSelf("attr")) << ";\n"; }; // Generate raw named accessor type. This is a wrapper class that allows // referring to the attributes via accessors instead of having to use // the string interface for better compile time verification. auto emitAttrWithStorageType = [&](StringRef name, Attribute attr) { auto *method = opClass.addMethodAndPrune(attr.getStorageType(), (name + "Attr").str()); if (!method) return; auto &body = method->body(); body << " return this->getAttr(\"" << name << "\")."; if (attr.isOptional() || attr.hasDefaultValue()) body << "dyn_cast_or_null<"; else body << "cast<"; body << attr.getStorageType() << ">();"; }; for (auto &namedAttr : op.getAttributes()) { const auto &name = namedAttr.name; const auto &attr = namedAttr.attr; if (attr.isDerivedAttr()) { emitDerivedAttr(name, attr); } else { emitAttrWithStorageType(name, attr); emitAttrWithReturnType(name, attr); } } auto derivedAttrs = make_filter_range(op.getAttributes(), [](const NamedAttribute &namedAttr) { return namedAttr.attr.isDerivedAttr(); }); if (!derivedAttrs.empty()) { opClass.addTrait("::mlir::DerivedAttributeOpInterface::Trait"); // Generate helper method to query whether a named attribute is a derived // attribute. This enables, for example, avoiding adding an attribute that // overlaps with a derived attribute. { auto *method = opClass.addMethodAndPrune("bool", "isDerivedAttribute", OpMethod::MP_Static, "::llvm::StringRef", "name"); auto &body = method->body(); for (auto namedAttr : derivedAttrs) body << " if (name == \"" << namedAttr.name << "\") return true;\n"; body << " return false;"; } // Generate method to materialize derived attributes as a DictionaryAttr. { auto *method = opClass.addMethodAndPrune("::mlir::DictionaryAttr", "materializeDerivedAttributes"); auto &body = method->body(); auto nonMaterializable = make_filter_range(derivedAttrs, [](const NamedAttribute &namedAttr) { return namedAttr.attr.getConvertFromStorageCall().empty(); }); if (!nonMaterializable.empty()) { std::string attrs; llvm::raw_string_ostream os(attrs); interleaveComma(nonMaterializable, os, [&](const NamedAttribute &attr) { os << attr.name; }); PrintWarning( op.getLoc(), formatv( "op has non-materializable derived attributes '{0}', skipping", os.str())); body << formatv(" emitOpError(\"op has non-materializable derived " "attributes '{0}'\");\n", attrs); body << " return nullptr;"; return; } body << " ::mlir::MLIRContext* ctx = getContext();\n"; body << " ::mlir::Builder odsBuilder(ctx); (void)odsBuilder;\n"; body << " return ::mlir::DictionaryAttr::get({\n"; interleave( derivedAttrs, body, [&](const NamedAttribute &namedAttr) { auto tmpl = namedAttr.attr.getConvertFromStorageCall(); body << " {::mlir::Identifier::get(\"" << namedAttr.name << "\", ctx),\n" << tgfmt(tmpl, &fctx.withSelf(namedAttr.name + "()") .withBuilder("odsBuilder") .addSubst("_ctx", "ctx")) << "}"; }, ",\n"); body << "\n }, ctx);"; } } } void OpEmitter::genAttrSetters() { // Generate raw named setter type. This is a wrapper class that allows setting // to the attributes via setters instead of having to use the string interface // for better compile time verification. auto emitAttrWithStorageType = [&](StringRef name, Attribute attr) { auto *method = opClass.addMethodAndPrune("void", (name + "Attr").str(), attr.getStorageType(), "attr"); if (!method) return; auto &body = method->body(); body << " (*this)->setAttr(\"" << name << "\", attr);"; }; for (auto &namedAttr : op.getAttributes()) { const auto &name = namedAttr.name; const auto &attr = namedAttr.attr; if (!attr.isDerivedAttr()) emitAttrWithStorageType(name, attr); } } // Generates the code to compute the start and end index of an operand or result // range. template static void generateValueRangeStartAndEnd(Class &opClass, StringRef methodName, int numVariadic, int numNonVariadic, StringRef rangeSizeCall, bool hasAttrSegmentSize, StringRef sizeAttrInit, RangeT &&odsValues) { auto *method = opClass.addMethodAndPrune("std::pair", methodName, "unsigned", "index"); if (!method) return; auto &body = method->body(); if (numVariadic == 0) { body << " return {index, 1};\n"; } else if (hasAttrSegmentSize) { body << sizeAttrInit << attrSizedSegmentValueRangeCalcCode; } else { // Because the op can have arbitrarily interleaved variadic and non-variadic // operands, we need to embed a list in the "sink" getter method for // calculation at run-time. llvm::SmallVector isVariadic; isVariadic.reserve(llvm::size(odsValues)); for (auto &it : odsValues) isVariadic.push_back(it.isVariableLength() ? "true" : "false"); std::string isVariadicList = llvm::join(isVariadic, ", "); body << formatv(sameVariadicSizeValueRangeCalcCode, isVariadicList, numNonVariadic, numVariadic, rangeSizeCall, "operand"); } } // Generates the named operand getter methods for the given Operator `op` and // puts them in `opClass`. Uses `rangeType` as the return type of getters that // return a range of operands (individual operands are `Value ` and each // element in the range must also be `Value `); use `rangeBeginCall` to get // an iterator to the beginning of the operand range; use `rangeSizeCall` to // obtain the number of operands. `getOperandCallPattern` contains the code // necessary to obtain a single operand whose position will be substituted // instead of // "{0}" marker in the pattern. Note that the pattern should work for any kind // of ops, in particular for one-operand ops that may not have the // `getOperand(unsigned)` method. static void generateNamedOperandGetters(const Operator &op, Class &opClass, StringRef sizeAttrInit, StringRef rangeType, StringRef rangeBeginCall, StringRef rangeSizeCall, StringRef getOperandCallPattern) { const int numOperands = op.getNumOperands(); const int numVariadicOperands = op.getNumVariableLengthOperands(); const int numNormalOperands = numOperands - numVariadicOperands; const auto *sameVariadicSize = op.getTrait("::mlir::OpTrait::SameVariadicOperandSize"); const auto *attrSizedOperands = op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments"); if (numVariadicOperands > 1 && !sameVariadicSize && !attrSizedOperands) { PrintFatalError(op.getLoc(), "op has multiple variadic operands but no " "specification over their sizes"); } if (numVariadicOperands < 2 && attrSizedOperands) { PrintFatalError(op.getLoc(), "op must have at least two variadic operands " "to use 'AttrSizedOperandSegments' trait"); } if (attrSizedOperands && sameVariadicSize) { PrintFatalError(op.getLoc(), "op cannot have both 'AttrSizedOperandSegments' and " "'SameVariadicOperandSize' traits"); } // First emit a few "sink" getter methods upon which we layer all nicer named // getter methods. generateValueRangeStartAndEnd(opClass, "getODSOperandIndexAndLength", numVariadicOperands, numNormalOperands, rangeSizeCall, attrSizedOperands, sizeAttrInit, const_cast(op).getOperands()); auto *m = opClass.addMethodAndPrune(rangeType, "getODSOperands", "unsigned", "index"); auto &body = m->body(); body << formatv(valueRangeReturnCode, rangeBeginCall, "getODSOperandIndexAndLength(index)"); // Then we emit nicer named getter methods by redirecting to the "sink" getter // method. for (int i = 0; i != numOperands; ++i) { const auto &operand = op.getOperand(i); if (operand.name.empty()) continue; if (operand.isOptional()) { m = opClass.addMethodAndPrune("::mlir::Value", operand.name); m->body() << " auto operands = getODSOperands(" << i << ");\n" << " return operands.empty() ? Value() : *operands.begin();"; } else if (operand.isVariadic()) { m = opClass.addMethodAndPrune(rangeType, operand.name); m->body() << " return getODSOperands(" << i << ");"; } else { m = opClass.addMethodAndPrune("::mlir::Value", operand.name); m->body() << " return *getODSOperands(" << i << ").begin();"; } } } void OpEmitter::genNamedOperandGetters() { generateNamedOperandGetters( op, opClass, /*sizeAttrInit=*/ formatv(opSegmentSizeAttrInitCode, "operand_segment_sizes").str(), /*rangeType=*/"::mlir::Operation::operand_range", /*rangeBeginCall=*/"getOperation()->operand_begin()", /*rangeSizeCall=*/"getOperation()->getNumOperands()", /*getOperandCallPattern=*/"getOperation()->getOperand({0})"); } void OpEmitter::genNamedOperandSetters() { auto *attrSizedOperands = op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments"); for (int i = 0, e = op.getNumOperands(); i != e; ++i) { const auto &operand = op.getOperand(i); if (operand.name.empty()) continue; auto *m = opClass.addMethodAndPrune("::mlir::MutableOperandRange", (operand.name + "Mutable").str()); auto &body = m->body(); body << " auto range = getODSOperandIndexAndLength(" << i << ");\n" << " return ::mlir::MutableOperandRange(getOperation(), " "range.first, range.second"; if (attrSizedOperands) body << ", ::mlir::MutableOperandRange::OperandSegment(" << i << "u, *getOperation()->getMutableAttrDict().getNamed(" "\"operand_segment_sizes\"))"; body << ");\n"; } } void OpEmitter::genNamedResultGetters() { const int numResults = op.getNumResults(); const int numVariadicResults = op.getNumVariableLengthResults(); const int numNormalResults = numResults - numVariadicResults; // If we have more than one variadic results, we need more complicated logic // to calculate the value range for each result. const auto *sameVariadicSize = op.getTrait("::mlir::OpTrait::SameVariadicResultSize"); const auto *attrSizedResults = op.getTrait("::mlir::OpTrait::AttrSizedResultSegments"); if (numVariadicResults > 1 && !sameVariadicSize && !attrSizedResults) { PrintFatalError(op.getLoc(), "op has multiple variadic results but no " "specification over their sizes"); } if (numVariadicResults < 2 && attrSizedResults) { PrintFatalError(op.getLoc(), "op must have at least two variadic results " "to use 'AttrSizedResultSegments' trait"); } if (attrSizedResults && sameVariadicSize) { PrintFatalError(op.getLoc(), "op cannot have both 'AttrSizedResultSegments' and " "'SameVariadicResultSize' traits"); } generateValueRangeStartAndEnd( opClass, "getODSResultIndexAndLength", numVariadicResults, numNormalResults, "getOperation()->getNumResults()", attrSizedResults, formatv(opSegmentSizeAttrInitCode, "result_segment_sizes").str(), op.getResults()); auto *m = opClass.addMethodAndPrune("::mlir::Operation::result_range", "getODSResults", "unsigned", "index"); m->body() << formatv(valueRangeReturnCode, "getOperation()->result_begin()", "getODSResultIndexAndLength(index)"); for (int i = 0; i != numResults; ++i) { const auto &result = op.getResult(i); if (result.name.empty()) continue; if (result.isOptional()) { m = opClass.addMethodAndPrune("::mlir::Value", result.name); m->body() << " auto results = getODSResults(" << i << ");\n" << " return results.empty() ? ::mlir::Value() : *results.begin();"; } else if (result.isVariadic()) { m = opClass.addMethodAndPrune("::mlir::Operation::result_range", result.name); m->body() << " return getODSResults(" << i << ");"; } else { m = opClass.addMethodAndPrune("::mlir::Value", result.name); m->body() << " return *getODSResults(" << i << ").begin();"; } } } void OpEmitter::genNamedRegionGetters() { unsigned numRegions = op.getNumRegions(); for (unsigned i = 0; i < numRegions; ++i) { const auto ®ion = op.getRegion(i); if (region.name.empty()) continue; // Generate the accessors for a varidiadic region. if (region.isVariadic()) { auto *m = opClass.addMethodAndPrune("::mlir::MutableArrayRef", region.name); m->body() << formatv( " return this->getOperation()->getRegions().drop_front({0});", i); continue; } auto *m = opClass.addMethodAndPrune("::mlir::Region &", region.name); m->body() << formatv(" return this->getOperation()->getRegion({0});", i); } } void OpEmitter::genNamedSuccessorGetters() { unsigned numSuccessors = op.getNumSuccessors(); for (unsigned i = 0; i < numSuccessors; ++i) { const NamedSuccessor &successor = op.getSuccessor(i); if (successor.name.empty()) continue; // Generate the accessors for a variadic successor list. if (successor.isVariadic()) { auto *m = opClass.addMethodAndPrune("::mlir::SuccessorRange", successor.name); m->body() << formatv( " return {std::next(this->getOperation()->successor_begin(), {0}), " "this->getOperation()->successor_end()};", i); continue; } auto *m = opClass.addMethodAndPrune("::mlir::Block *", successor.name); m->body() << formatv(" return this->getOperation()->getSuccessor({0});", i); } } static bool canGenerateUnwrappedBuilder(Operator &op) { // If this op does not have native attributes at all, return directly to avoid // redefining builders. if (op.getNumNativeAttributes() == 0) return false; bool canGenerate = false; // We are generating builders that take raw values for attributes. We need to // make sure the native attributes have a meaningful "unwrapped" value type // different from the wrapped mlir::Attribute type to avoid redefining // builders. This checks for the op has at least one such native attribute. for (int i = 0, e = op.getNumNativeAttributes(); i < e; ++i) { NamedAttribute &namedAttr = op.getAttribute(i); if (canUseUnwrappedRawValue(namedAttr.attr)) { canGenerate = true; break; } } return canGenerate; } static bool canInferType(Operator &op) { return op.getTrait("::mlir::InferTypeOpInterface::Trait") && op.getNumRegions() == 0; } void OpEmitter::genSeparateArgParamBuilder() { SmallVector attrBuilderType; attrBuilderType.push_back(AttrParamKind::WrappedAttr); if (canGenerateUnwrappedBuilder(op)) attrBuilderType.push_back(AttrParamKind::UnwrappedValue); // Emit with separate builders with or without unwrapped attributes and/or // inferring result type. auto emit = [&](AttrParamKind attrType, TypeParamKind paramKind, bool inferType) { llvm::SmallVector paramList; llvm::SmallVector resultNames; buildParamList(paramList, resultNames, paramKind, attrType); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method. if (!m) return; auto &body = m->body(); genCodeForAddingArgAndRegionForBuilder( body, /*isRawValueAttr=*/attrType == AttrParamKind::UnwrappedValue); // Push all result types to the operation state if (inferType) { // Generate builder that infers type too. // TODO: Subsume this with general checking if type can be // inferred automatically. // TODO: Expand to handle regions. body << formatv(R"( ::llvm::SmallVector<::mlir::Type, 2> inferredReturnTypes; if (succeeded({0}::inferReturnTypes(odsBuilder.getContext(), {1}.location, {1}.operands, {1}.attributes.getDictionary({1}.getContext()), /*regions=*/{{}, inferredReturnTypes))) {1}.addTypes(inferredReturnTypes); else ::llvm::report_fatal_error("Failed to infer result type(s).");)", opClass.getClassName(), builderOpState); return; } switch (paramKind) { case TypeParamKind::None: return; case TypeParamKind::Separate: for (int i = 0, e = op.getNumResults(); i < e; ++i) { if (op.getResult(i).isOptional()) body << " if (" << resultNames[i] << ")\n "; body << " " << builderOpState << ".addTypes(" << resultNames[i] << ");\n"; } return; case TypeParamKind::Collective: { int numResults = op.getNumResults(); int numVariadicResults = op.getNumVariableLengthResults(); int numNonVariadicResults = numResults - numVariadicResults; bool hasVariadicResult = numVariadicResults != 0; // Avoid emitting "resultTypes.size() >= 0u" which is always true. if (!(hasVariadicResult && numNonVariadicResults == 0)) body << " " << "assert(resultTypes.size() " << (hasVariadicResult ? ">=" : "==") << " " << numNonVariadicResults << "u && \"mismatched number of results\");\n"; body << " " << builderOpState << ".addTypes(resultTypes);\n"; } return; } llvm_unreachable("unhandled TypeParamKind"); }; // Some of the build methods generated here may be ambiguous, but TableGen's // ambiguous function detection will elide those ones. for (auto attrType : attrBuilderType) { emit(attrType, TypeParamKind::Separate, /*inferType=*/false); if (canInferType(op)) emit(attrType, TypeParamKind::None, /*inferType=*/true); emit(attrType, TypeParamKind::Collective, /*inferType=*/false); } } void OpEmitter::genUseOperandAsResultTypeCollectiveParamBuilder() { int numResults = op.getNumResults(); // Signature llvm::SmallVector paramList; paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder"); paramList.emplace_back("::mlir::OperationState &", builderOpState); paramList.emplace_back("::mlir::ValueRange", "operands"); // Provide default value for `attributes` when its the last parameter StringRef attributesDefaultValue = op.getNumVariadicRegions() ? "" : "{}"; paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>", "attributes", attributesDefaultValue); if (op.getNumVariadicRegions()) paramList.emplace_back("unsigned", "numRegions"); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method if (!m) return; auto &body = m->body(); // Operands body << " " << builderOpState << ".addOperands(operands);\n"; // Attributes body << " " << builderOpState << ".addAttributes(attributes);\n"; // Create the correct number of regions if (int numRegions = op.getNumRegions()) { body << llvm::formatv( " for (unsigned i = 0; i != {0}; ++i)\n", (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions))); body << " (void)" << builderOpState << ".addRegion();\n"; } // Result types SmallVector resultTypes(numResults, "operands[0].getType()"); body << " " << builderOpState << ".addTypes({" << llvm::join(resultTypes, ", ") << "});\n\n"; } void OpEmitter::genInferredTypeCollectiveParamBuilder() { // TODO: Expand to support regions. SmallVector paramList; paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder"); paramList.emplace_back("::mlir::OperationState &", builderOpState); paramList.emplace_back("::mlir::ValueRange", "operands"); paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>", "attributes", "{}"); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method if (!m) return; auto &body = m->body(); int numResults = op.getNumResults(); int numVariadicResults = op.getNumVariableLengthResults(); int numNonVariadicResults = numResults - numVariadicResults; int numOperands = op.getNumOperands(); int numVariadicOperands = op.getNumVariableLengthOperands(); int numNonVariadicOperands = numOperands - numVariadicOperands; // Operands if (numVariadicOperands == 0 || numNonVariadicOperands != 0) body << " assert(operands.size()" << (numVariadicOperands != 0 ? " >= " : " == ") << numNonVariadicOperands << "u && \"mismatched number of parameters\");\n"; body << " " << builderOpState << ".addOperands(operands);\n"; body << " " << builderOpState << ".addAttributes(attributes);\n"; // Create the correct number of regions if (int numRegions = op.getNumRegions()) { body << llvm::formatv( " for (unsigned i = 0; i != {0}; ++i)\n", (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions))); body << " (void)" << builderOpState << ".addRegion();\n"; } // Result types body << formatv(R"( ::mlir::SmallVector<::mlir::Type, 2> inferredReturnTypes; if (succeeded({0}::inferReturnTypes(odsBuilder.getContext(), {1}.location, operands, {1}.attributes.getDictionary({1}.getContext()), /*regions=*/{{}, inferredReturnTypes))) {{)", opClass.getClassName(), builderOpState); if (numVariadicResults == 0 || numNonVariadicResults != 0) body << " assert(inferredReturnTypes.size()" << (numVariadicResults != 0 ? " >= " : " == ") << numNonVariadicResults << "u && \"mismatched number of return types\");\n"; body << " " << builderOpState << ".addTypes(inferredReturnTypes);"; body << formatv(R"( } else ::llvm::report_fatal_error("Failed to infer result type(s).");)", opClass.getClassName(), builderOpState); } void OpEmitter::genUseOperandAsResultTypeSeparateParamBuilder() { llvm::SmallVector paramList; llvm::SmallVector resultNames; buildParamList(paramList, resultNames, TypeParamKind::None); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method if (!m) return; auto &body = m->body(); genCodeForAddingArgAndRegionForBuilder(body); auto numResults = op.getNumResults(); if (numResults == 0) return; // Push all result types to the operation state const char *index = op.getOperand(0).isVariadic() ? ".front()" : ""; std::string resultType = formatv("{0}{1}.getType()", getArgumentName(op, 0), index).str(); body << " " << builderOpState << ".addTypes({" << resultType; for (int i = 1; i != numResults; ++i) body << ", " << resultType; body << "});\n\n"; } void OpEmitter::genUseAttrAsResultTypeBuilder() { SmallVector paramList; paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder"); paramList.emplace_back("::mlir::OperationState &", builderOpState); paramList.emplace_back("::mlir::ValueRange", "operands"); paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>", "attributes", "{}"); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method if (!m) return; auto &body = m->body(); // Push all result types to the operation state std::string resultType; const auto &namedAttr = op.getAttribute(0); body << " for (auto attr : attributes) {\n"; body << " if (attr.first != \"" << namedAttr.name << "\") continue;\n"; if (namedAttr.attr.isTypeAttr()) { resultType = "attr.second.cast<::mlir::TypeAttr>().getValue()"; } else { resultType = "attr.second.getType()"; } // Operands body << " " << builderOpState << ".addOperands(operands);\n"; // Attributes body << " " << builderOpState << ".addAttributes(attributes);\n"; // Result types SmallVector resultTypes(op.getNumResults(), resultType); body << " " << builderOpState << ".addTypes({" << llvm::join(resultTypes, ", ") << "});\n"; body << " }\n"; } /// Returns a signature of the builder as defined by a dag-typed initializer. /// Updates the context `fctx` to enable replacement of $_builder and $_state /// in the body. Reports errors at `loc`. static std::string builderSignatureFromDAG(const DagInit *init, ArrayRef loc, FmtContext &fctx) { auto *defInit = dyn_cast(init->getOperator()); if (!defInit || !defInit->getDef()->getName().equals("ins")) PrintFatalError(loc, "expected 'ins' in builders"); // Inject builder and state arguments. llvm::SmallVector arguments; arguments.reserve(init->getNumArgs() + 2); arguments.push_back(llvm::formatv("::mlir::OpBuilder &{0}", builder).str()); arguments.push_back( llvm::formatv("::mlir::OperationState &{0}", builderOpState).str()); // Accept either a StringInit or a DefInit with two string values as dag // arguments. The former corresponds to the type, the latter to the type and // the default value. Similarly to C++, once an argument with a default value // is detected, the following arguments must have default values as well. bool seenDefaultValue = false; for (unsigned i = 0, e = init->getNumArgs(); i < e; ++i) { // If no name is provided, generate one. StringInit *argName = init->getArgName(i); std::string name = argName ? argName->getValue().str() : "odsArg" + std::to_string(i); Init *argInit = init->getArg(i); StringRef type; std::string defaultValue; if (StringInit *strType = dyn_cast(argInit)) { type = strType->getValue(); } else { const Record *typeAndDefaultValue = cast(argInit)->getDef(); type = typeAndDefaultValue->getValueAsString("type"); StringRef defaultValueRef = typeAndDefaultValue->getValueAsString("defaultValue"); if (!defaultValueRef.empty()) { seenDefaultValue = true; defaultValue = llvm::formatv(" = {0}", defaultValueRef).str(); } } if (seenDefaultValue && defaultValue.empty()) PrintFatalError(loc, "expected an argument with default value after other " "arguments with default values"); arguments.push_back( llvm::formatv("{0} {1}{2}", type, name, defaultValue).str()); } fctx.withBuilder(builder); fctx.addSubst("_state", builderOpState); return llvm::join(arguments, ", "); } // Returns a signature fo the builder as defined by a string initializer, // optionally injecting the builder and state arguments. // TODO: to be removed after the transition is complete. static std::string builderSignatureFromString(StringRef params, FmtContext &fctx) { bool skipParamGen = params.startswith("OpBuilder") || params.startswith("mlir::OpBuilder") || params.startswith("::mlir::OpBuilder"); if (skipParamGen) return params.str(); fctx.withBuilder(builder); fctx.addSubst("_state", builderOpState); return std::string(llvm::formatv("::mlir::OpBuilder &{0}, " "::mlir::OperationState &{1}{2}{3}", builder, builderOpState, params.empty() ? "" : ", ", params)); } void OpEmitter::genBuilder() { // Handle custom builders if provided. // TODO: Create wrapper class for OpBuilder to hide the native // TableGen API calls here. { auto *listInit = dyn_cast_or_null(def.getValueInit("builders")); if (listInit) { for (Init *init : listInit->getValues()) { Record *builderDef = cast(init)->getDef(); llvm::Optional params = builderDef->getValueAsOptionalString("params"); FmtContext fctx; if (params.hasValue()) { PrintWarning(op.getLoc(), "Op uses a deprecated, string-based OpBuilder format; " "use OpBuilderDAG with '(ins <...>)' instead"); } std::string paramStr = params.hasValue() ? builderSignatureFromString(params->trim(), fctx) : builderSignatureFromDAG( builderDef->getValueAsDag("dagParams"), op.getLoc(), fctx); StringRef body = builderDef->getValueAsString("body"); bool hasBody = !body.empty(); OpMethod::Property properties = hasBody ? OpMethod::MP_Static : OpMethod::MP_StaticDeclaration; auto *method = opClass.addMethodAndPrune("void", "build", properties, paramStr); if (hasBody) method->body() << tgfmt(body, &fctx); } } if (op.skipDefaultBuilders()) { if (!listInit || listInit->empty()) PrintFatalError( op.getLoc(), "default builders are skipped and no custom builders provided"); return; } } // Generate default builders that requires all result type, operands, and // attributes as parameters. // We generate three classes of builders here: // 1. one having a stand-alone parameter for each operand / attribute, and genSeparateArgParamBuilder(); // 2. one having an aggregated parameter for all result types / operands / // attributes, and genCollectiveParamBuilder(); // 3. one having a stand-alone parameter for each operand and attribute, // use the first operand or attribute's type as all result types // to facilitate different call patterns. if (op.getNumVariableLengthResults() == 0) { if (op.getTrait("::mlir::OpTrait::SameOperandsAndResultType")) { genUseOperandAsResultTypeSeparateParamBuilder(); genUseOperandAsResultTypeCollectiveParamBuilder(); } if (op.getTrait("::mlir::OpTrait::FirstAttrDerivedResultType")) genUseAttrAsResultTypeBuilder(); } } void OpEmitter::genCollectiveParamBuilder() { int numResults = op.getNumResults(); int numVariadicResults = op.getNumVariableLengthResults(); int numNonVariadicResults = numResults - numVariadicResults; int numOperands = op.getNumOperands(); int numVariadicOperands = op.getNumVariableLengthOperands(); int numNonVariadicOperands = numOperands - numVariadicOperands; SmallVector paramList; paramList.emplace_back("::mlir::OpBuilder &", ""); paramList.emplace_back("::mlir::OperationState &", builderOpState); paramList.emplace_back("::mlir::TypeRange", "resultTypes"); paramList.emplace_back("::mlir::ValueRange", "operands"); // Provide default value for `attributes` when its the last parameter StringRef attributesDefaultValue = op.getNumVariadicRegions() ? "" : "{}"; paramList.emplace_back("::llvm::ArrayRef<::mlir::NamedAttribute>", "attributes", attributesDefaultValue); if (op.getNumVariadicRegions()) paramList.emplace_back("unsigned", "numRegions"); auto *m = opClass.addMethodAndPrune("void", "build", OpMethod::MP_Static, std::move(paramList)); // If the builder is redundant, skip generating the method if (!m) return; auto &body = m->body(); // Operands if (numVariadicOperands == 0 || numNonVariadicOperands != 0) body << " assert(operands.size()" << (numVariadicOperands != 0 ? " >= " : " == ") << numNonVariadicOperands << "u && \"mismatched number of parameters\");\n"; body << " " << builderOpState << ".addOperands(operands);\n"; // Attributes body << " " << builderOpState << ".addAttributes(attributes);\n"; // Create the correct number of regions if (int numRegions = op.getNumRegions()) { body << llvm::formatv( " for (unsigned i = 0; i != {0}; ++i)\n", (op.getNumVariadicRegions() ? "numRegions" : Twine(numRegions))); body << " (void)" << builderOpState << ".addRegion();\n"; } // Result types if (numVariadicResults == 0 || numNonVariadicResults != 0) body << " assert(resultTypes.size()" << (numVariadicResults != 0 ? " >= " : " == ") << numNonVariadicResults << "u && \"mismatched number of return types\");\n"; body << " " << builderOpState << ".addTypes(resultTypes);\n"; // Generate builder that infers type too. // TODO: Expand to handle regions and successors. if (canInferType(op) && op.getNumSuccessors() == 0) genInferredTypeCollectiveParamBuilder(); } void OpEmitter::buildParamList(SmallVectorImpl ¶mList, SmallVectorImpl &resultTypeNames, TypeParamKind typeParamKind, AttrParamKind attrParamKind) { resultTypeNames.clear(); auto numResults = op.getNumResults(); resultTypeNames.reserve(numResults); paramList.emplace_back("::mlir::OpBuilder &", "odsBuilder"); paramList.emplace_back("::mlir::OperationState &", builderOpState); switch (typeParamKind) { case TypeParamKind::None: break; case TypeParamKind::Separate: { // Add parameters for all return types for (int i = 0; i < numResults; ++i) { const auto &result = op.getResult(i); std::string resultName = std::string(result.name); if (resultName.empty()) resultName = std::string(formatv("resultType{0}", i)); StringRef type = result.isVariadic() ? "::mlir::TypeRange" : "::mlir::Type"; OpMethodParameter::Property properties = OpMethodParameter::PP_None; if (result.isOptional()) properties = OpMethodParameter::PP_Optional; paramList.emplace_back(type, resultName, properties); resultTypeNames.emplace_back(std::move(resultName)); } } break; case TypeParamKind::Collective: { paramList.emplace_back("::mlir::TypeRange", "resultTypes"); resultTypeNames.push_back("resultTypes"); } break; } // Add parameters for all arguments (operands and attributes). int numOperands = 0; int numAttrs = 0; int defaultValuedAttrStartIndex = op.getNumArgs(); if (attrParamKind == AttrParamKind::UnwrappedValue) { // Calculate the start index from which we can attach default values in the // builder declaration. for (int i = op.getNumArgs() - 1; i >= 0; --i) { auto *namedAttr = op.getArg(i).dyn_cast(); if (!namedAttr || !namedAttr->attr.hasDefaultValue()) break; if (!canUseUnwrappedRawValue(namedAttr->attr)) break; // Creating an APInt requires us to provide bitwidth, value, and // signedness, which is complicated compared to others. Similarly // for APFloat. // TODO: Adjust the 'returnType' field of such attributes // to support them. StringRef retType = namedAttr->attr.getReturnType(); if (retType == "::llvm::APInt" || retType == "::llvm::APFloat") break; defaultValuedAttrStartIndex = i; } } for (int i = 0, e = op.getNumArgs(); i < e; ++i) { auto argument = op.getArg(i); if (argument.is()) { const auto &operand = op.getOperand(numOperands); StringRef type = operand.isVariadic() ? "::mlir::ValueRange" : "::mlir::Value"; OpMethodParameter::Property properties = OpMethodParameter::PP_None; if (operand.isOptional()) properties = OpMethodParameter::PP_Optional; paramList.emplace_back(type, getArgumentName(op, numOperands), properties); ++numOperands; } else { const auto &namedAttr = op.getAttribute(numAttrs); const auto &attr = namedAttr.attr; OpMethodParameter::Property properties = OpMethodParameter::PP_None; if (attr.isOptional()) properties = OpMethodParameter::PP_Optional; StringRef type; switch (attrParamKind) { case AttrParamKind::WrappedAttr: type = attr.getStorageType(); break; case AttrParamKind::UnwrappedValue: if (canUseUnwrappedRawValue(attr)) type = attr.getReturnType(); else type = attr.getStorageType(); break; } std::string defaultValue; // Attach default value if requested and possible. if (attrParamKind == AttrParamKind::UnwrappedValue && i >= defaultValuedAttrStartIndex) { bool isString = attr.getReturnType() == "::llvm::StringRef"; if (isString) defaultValue.append("\""); defaultValue += attr.getDefaultValue(); if (isString) defaultValue.append("\""); } paramList.emplace_back(type, namedAttr.name, defaultValue, properties); ++numAttrs; } } /// Insert parameters for each successor. for (const NamedSuccessor &succ : op.getSuccessors()) { StringRef type = succ.isVariadic() ? "::mlir::BlockRange" : "::mlir::Block *"; paramList.emplace_back(type, succ.name); } /// Insert parameters for variadic regions. for (const NamedRegion ®ion : op.getRegions()) if (region.isVariadic()) paramList.emplace_back("unsigned", llvm::formatv("{0}Count", region.name).str()); } void OpEmitter::genCodeForAddingArgAndRegionForBuilder(OpMethodBody &body, bool isRawValueAttr) { // Push all operands to the result. for (int i = 0, e = op.getNumOperands(); i < e; ++i) { std::string argName = getArgumentName(op, i); if (op.getOperand(i).isOptional()) body << " if (" << argName << ")\n "; body << " " << builderOpState << ".addOperands(" << argName << ");\n"; } // If the operation has the operand segment size attribute, add it here. if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) { body << " " << builderOpState << ".addAttribute(\"operand_segment_sizes\", " "odsBuilder.getI32VectorAttr({"; interleaveComma(llvm::seq(0, op.getNumOperands()), body, [&](int i) { if (op.getOperand(i).isOptional()) body << "(" << getArgumentName(op, i) << " ? 1 : 0)"; else if (op.getOperand(i).isVariadic()) body << "static_cast(" << getArgumentName(op, i) << ".size())"; else body << "1"; }); body << "}));\n"; } // Push all attributes to the result. for (const auto &namedAttr : op.getAttributes()) { auto &attr = namedAttr.attr; if (!attr.isDerivedAttr()) { bool emitNotNullCheck = attr.isOptional(); if (emitNotNullCheck) { body << formatv(" if ({0}) ", namedAttr.name) << "{\n"; } if (isRawValueAttr && canUseUnwrappedRawValue(attr)) { // If this is a raw value, then we need to wrap it in an Attribute // instance. FmtContext fctx; fctx.withBuilder("odsBuilder"); std::string builderTemplate = std::string(attr.getConstBuilderTemplate()); // For StringAttr, its constant builder call will wrap the input in // quotes, which is correct for normal string literals, but incorrect // here given we use function arguments. So we need to strip the // wrapping quotes. if (StringRef(builderTemplate).contains("\"$0\"")) builderTemplate = replaceAllSubstrs(builderTemplate, "\"$0\"", "$0"); std::string value = std::string(tgfmt(builderTemplate, &fctx, namedAttr.name)); body << formatv(" {0}.addAttribute(\"{1}\", {2});\n", builderOpState, namedAttr.name, value); } else { body << formatv(" {0}.addAttribute(\"{1}\", {1});\n", builderOpState, namedAttr.name); } if (emitNotNullCheck) { body << " }\n"; } } } // Create the correct number of regions. for (const NamedRegion ®ion : op.getRegions()) { if (region.isVariadic()) body << formatv(" for (unsigned i = 0; i < {0}Count; ++i)\n ", region.name); body << " (void)" << builderOpState << ".addRegion();\n"; } // Push all successors to the result. for (const NamedSuccessor &namedSuccessor : op.getSuccessors()) { body << formatv(" {0}.addSuccessors({1});\n", builderOpState, namedSuccessor.name); } } void OpEmitter::genCanonicalizerDecls() { if (!def.getValueAsBit("hasCanonicalizer")) return; SmallVector paramList; paramList.emplace_back("::mlir::OwningRewritePatternList &", "results"); paramList.emplace_back("::mlir::MLIRContext *", "context"); opClass.addMethodAndPrune("void", "getCanonicalizationPatterns", OpMethod::MP_StaticDeclaration, std::move(paramList)); } void OpEmitter::genFolderDecls() { bool hasSingleResult = op.getNumResults() == 1 && op.getNumVariableLengthResults() == 0; if (def.getValueAsBit("hasFolder")) { if (hasSingleResult) { opClass.addMethodAndPrune( "::mlir::OpFoldResult", "fold", OpMethod::MP_Declaration, "::llvm::ArrayRef<::mlir::Attribute>", "operands"); } else { SmallVector paramList; paramList.emplace_back("::llvm::ArrayRef<::mlir::Attribute>", "operands"); paramList.emplace_back("::llvm::SmallVectorImpl<::mlir::OpFoldResult> &", "results"); opClass.addMethodAndPrune("::mlir::LogicalResult", "fold", OpMethod::MP_Declaration, std::move(paramList)); } } } void OpEmitter::genOpInterfaceMethods(const tblgen::InterfaceOpTrait *opTrait) { auto interface = opTrait->getOpInterface(); // Get the set of methods that should always be declared. auto alwaysDeclaredMethodsVec = opTrait->getAlwaysDeclaredMethods(); llvm::StringSet<> alwaysDeclaredMethods; alwaysDeclaredMethods.insert(alwaysDeclaredMethodsVec.begin(), alwaysDeclaredMethodsVec.end()); for (const InterfaceMethod &method : interface.getMethods()) { // Don't declare if the method has a body. if (method.getBody()) continue; // Don't declare if the method has a default implementation and the op // didn't request that it always be declared. if (method.getDefaultImplementation() && !alwaysDeclaredMethods.count(method.getName())) continue; genOpInterfaceMethod(method); } } OpMethod *OpEmitter::genOpInterfaceMethod(const InterfaceMethod &method, bool declaration) { SmallVector paramList; for (const InterfaceMethod::Argument &arg : method.getArguments()) paramList.emplace_back(arg.type, arg.name); auto properties = method.isStatic() ? OpMethod::MP_Static : OpMethod::MP_None; if (declaration) properties = static_cast(properties | OpMethod::MP_Declaration); return opClass.addMethodAndPrune(method.getReturnType(), method.getName(), properties, std::move(paramList)); } void OpEmitter::genOpInterfaceMethods() { for (const auto &trait : op.getTraits()) { if (const auto *opTrait = dyn_cast(&trait)) if (opTrait->shouldDeclareMethods()) genOpInterfaceMethods(opTrait); } } void OpEmitter::genSideEffectInterfaceMethods() { enum EffectKind { Operand, Result, Symbol, Static }; struct EffectLocation { /// The effect applied. SideEffect effect; /// The index if the kind is not static. unsigned index : 30; /// The kind of the location. unsigned kind : 2; }; StringMap> interfaceEffects; auto resolveDecorators = [&](Operator::var_decorator_range decorators, unsigned index, unsigned kind) { for (auto decorator : decorators) if (SideEffect *effect = dyn_cast(&decorator)) { opClass.addTrait(effect->getInterfaceTrait()); interfaceEffects[effect->getBaseEffectName()].push_back( EffectLocation{*effect, index, kind}); } }; // Collect effects that were specified via: /// Traits. for (const auto &trait : op.getTraits()) { const auto *opTrait = dyn_cast(&trait); if (!opTrait) continue; auto &effects = interfaceEffects[opTrait->getBaseEffectName()]; for (auto decorator : opTrait->getEffects()) effects.push_back(EffectLocation{cast(decorator), /*index=*/0, EffectKind::Static}); } /// Attributes and Operands. for (unsigned i = 0, operandIt = 0, e = op.getNumArgs(); i != e; ++i) { Argument arg = op.getArg(i); if (arg.is()) { resolveDecorators(op.getArgDecorators(i), operandIt, EffectKind::Operand); ++operandIt; continue; } const NamedAttribute *attr = arg.get(); if (attr->attr.getBaseAttr().isSymbolRefAttr()) resolveDecorators(op.getArgDecorators(i), i, EffectKind::Symbol); } /// Results. for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) resolveDecorators(op.getResultDecorators(i), i, EffectKind::Result); // The code used to add an effect instance. // {0}: The effect class. // {1}: Optional value or symbol reference. // {1}: The resource class. const char *addEffectCode = " effects.emplace_back({0}::get(), {1}{2}::get());\n"; for (auto &it : interfaceEffects) { // Generate the 'getEffects' method. std::string type = llvm::formatv("::mlir::SmallVectorImpl<::mlir::" "SideEffects::EffectInstance<{0}>> &", it.first()) .str(); auto *getEffects = opClass.addMethodAndPrune("void", "getEffects", type, "effects"); auto &body = getEffects->body(); // Add effect instances for each of the locations marked on the operation. for (auto &location : it.second) { StringRef effect = location.effect.getName(); StringRef resource = location.effect.getResource(); if (location.kind == EffectKind::Static) { // A static instance has no attached value. body << llvm::formatv(addEffectCode, effect, "", resource).str(); } else if (location.kind == EffectKind::Symbol) { // A symbol reference requires adding the proper attribute. const auto *attr = op.getArg(location.index).get(); if (attr->attr.isOptional()) { body << " if (auto symbolRef = " << attr->name << "Attr())\n " << llvm::formatv(addEffectCode, effect, "symbolRef, ", resource) .str(); } else { body << llvm::formatv(addEffectCode, effect, attr->name + "(), ", resource) .str(); } } else { // Otherwise this is an operand/result, so we need to attach the Value. body << " for (::mlir::Value value : getODS" << (location.kind == EffectKind::Operand ? "Operands" : "Results") << "(" << location.index << "))\n " << llvm::formatv(addEffectCode, effect, "value, ", resource).str(); } } } } void OpEmitter::genTypeInterfaceMethods() { if (!op.allResultTypesKnown()) return; // Generate 'inferReturnTypes' method declaration using the interface method // declared in 'InferTypeOpInterface' op interface. const auto *trait = dyn_cast( op.getTrait("::mlir::InferTypeOpInterface::Trait")); auto interface = trait->getOpInterface(); OpMethod *method = [&]() -> OpMethod * { for (const InterfaceMethod &interfaceMethod : interface.getMethods()) { if (interfaceMethod.getName() == "inferReturnTypes") { return genOpInterfaceMethod(interfaceMethod, /*declaration=*/false); } } assert(0 && "unable to find inferReturnTypes interface method"); return nullptr; }(); auto &body = method->body(); body << " inferredReturnTypes.resize(" << op.getNumResults() << ");\n"; FmtContext fctx; fctx.withBuilder("odsBuilder"); body << " ::mlir::Builder odsBuilder(context);\n"; auto emitType = [&](const tblgen::Operator::ArgOrType &type) -> OpMethodBody & { if (type.isArg()) { auto argIndex = type.getArg(); assert(!op.getArg(argIndex).is()); auto arg = op.getArgToOperandOrAttribute(argIndex); if (arg.kind() == Operator::OperandOrAttribute::Kind::Operand) return body << "operands[" << arg.operandOrAttributeIndex() << "].getType()"; return body << "attributes[" << arg.operandOrAttributeIndex() << "].getType()"; } else { return body << tgfmt(*type.getType().getBuilderCall(), &fctx); } }; for (int i = 0, e = op.getNumResults(); i != e; ++i) { body << " inferredReturnTypes[" << i << "] = "; auto types = op.getSameTypeAsResult(i); emitType(types[0]) << ";\n"; if (types.size() == 1) continue; // TODO: We could verify equality here, but skipping that for verification. } body << " return ::mlir::success();"; } void OpEmitter::genParser() { if (!hasStringAttribute(def, "parser") || hasStringAttribute(def, "assemblyFormat")) return; SmallVector paramList; paramList.emplace_back("::mlir::OpAsmParser &", "parser"); paramList.emplace_back("::mlir::OperationState &", "result"); auto *method = opClass.addMethodAndPrune("::mlir::ParseResult", "parse", OpMethod::MP_Static, std::move(paramList)); FmtContext fctx; fctx.addSubst("cppClass", opClass.getClassName()); auto parser = def.getValueAsString("parser").ltrim().rtrim(" \t\v\f\r"); method->body() << " " << tgfmt(parser, &fctx); } void OpEmitter::genPrinter() { if (hasStringAttribute(def, "assemblyFormat")) return; auto valueInit = def.getValueInit("printer"); StringInit *stringInit = dyn_cast(valueInit); if (!stringInit) return; auto *method = opClass.addMethodAndPrune("void", "print", "::mlir::OpAsmPrinter &", "p"); FmtContext fctx; fctx.addSubst("cppClass", opClass.getClassName()); auto printer = stringInit->getValue().ltrim().rtrim(" \t\v\f\r"); method->body() << " " << tgfmt(printer, &fctx); } void OpEmitter::genVerifier() { auto *method = opClass.addMethodAndPrune("::mlir::LogicalResult", "verify"); auto &body = method->body(); body << " if (failed(" << op.getAdaptorName() << "(*this).verify(this->getLoc()))) " << "return ::mlir::failure();\n"; auto *valueInit = def.getValueInit("verifier"); StringInit *stringInit = dyn_cast(valueInit); bool hasCustomVerify = stringInit && !stringInit->getValue().empty(); populateSubstitutions(op, "this->getAttr", "this->getODSOperands", "this->getODSResults", verifyCtx); genAttributeVerifier(op, "this->getAttr", "emitOpError(", /*emitVerificationRequiringOp=*/true, verifyCtx, body); genOperandResultVerifier(body, op.getOperands(), "operand"); genOperandResultVerifier(body, op.getResults(), "result"); for (auto &trait : op.getTraits()) { if (auto *t = dyn_cast(&trait)) { body << tgfmt(" if (!($0))\n " "return emitOpError(\"failed to verify that $1\");\n", &verifyCtx, tgfmt(t->getPredTemplate(), &verifyCtx), t->getDescription()); } } genRegionVerifier(body); genSuccessorVerifier(body); if (hasCustomVerify) { FmtContext fctx; fctx.addSubst("cppClass", opClass.getClassName()); auto printer = stringInit->getValue().ltrim().rtrim(" \t\v\f\r"); body << " " << tgfmt(printer, &fctx); } else { body << " return ::mlir::success();\n"; } } void OpEmitter::genOperandResultVerifier(OpMethodBody &body, Operator::value_range values, StringRef valueKind) { FmtContext fctx; body << " {\n"; body << " unsigned index = 0; (void)index;\n"; for (auto staticValue : llvm::enumerate(values)) { bool hasPredicate = staticValue.value().hasPredicate(); bool isOptional = staticValue.value().isOptional(); if (!hasPredicate && !isOptional) continue; body << formatv(" auto valueGroup{2} = getODS{0}{1}s({2});\n", // Capitalize the first letter to match the function name valueKind.substr(0, 1).upper(), valueKind.substr(1), staticValue.index()); // If the constraint is optional check that the value group has at most 1 // value. if (isOptional) { body << formatv(" if (valueGroup{0}.size() > 1)\n" " return emitOpError(\"{1} group starting at #\") " "<< index << \" requires 0 or 1 element, but found \" << " "valueGroup{0}.size();\n", staticValue.index(), valueKind); } // Otherwise, if there is no predicate there is nothing left to do. if (!hasPredicate) continue; // Emit a loop to check all the dynamic values in the pack. body << " for (::mlir::Value v : valueGroup" << staticValue.index() << ") {\n"; auto constraint = staticValue.value().constraint; body << " (void)v;\n" << " if (!(" << tgfmt(constraint.getConditionTemplate(), &fctx.withSelf("v.getType()")) << ")) {\n" << formatv(" return emitOpError(\"{0} #\") << index " "<< \" must be {1}, but got \" << v.getType();\n", valueKind, constraint.getDescription()) << " }\n" // if << " ++index;\n" << " }\n"; // for } body << " }\n"; } void OpEmitter::genRegionVerifier(OpMethodBody &body) { // If we have no regions, there is nothing more to do. unsigned numRegions = op.getNumRegions(); if (numRegions == 0) return; body << "{\n"; body << " unsigned index = 0; (void)index;\n"; for (unsigned i = 0; i < numRegions; ++i) { const auto ®ion = op.getRegion(i); if (region.constraint.getPredicate().isNull()) continue; body << " for (::mlir::Region ®ion : "; body << formatv(region.isVariadic() ? "{0}()" : "::mlir::MutableArrayRef<::mlir::Region>(this->" "getOperation()->getRegion({1}))", region.name, i); body << ") {\n"; auto constraint = tgfmt(region.constraint.getConditionTemplate(), &verifyCtx.withSelf("region")) .str(); body << formatv(" (void)region;\n" " if (!({0})) {\n " "return emitOpError(\"region #\") << index << \" {1}" "failed to " "verify constraint: {2}\";\n }\n", constraint, region.name.empty() ? "" : "('" + region.name + "') ", region.constraint.getDescription()) << " ++index;\n" << " }\n"; } body << " }\n"; } void OpEmitter::genSuccessorVerifier(OpMethodBody &body) { // If we have no successors, there is nothing more to do. unsigned numSuccessors = op.getNumSuccessors(); if (numSuccessors == 0) return; body << "{\n"; body << " unsigned index = 0; (void)index;\n"; for (unsigned i = 0; i < numSuccessors; ++i) { const auto &successor = op.getSuccessor(i); if (successor.constraint.getPredicate().isNull()) continue; if (successor.isVariadic()) { body << formatv(" for (::mlir::Block *successor : {0}()) {\n", successor.name); } else { body << " {\n"; body << formatv(" ::mlir::Block *successor = {0}();\n", successor.name); } auto constraint = tgfmt(successor.constraint.getConditionTemplate(), &verifyCtx.withSelf("successor")) .str(); body << formatv(" (void)successor;\n" " if (!({0})) {\n " "return emitOpError(\"successor #\") << index << \"('{1}') " "failed to " "verify constraint: {2}\";\n }\n", constraint, successor.name, successor.constraint.getDescription()) << " ++index;\n" << " }\n"; } body << " }\n"; } /// Add a size count trait to the given operation class. static void addSizeCountTrait(OpClass &opClass, StringRef traitKind, int numTotal, int numVariadic) { if (numVariadic != 0) { if (numTotal == numVariadic) opClass.addTrait("::mlir::OpTrait::Variadic" + traitKind + "s"); else opClass.addTrait("::mlir::OpTrait::AtLeastN" + traitKind + "s<" + Twine(numTotal - numVariadic) + ">::Impl"); return; } switch (numTotal) { case 0: opClass.addTrait("::mlir::OpTrait::Zero" + traitKind); break; case 1: opClass.addTrait("::mlir::OpTrait::One" + traitKind); break; default: opClass.addTrait("::mlir::OpTrait::N" + traitKind + "s<" + Twine(numTotal) + ">::Impl"); break; } } void OpEmitter::genTraits() { // Add region size trait. unsigned numRegions = op.getNumRegions(); unsigned numVariadicRegions = op.getNumVariadicRegions(); addSizeCountTrait(opClass, "Region", numRegions, numVariadicRegions); // Add result size trait. int numResults = op.getNumResults(); int numVariadicResults = op.getNumVariableLengthResults(); addSizeCountTrait(opClass, "Result", numResults, numVariadicResults); // Add successor size trait. unsigned numSuccessors = op.getNumSuccessors(); unsigned numVariadicSuccessors = op.getNumVariadicSuccessors(); addSizeCountTrait(opClass, "Successor", numSuccessors, numVariadicSuccessors); // Add variadic size trait and normal op traits. int numOperands = op.getNumOperands(); int numVariadicOperands = op.getNumVariableLengthOperands(); // Add operand size trait. if (numVariadicOperands != 0) { if (numOperands == numVariadicOperands) opClass.addTrait("::mlir::OpTrait::VariadicOperands"); else opClass.addTrait("::mlir::OpTrait::AtLeastNOperands<" + Twine(numOperands - numVariadicOperands) + ">::Impl"); } else { switch (numOperands) { case 0: opClass.addTrait("::mlir::OpTrait::ZeroOperands"); break; case 1: opClass.addTrait("::mlir::OpTrait::OneOperand"); break; default: opClass.addTrait("::mlir::OpTrait::NOperands<" + Twine(numOperands) + ">::Impl"); break; } } // Add the native and interface traits. for (const auto &trait : op.getTraits()) { if (auto opTrait = dyn_cast(&trait)) opClass.addTrait(opTrait->getTrait()); else if (auto opTrait = dyn_cast(&trait)) opClass.addTrait(opTrait->getTrait()); } } void OpEmitter::genOpNameGetter() { auto *method = opClass.addMethodAndPrune( "::llvm::StringRef", "getOperationName", OpMethod::MP_Static); method->body() << " return \"" << op.getOperationName() << "\";\n"; } void OpEmitter::genOpAsmInterface() { // If the user only has one results or specifically added the Asm trait, // then don't generate it for them. We specifically only handle multi result // operations, because the name of a single result in the common case is not // interesting(generally 'result'/'output'/etc.). // TODO: We could also add a flag to allow operations to opt in to this // generation, even if they only have a single operation. int numResults = op.getNumResults(); if (numResults <= 1 || op.getTrait("::mlir::OpAsmOpInterface::Trait")) return; SmallVector resultNames(numResults); for (int i = 0; i != numResults; ++i) resultNames[i] = op.getResultName(i); // Don't add the trait if none of the results have a valid name. if (llvm::all_of(resultNames, [](StringRef name) { return name.empty(); })) return; opClass.addTrait("::mlir::OpAsmOpInterface::Trait"); // Generate the right accessor for the number of results. auto *method = opClass.addMethodAndPrune( "void", "getAsmResultNames", "::mlir::OpAsmSetValueNameFn", "setNameFn"); auto &body = method->body(); for (int i = 0; i != numResults; ++i) { body << " auto resultGroup" << i << " = getODSResults(" << i << ");\n" << " if (!llvm::empty(resultGroup" << i << "))\n" << " setNameFn(*resultGroup" << i << ".begin(), \"" << resultNames[i] << "\");\n"; } } //===----------------------------------------------------------------------===// // OpOperandAdaptor emitter //===----------------------------------------------------------------------===// namespace { // Helper class to emit Op operand adaptors to an output stream. Operand // adaptors are wrappers around ArrayRef that provide named operand // getters identical to those defined in the Op. class OpOperandAdaptorEmitter { public: static void emitDecl(const Operator &op, raw_ostream &os); static void emitDef(const Operator &op, raw_ostream &os); private: explicit OpOperandAdaptorEmitter(const Operator &op); // Add verification function. This generates a verify method for the adaptor // which verifies all the op-independent attribute constraints. void addVerification(); const Operator &op; Class adaptor; }; } // end namespace OpOperandAdaptorEmitter::OpOperandAdaptorEmitter(const Operator &op) : op(op), adaptor(op.getAdaptorName()) { adaptor.newField("::mlir::ValueRange", "odsOperands"); adaptor.newField("::mlir::DictionaryAttr", "odsAttrs"); const auto *attrSizedOperands = op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments"); { SmallVector paramList; paramList.emplace_back("::mlir::ValueRange", "values"); paramList.emplace_back("::mlir::DictionaryAttr", "attrs", attrSizedOperands ? "" : "nullptr"); auto *constructor = adaptor.addConstructorAndPrune(std::move(paramList)); constructor->addMemberInitializer("odsOperands", "values"); constructor->addMemberInitializer("odsAttrs", "attrs"); } { auto *constructor = adaptor.addConstructorAndPrune( llvm::formatv("{0}&", op.getCppClassName()).str(), "op"); constructor->addMemberInitializer("odsOperands", "op->getOperands()"); constructor->addMemberInitializer("odsAttrs", "op->getAttrDictionary()"); } std::string sizeAttrInit = formatv(adapterSegmentSizeAttrInitCode, "operand_segment_sizes"); generateNamedOperandGetters(op, adaptor, sizeAttrInit, /*rangeType=*/"::mlir::ValueRange", /*rangeBeginCall=*/"odsOperands.begin()", /*rangeSizeCall=*/"odsOperands.size()", /*getOperandCallPattern=*/"odsOperands[{0}]"); FmtContext fctx; fctx.withBuilder("::mlir::Builder(odsAttrs.getContext())"); auto emitAttr = [&](StringRef name, Attribute attr) { auto &body = adaptor.addMethodAndPrune(attr.getStorageType(), name)->body(); body << " assert(odsAttrs && \"no attributes when constructing adapter\");" << "\n " << attr.getStorageType() << " attr = " << "odsAttrs.get(\"" << name << "\")."; if (attr.hasDefaultValue() || attr.isOptional()) body << "dyn_cast_or_null<"; else body << "cast<"; body << attr.getStorageType() << ">();\n"; if (attr.hasDefaultValue()) { // Use the default value if attribute is not set. // TODO: this is inefficient, we are recreating the attribute for every // call. This should be set instead. std::string defaultValue = std::string( tgfmt(attr.getConstBuilderTemplate(), &fctx, attr.getDefaultValue())); body << " if (!attr)\n attr = " << defaultValue << ";\n"; } body << " return attr;\n"; }; for (auto &namedAttr : op.getAttributes()) { const auto &name = namedAttr.name; const auto &attr = namedAttr.attr; if (!attr.isDerivedAttr()) emitAttr(name, attr); } // Add verification function. addVerification(); } void OpOperandAdaptorEmitter::addVerification() { auto *method = adaptor.addMethodAndPrune("::mlir::LogicalResult", "verify", "::mlir::Location", "loc"); auto &body = method->body(); const char *checkAttrSizedValueSegmentsCode = R"( { auto sizeAttr = odsAttrs.get("{0}").cast<::mlir::DenseIntElementsAttr>(); auto numElements = sizeAttr.getType().cast<::mlir::ShapedType>().getNumElements(); if (numElements != {1}) return emitError(loc, "'{0}' attribute for specifying {2} segments " "must have {1} elements"); } )"; // Verify a few traits first so that we can use // getODSOperands()/getODSResults() in the rest of the verifier. for (auto &trait : op.getTraits()) { if (auto *t = dyn_cast(&trait)) { if (t->getTrait() == "::mlir::OpTrait::AttrSizedOperandSegments") { body << formatv(checkAttrSizedValueSegmentsCode, "operand_segment_sizes", op.getNumOperands(), "operand"); } else if (t->getTrait() == "::mlir::OpTrait::AttrSizedResultSegments") { body << formatv(checkAttrSizedValueSegmentsCode, "result_segment_sizes", op.getNumResults(), "result"); } } } FmtContext verifyCtx; populateSubstitutions(op, "odsAttrs.get", "getODSOperands", "", verifyCtx); genAttributeVerifier(op, "odsAttrs.get", Twine("emitError(loc, \"'") + op.getOperationName() + "' op \"", /*emitVerificationRequiringOp*/ false, verifyCtx, body); body << " return ::mlir::success();"; } void OpOperandAdaptorEmitter::emitDecl(const Operator &op, raw_ostream &os) { OpOperandAdaptorEmitter(op).adaptor.writeDeclTo(os); } void OpOperandAdaptorEmitter::emitDef(const Operator &op, raw_ostream &os) { OpOperandAdaptorEmitter(op).adaptor.writeDefTo(os); } // Emits the opcode enum and op classes. static void emitOpClasses(const std::vector &defs, raw_ostream &os, bool emitDecl) { // First emit forward declaration for each class, this allows them to refer // to each others in traits for example. if (emitDecl) { os << "#if defined(GET_OP_CLASSES) || defined(GET_OP_FWD_DEFINES)\n"; os << "#undef GET_OP_FWD_DEFINES\n"; for (auto *def : defs) { Operator op(*def); NamespaceEmitter emitter(os, op.getDialect()); os << "class " << op.getCppClassName() << ";\n"; } os << "#endif\n\n"; } IfDefScope scope("GET_OP_CLASSES", os); for (auto *def : defs) { Operator op(*def); NamespaceEmitter emitter(os, op.getDialect()); if (emitDecl) { os << formatv(opCommentHeader, op.getQualCppClassName(), "declarations"); OpOperandAdaptorEmitter::emitDecl(op, os); OpEmitter::emitDecl(op, os); } else { os << formatv(opCommentHeader, op.getQualCppClassName(), "definitions"); OpOperandAdaptorEmitter::emitDef(op, os); OpEmitter::emitDef(op, os); } } } // Emits a comma-separated list of the ops. static void emitOpList(const std::vector &defs, raw_ostream &os) { IfDefScope scope("GET_OP_LIST", os); interleave( // TODO: We are constructing the Operator wrapper instance just for // getting it's qualified class name here. Reduce the overhead by having a // lightweight version of Operator class just for that purpose. defs, [&os](Record *def) { os << Operator(def).getQualCppClassName(); }, [&os]() { os << ",\n"; }); } static std::string getOperationName(const Record &def) { auto prefix = def.getValueAsDef("opDialect")->getValueAsString("name"); auto opName = def.getValueAsString("opName"); if (prefix.empty()) return std::string(opName); return std::string(llvm::formatv("{0}.{1}", prefix, opName)); } static std::vector getAllDerivedDefinitions(const RecordKeeper &recordKeeper, StringRef className) { Record *classDef = recordKeeper.getClass(className); if (!classDef) PrintFatalError("ERROR: Couldn't find the `" + className + "' class!\n"); llvm::Regex includeRegex(opIncFilter), excludeRegex(opExcFilter); std::vector defs; for (const auto &def : recordKeeper.getDefs()) { if (!def.second->isSubClassOf(classDef)) continue; // Include if no include filter or include filter matches. if (!opIncFilter.empty() && !includeRegex.match(getOperationName(*def.second))) continue; // Unless there is an exclude filter and it matches. if (!opExcFilter.empty() && excludeRegex.match(getOperationName(*def.second))) continue; defs.push_back(def.second.get()); } return defs; } static bool emitOpDecls(const RecordKeeper &recordKeeper, raw_ostream &os) { emitSourceFileHeader("Op Declarations", os); const auto &defs = getAllDerivedDefinitions(recordKeeper, "Op"); emitOpClasses(defs, os, /*emitDecl=*/true); return false; } static bool emitOpDefs(const RecordKeeper &recordKeeper, raw_ostream &os) { emitSourceFileHeader("Op Definitions", os); const auto &defs = getAllDerivedDefinitions(recordKeeper, "Op"); emitOpList(defs, os); emitOpClasses(defs, os, /*emitDecl=*/false); return false; } static mlir::GenRegistration genOpDecls("gen-op-decls", "Generate op declarations", [](const RecordKeeper &records, raw_ostream &os) { return emitOpDecls(records, os); }); static mlir::GenRegistration genOpDefs("gen-op-defs", "Generate op definitions", [](const RecordKeeper &records, raw_ostream &os) { return emitOpDefs(records, os); });