/* * kmp_taskdeps.cpp */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //#define KMP_SUPPORT_GRAPH_OUTPUT 1 #include "kmp.h" #include "kmp_io.h" #include "kmp_wait_release.h" #include "kmp_taskdeps.h" #if OMPT_SUPPORT #include "ompt-specific.h" #endif // TODO: Improve memory allocation? keep a list of pre-allocated structures? // allocate in blocks? re-use list finished list entries? // TODO: don't use atomic ref counters for stack-allocated nodes. // TODO: find an alternate to atomic refs for heap-allocated nodes? // TODO: Finish graph output support // TODO: kmp_lock_t seems a tad to big (and heavy weight) for this. Check other // runtime locks // TODO: Any ITT support needed? #ifdef KMP_SUPPORT_GRAPH_OUTPUT static std::atomic kmp_node_id_seed = ATOMIC_VAR_INIT(0); #endif static void __kmp_init_node(kmp_depnode_t *node) { node->dn.successors = NULL; node->dn.task = NULL; // will point to the right task // once dependences have been processed for (int i = 0; i < MAX_MTX_DEPS; ++i) node->dn.mtx_locks[i] = NULL; node->dn.mtx_num_locks = 0; __kmp_init_lock(&node->dn.lock); KMP_ATOMIC_ST_RLX(&node->dn.nrefs, 1); // init creates the first reference #ifdef KMP_SUPPORT_GRAPH_OUTPUT node->dn.id = KMP_ATOMIC_INC(&kmp_node_id_seed); #endif } static inline kmp_depnode_t *__kmp_node_ref(kmp_depnode_t *node) { KMP_ATOMIC_INC(&node->dn.nrefs); return node; } enum { KMP_DEPHASH_OTHER_SIZE = 97, KMP_DEPHASH_MASTER_SIZE = 997 }; size_t sizes[] = { 997, 2003, 4001, 8191, 16001, 32003, 64007, 131071, 270029 }; const size_t MAX_GEN = 8; static inline kmp_int32 __kmp_dephash_hash(kmp_intptr_t addr, size_t hsize) { // TODO alternate to try: set = (((Addr64)(addrUsefulBits * 9.618)) % // m_num_sets ); return ((addr >> 6) ^ (addr >> 2)) % hsize; } static kmp_dephash_t *__kmp_dephash_extend(kmp_info_t *thread, kmp_dephash_t *current_dephash) { kmp_dephash_t *h; size_t gen = current_dephash->generation + 1; if (gen >= MAX_GEN) return current_dephash; size_t new_size = sizes[gen]; kmp_int32 size_to_allocate = new_size * sizeof(kmp_dephash_entry_t *) + sizeof(kmp_dephash_t); #if USE_FAST_MEMORY h = (kmp_dephash_t *)__kmp_fast_allocate(thread, size_to_allocate); #else h = (kmp_dephash_t *)__kmp_thread_malloc(thread, size_to_allocate); #endif h->size = new_size; h->nelements = current_dephash->nelements; h->buckets = (kmp_dephash_entry **)(h + 1); h->generation = gen; h->nconflicts = 0; // insert existing elements in the new table for (size_t i = 0; i < current_dephash->size; i++) { kmp_dephash_entry_t *next, *entry; for (entry = current_dephash->buckets[i]; entry; entry = next) { next = entry->next_in_bucket; // Compute the new hash using the new size, and insert the entry in // the new bucket. kmp_int32 new_bucket = __kmp_dephash_hash(entry->addr, h->size); entry->next_in_bucket = h->buckets[new_bucket]; if (entry->next_in_bucket) { h->nconflicts++; } h->buckets[new_bucket] = entry; } } // Free old hash table #if USE_FAST_MEMORY __kmp_fast_free(thread, current_dephash); #else __kmp_thread_free(thread, current_dephash); #endif return h; } static kmp_dephash_t *__kmp_dephash_create(kmp_info_t *thread, kmp_taskdata_t *current_task) { kmp_dephash_t *h; size_t h_size; if (current_task->td_flags.tasktype == TASK_IMPLICIT) h_size = KMP_DEPHASH_MASTER_SIZE; else h_size = KMP_DEPHASH_OTHER_SIZE; kmp_int32 size = h_size * sizeof(kmp_dephash_entry_t *) + sizeof(kmp_dephash_t); #if USE_FAST_MEMORY h = (kmp_dephash_t *)__kmp_fast_allocate(thread, size); #else h = (kmp_dephash_t *)__kmp_thread_malloc(thread, size); #endif h->size = h_size; h->generation = 0; h->nelements = 0; h->nconflicts = 0; h->buckets = (kmp_dephash_entry **)(h + 1); for (size_t i = 0; i < h_size; i++) h->buckets[i] = 0; return h; } #define ENTRY_LAST_INS 0 #define ENTRY_LAST_MTXS 1 static kmp_dephash_entry * __kmp_dephash_find(kmp_info_t *thread, kmp_dephash_t **hash, kmp_intptr_t addr) { kmp_dephash_t *h = *hash; if (h->nelements != 0 && h->nconflicts/h->size >= 1) { *hash = __kmp_dephash_extend(thread, h); h = *hash; } kmp_int32 bucket = __kmp_dephash_hash(addr, h->size); kmp_dephash_entry_t *entry; for (entry = h->buckets[bucket]; entry; entry = entry->next_in_bucket) if (entry->addr == addr) break; if (entry == NULL) { // create entry. This is only done by one thread so no locking required #if USE_FAST_MEMORY entry = (kmp_dephash_entry_t *)__kmp_fast_allocate( thread, sizeof(kmp_dephash_entry_t)); #else entry = (kmp_dephash_entry_t *)__kmp_thread_malloc( thread, sizeof(kmp_dephash_entry_t)); #endif entry->addr = addr; entry->last_out = NULL; entry->last_ins = NULL; entry->last_mtxs = NULL; entry->last_flag = ENTRY_LAST_INS; entry->mtx_lock = NULL; entry->next_in_bucket = h->buckets[bucket]; h->buckets[bucket] = entry; h->nelements++; if (entry->next_in_bucket) h->nconflicts++; } return entry; } static kmp_depnode_list_t *__kmp_add_node(kmp_info_t *thread, kmp_depnode_list_t *list, kmp_depnode_t *node) { kmp_depnode_list_t *new_head; #if USE_FAST_MEMORY new_head = (kmp_depnode_list_t *)__kmp_fast_allocate( thread, sizeof(kmp_depnode_list_t)); #else new_head = (kmp_depnode_list_t *)__kmp_thread_malloc( thread, sizeof(kmp_depnode_list_t)); #endif new_head->node = __kmp_node_ref(node); new_head->next = list; return new_head; } static inline void __kmp_track_dependence(kmp_int32 gtid, kmp_depnode_t *source, kmp_depnode_t *sink, kmp_task_t *sink_task) { #ifdef KMP_SUPPORT_GRAPH_OUTPUT kmp_taskdata_t *task_source = KMP_TASK_TO_TASKDATA(source->dn.task); // do not use sink->dn.task as that is only filled after the dependencies // are already processed! kmp_taskdata_t *task_sink = KMP_TASK_TO_TASKDATA(sink_task); __kmp_printf("%d(%s) -> %d(%s)\n", source->dn.id, task_source->td_ident->psource, sink->dn.id, task_sink->td_ident->psource); #endif #if OMPT_SUPPORT && OMPT_OPTIONAL /* OMPT tracks dependences between task (a=source, b=sink) in which task a blocks the execution of b through the ompt_new_dependence_callback */ if (ompt_enabled.ompt_callback_task_dependence) { kmp_taskdata_t *task_source = KMP_TASK_TO_TASKDATA(source->dn.task); ompt_data_t *sink_data; if (sink_task) sink_data = &(KMP_TASK_TO_TASKDATA(sink_task)->ompt_task_info.task_data); else sink_data = &__kmp_threads[gtid]->th.ompt_thread_info.task_data; ompt_callbacks.ompt_callback(ompt_callback_task_dependence)( &(task_source->ompt_task_info.task_data), sink_data); } #endif /* OMPT_SUPPORT && OMPT_OPTIONAL */ } static inline kmp_int32 __kmp_depnode_link_successor(kmp_int32 gtid, kmp_info_t *thread, kmp_task_t *task, kmp_depnode_t *node, kmp_depnode_list_t *plist) { if (!plist) return 0; kmp_int32 npredecessors = 0; // link node as successor of list elements for (kmp_depnode_list_t *p = plist; p; p = p->next) { kmp_depnode_t *dep = p->node; if (dep->dn.task) { KMP_ACQUIRE_DEPNODE(gtid, dep); if (dep->dn.task) { __kmp_track_dependence(gtid, dep, node, task); dep->dn.successors = __kmp_add_node(thread, dep->dn.successors, node); KA_TRACE(40, ("__kmp_process_deps: T#%d adding dependence from %p to " "%p\n", gtid, KMP_TASK_TO_TASKDATA(dep->dn.task), KMP_TASK_TO_TASKDATA(task))); npredecessors++; } KMP_RELEASE_DEPNODE(gtid, dep); } } return npredecessors; } static inline kmp_int32 __kmp_depnode_link_successor(kmp_int32 gtid, kmp_info_t *thread, kmp_task_t *task, kmp_depnode_t *source, kmp_depnode_t *sink) { if (!sink) return 0; kmp_int32 npredecessors = 0; if (sink->dn.task) { // synchronously add source to sink' list of successors KMP_ACQUIRE_DEPNODE(gtid, sink); if (sink->dn.task) { __kmp_track_dependence(gtid, sink, source, task); sink->dn.successors = __kmp_add_node(thread, sink->dn.successors, source); KA_TRACE(40, ("__kmp_process_deps: T#%d adding dependence from %p to " "%p\n", gtid, KMP_TASK_TO_TASKDATA(sink->dn.task), KMP_TASK_TO_TASKDATA(task))); npredecessors++; } KMP_RELEASE_DEPNODE(gtid, sink); } return npredecessors; } template static inline kmp_int32 __kmp_process_deps(kmp_int32 gtid, kmp_depnode_t *node, kmp_dephash_t **hash, bool dep_barrier, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_task_t *task) { KA_TRACE(30, ("__kmp_process_deps<%d>: T#%d processing %d dependencies : " "dep_barrier = %d\n", filter, gtid, ndeps, dep_barrier)); kmp_info_t *thread = __kmp_threads[gtid]; kmp_int32 npredecessors = 0; for (kmp_int32 i = 0; i < ndeps; i++) { const kmp_depend_info_t *dep = &dep_list[i]; if (filter && dep->base_addr == 0) continue; // skip filtered entries kmp_dephash_entry_t *info = __kmp_dephash_find(thread, hash, dep->base_addr); kmp_depnode_t *last_out = info->last_out; kmp_depnode_list_t *last_ins = info->last_ins; kmp_depnode_list_t *last_mtxs = info->last_mtxs; if (dep->flags.out) { // out --> clean lists of ins and mtxs if any if (last_ins || last_mtxs) { if (info->last_flag == ENTRY_LAST_INS) { // INS were last npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_ins); } else { // MTXS were last npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_mtxs); } __kmp_depnode_list_free(thread, last_ins); __kmp_depnode_list_free(thread, last_mtxs); info->last_ins = NULL; info->last_mtxs = NULL; } else { npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_out); } __kmp_node_deref(thread, last_out); if (dep_barrier) { // if this is a sync point in the serial sequence, then the previous // outputs are guaranteed to be completed after the execution of this // task so the previous output nodes can be cleared. info->last_out = NULL; } else { info->last_out = __kmp_node_ref(node); } } else if (dep->flags.in) { // in --> link node to either last_out or last_mtxs, clean earlier deps if (last_mtxs) { npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_mtxs); __kmp_node_deref(thread, last_out); info->last_out = NULL; if (info->last_flag == ENTRY_LAST_MTXS && last_ins) { // MTXS were last // clean old INS before creating new list __kmp_depnode_list_free(thread, last_ins); info->last_ins = NULL; } } else { // link node as successor of the last_out if any npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_out); } info->last_flag = ENTRY_LAST_INS; info->last_ins = __kmp_add_node(thread, info->last_ins, node); } else { KMP_DEBUG_ASSERT(dep->flags.mtx == 1); // mtx --> link node to either last_out or last_ins, clean earlier deps if (last_ins) { npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_ins); __kmp_node_deref(thread, last_out); info->last_out = NULL; if (info->last_flag == ENTRY_LAST_INS && last_mtxs) { // INS were last // clean old MTXS before creating new list __kmp_depnode_list_free(thread, last_mtxs); info->last_mtxs = NULL; } } else { // link node as successor of the last_out if any npredecessors += __kmp_depnode_link_successor(gtid, thread, task, node, last_out); } info->last_flag = ENTRY_LAST_MTXS; info->last_mtxs = __kmp_add_node(thread, info->last_mtxs, node); if (info->mtx_lock == NULL) { info->mtx_lock = (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t)); __kmp_init_lock(info->mtx_lock); } KMP_DEBUG_ASSERT(node->dn.mtx_num_locks < MAX_MTX_DEPS); kmp_int32 m; // Save lock in node's array for (m = 0; m < MAX_MTX_DEPS; ++m) { // sort pointers in decreasing order to avoid potential livelock if (node->dn.mtx_locks[m] < info->mtx_lock) { KMP_DEBUG_ASSERT(node->dn.mtx_locks[node->dn.mtx_num_locks] == NULL); for (int n = node->dn.mtx_num_locks; n > m; --n) { // shift right all lesser non-NULL pointers KMP_DEBUG_ASSERT(node->dn.mtx_locks[n - 1] != NULL); node->dn.mtx_locks[n] = node->dn.mtx_locks[n - 1]; } node->dn.mtx_locks[m] = info->mtx_lock; break; } } KMP_DEBUG_ASSERT(m < MAX_MTX_DEPS); // must break from loop node->dn.mtx_num_locks++; } } KA_TRACE(30, ("__kmp_process_deps<%d>: T#%d found %d predecessors\n", filter, gtid, npredecessors)); return npredecessors; } #define NO_DEP_BARRIER (false) #define DEP_BARRIER (true) // returns true if the task has any outstanding dependence static bool __kmp_check_deps(kmp_int32 gtid, kmp_depnode_t *node, kmp_task_t *task, kmp_dephash_t **hash, bool dep_barrier, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) { int i, n_mtxs = 0; #if KMP_DEBUG kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); #endif KA_TRACE(20, ("__kmp_check_deps: T#%d checking dependencies for task %p : %d " "possibly aliased dependencies, %d non-aliased dependencies : " "dep_barrier=%d .\n", gtid, taskdata, ndeps, ndeps_noalias, dep_barrier)); // Filter deps in dep_list // TODO: Different algorithm for large dep_list ( > 10 ? ) for (i = 0; i < ndeps; i++) { if (dep_list[i].base_addr != 0) { for (int j = i + 1; j < ndeps; j++) { if (dep_list[i].base_addr == dep_list[j].base_addr) { dep_list[i].flags.in |= dep_list[j].flags.in; dep_list[i].flags.out |= (dep_list[j].flags.out || (dep_list[i].flags.in && dep_list[j].flags.mtx) || (dep_list[i].flags.mtx && dep_list[j].flags.in)); dep_list[i].flags.mtx = dep_list[i].flags.mtx | dep_list[j].flags.mtx && !dep_list[i].flags.out; dep_list[j].base_addr = 0; // Mark j element as void } } if (dep_list[i].flags.mtx) { // limit number of mtx deps to MAX_MTX_DEPS per node if (n_mtxs < MAX_MTX_DEPS && task != NULL) { ++n_mtxs; } else { dep_list[i].flags.in = 1; // downgrade mutexinoutset to inout dep_list[i].flags.out = 1; dep_list[i].flags.mtx = 0; } } } } // doesn't need to be atomic as no other thread is going to be accessing this // node just yet. // npredecessors is set -1 to ensure that none of the releasing tasks queues // this task before we have finished processing all the dependencies node->dn.npredecessors = -1; // used to pack all npredecessors additions into a single atomic operation at // the end int npredecessors; npredecessors = __kmp_process_deps(gtid, node, hash, dep_barrier, ndeps, dep_list, task); npredecessors += __kmp_process_deps( gtid, node, hash, dep_barrier, ndeps_noalias, noalias_dep_list, task); node->dn.task = task; KMP_MB(); // Account for our initial fake value npredecessors++; // Update predecessors and obtain current value to check if there are still // any outstanding dependences (some tasks may have finished while we // processed the dependences) npredecessors = node->dn.npredecessors.fetch_add(npredecessors) + npredecessors; KA_TRACE(20, ("__kmp_check_deps: T#%d found %d predecessors for task %p \n", gtid, npredecessors, taskdata)); // beyond this point the task could be queued (and executed) by a releasing // task... return npredecessors > 0 ? true : false; } /*! @ingroup TASKING @param loc_ref location of the original task directive @param gtid Global Thread ID of encountering thread @param new_task task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' @param ndeps Number of depend items with possible aliasing @param dep_list List of depend items with possible aliasing @param ndeps_noalias Number of depend items with no aliasing @param noalias_dep_list List of depend items with no aliasing @return Returns either TASK_CURRENT_NOT_QUEUED if the current task was not suspended and queued, or TASK_CURRENT_QUEUED if it was suspended and queued Schedule a non-thread-switchable task with dependences for execution */ kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) { kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); KA_TRACE(10, ("__kmpc_omp_task_with_deps(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, new_taskdata)); __kmp_assert_valid_gtid(gtid); kmp_info_t *thread = __kmp_threads[gtid]; kmp_taskdata_t *current_task = thread->th.th_current_task; #if OMPT_SUPPORT if (ompt_enabled.enabled) { if (!current_task->ompt_task_info.frame.enter_frame.ptr) current_task->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); if (ompt_enabled.ompt_callback_task_create) { ompt_data_t task_data = ompt_data_none; ompt_callbacks.ompt_callback(ompt_callback_task_create)( current_task ? &(current_task->ompt_task_info.task_data) : &task_data, current_task ? &(current_task->ompt_task_info.frame) : NULL, &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 1, OMPT_LOAD_OR_GET_RETURN_ADDRESS(gtid)); } new_taskdata->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #if OMPT_OPTIONAL /* OMPT grab all dependences if requested by the tool */ if (ndeps + ndeps_noalias > 0 && ompt_enabled.ompt_callback_dependences) { kmp_int32 i; int ompt_ndeps = ndeps + ndeps_noalias; ompt_dependence_t *ompt_deps = (ompt_dependence_t *)KMP_OMPT_DEPS_ALLOC( thread, (ndeps + ndeps_noalias) * sizeof(ompt_dependence_t)); KMP_ASSERT(ompt_deps != NULL); for (i = 0; i < ndeps; i++) { ompt_deps[i].variable.ptr = (void *)dep_list[i].base_addr; if (dep_list[i].flags.in && dep_list[i].flags.out) ompt_deps[i].dependence_type = ompt_dependence_type_inout; else if (dep_list[i].flags.out) ompt_deps[i].dependence_type = ompt_dependence_type_out; else if (dep_list[i].flags.in) ompt_deps[i].dependence_type = ompt_dependence_type_in; else if (dep_list[i].flags.mtx) ompt_deps[i].dependence_type = ompt_dependence_type_mutexinoutset; } for (i = 0; i < ndeps_noalias; i++) { ompt_deps[ndeps + i].variable.ptr = (void *)noalias_dep_list[i].base_addr; if (noalias_dep_list[i].flags.in && noalias_dep_list[i].flags.out) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inout; else if (noalias_dep_list[i].flags.out) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_out; else if (noalias_dep_list[i].flags.in) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_in; else if (noalias_dep_list[i].flags.mtx) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_mutexinoutset; } ompt_callbacks.ompt_callback(ompt_callback_dependences)( &(new_taskdata->ompt_task_info.task_data), ompt_deps, ompt_ndeps); /* We can now free the allocated memory for the dependencies */ /* For OMPD we might want to delay the free until end of this function */ KMP_OMPT_DEPS_FREE(thread, ompt_deps); } #endif /* OMPT_OPTIONAL */ #endif /* OMPT_SUPPORT */ bool serial = current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final; kmp_task_team_t *task_team = thread->th.th_task_team; serial = serial && !(task_team && task_team->tt.tt_found_proxy_tasks); if (!serial && (ndeps > 0 || ndeps_noalias > 0)) { /* if no dependencies have been tracked yet, create the dependence hash */ if (current_task->td_dephash == NULL) current_task->td_dephash = __kmp_dephash_create(thread, current_task); #if USE_FAST_MEMORY kmp_depnode_t *node = (kmp_depnode_t *)__kmp_fast_allocate(thread, sizeof(kmp_depnode_t)); #else kmp_depnode_t *node = (kmp_depnode_t *)__kmp_thread_malloc(thread, sizeof(kmp_depnode_t)); #endif __kmp_init_node(node); new_taskdata->td_depnode = node; if (__kmp_check_deps(gtid, node, new_task, ¤t_task->td_dephash, NO_DEP_BARRIER, ndeps, dep_list, ndeps_noalias, noalias_dep_list)) { KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d task had blocking " "dependencies: " "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", gtid, loc_ref, new_taskdata)); #if OMPT_SUPPORT if (ompt_enabled.enabled) { current_task->ompt_task_info.frame.enter_frame = ompt_data_none; } #endif return TASK_CURRENT_NOT_QUEUED; } } else { KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d ignored dependencies " "for task (serialized)" "loc=%p task=%p\n", gtid, loc_ref, new_taskdata)); } KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d task had no blocking " "dependencies : " "loc=%p task=%p, transferring to __kmp_omp_task\n", gtid, loc_ref, new_taskdata)); kmp_int32 ret = __kmp_omp_task(gtid, new_task, true); #if OMPT_SUPPORT if (ompt_enabled.enabled) { current_task->ompt_task_info.frame.enter_frame = ompt_data_none; } #endif return ret; } #if OMPT_SUPPORT void __ompt_taskwait_dep_finish(kmp_taskdata_t *current_task, ompt_data_t *taskwait_task_data) { if (ompt_enabled.ompt_callback_task_schedule) { ompt_data_t task_data = ompt_data_none; ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( current_task ? &(current_task->ompt_task_info.task_data) : &task_data, ompt_task_switch, taskwait_task_data); ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( taskwait_task_data, ompt_task_complete, current_task ? &(current_task->ompt_task_info.task_data) : &task_data); } current_task->ompt_task_info.frame.enter_frame.ptr = NULL; *taskwait_task_data = ompt_data_none; } #endif /* OMPT_SUPPORT */ /*! @ingroup TASKING @param loc_ref location of the original task directive @param gtid Global Thread ID of encountering thread @param ndeps Number of depend items with possible aliasing @param dep_list List of depend items with possible aliasing @param ndeps_noalias Number of depend items with no aliasing @param noalias_dep_list List of depend items with no aliasing Blocks the current task until all specifies dependencies have been fulfilled. */ void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) { KA_TRACE(10, ("__kmpc_omp_wait_deps(enter): T#%d loc=%p\n", gtid, loc_ref)); if (ndeps == 0 && ndeps_noalias == 0) { KA_TRACE(10, ("__kmpc_omp_wait_deps(exit): T#%d has no dependencies to " "wait upon : loc=%p\n", gtid, loc_ref)); return; } __kmp_assert_valid_gtid(gtid); kmp_info_t *thread = __kmp_threads[gtid]; kmp_taskdata_t *current_task = thread->th.th_current_task; #if OMPT_SUPPORT // this function represents a taskwait construct with depend clause // We signal 4 events: // - creation of the taskwait task // - dependences of the taskwait task // - schedule and finish of the taskwait task ompt_data_t *taskwait_task_data = &thread->th.ompt_thread_info.task_data; KMP_ASSERT(taskwait_task_data->ptr == NULL); if (ompt_enabled.enabled) { if (!current_task->ompt_task_info.frame.enter_frame.ptr) current_task->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); if (ompt_enabled.ompt_callback_task_create) { ompt_data_t task_data = ompt_data_none; ompt_callbacks.ompt_callback(ompt_callback_task_create)( current_task ? &(current_task->ompt_task_info.task_data) : &task_data, current_task ? &(current_task->ompt_task_info.frame) : NULL, taskwait_task_data, ompt_task_explicit | ompt_task_undeferred | ompt_task_mergeable, 1, OMPT_LOAD_OR_GET_RETURN_ADDRESS(gtid)); } } #if OMPT_OPTIONAL /* OMPT grab all dependences if requested by the tool */ if (ndeps + ndeps_noalias > 0 && ompt_enabled.ompt_callback_dependences) { kmp_int32 i; int ompt_ndeps = ndeps + ndeps_noalias; ompt_dependence_t *ompt_deps = (ompt_dependence_t *)KMP_OMPT_DEPS_ALLOC( thread, (ndeps + ndeps_noalias) * sizeof(ompt_dependence_t)); KMP_ASSERT(ompt_deps != NULL); for (i = 0; i < ndeps; i++) { ompt_deps[i].variable.ptr = (void *)dep_list[i].base_addr; if (dep_list[i].flags.in && dep_list[i].flags.out) ompt_deps[i].dependence_type = ompt_dependence_type_inout; else if (dep_list[i].flags.out) ompt_deps[i].dependence_type = ompt_dependence_type_out; else if (dep_list[i].flags.in) ompt_deps[i].dependence_type = ompt_dependence_type_in; else if (dep_list[i].flags.mtx) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_mutexinoutset; } for (i = 0; i < ndeps_noalias; i++) { ompt_deps[ndeps + i].variable.ptr = (void *)noalias_dep_list[i].base_addr; if (noalias_dep_list[i].flags.in && noalias_dep_list[i].flags.out) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inout; else if (noalias_dep_list[i].flags.out) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_out; else if (noalias_dep_list[i].flags.in) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_in; else if (noalias_dep_list[i].flags.mtx) ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_mutexinoutset; } ompt_callbacks.ompt_callback(ompt_callback_dependences)( taskwait_task_data, ompt_deps, ompt_ndeps); /* We can now free the allocated memory for the dependencies */ /* For OMPD we might want to delay the free until end of this function */ KMP_OMPT_DEPS_FREE(thread, ompt_deps); ompt_deps = NULL; } #endif /* OMPT_OPTIONAL */ #endif /* OMPT_SUPPORT */ // We can return immediately as: // - dependences are not computed in serial teams (except with proxy tasks) // - if the dephash is not yet created it means we have nothing to wait for bool ignore = current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final; ignore = ignore && thread->th.th_task_team != NULL && thread->th.th_task_team->tt.tt_found_proxy_tasks == FALSE; ignore = ignore || current_task->td_dephash == NULL; if (ignore) { KA_TRACE(10, ("__kmpc_omp_wait_deps(exit): T#%d has no blocking " "dependencies : loc=%p\n", gtid, loc_ref)); #if OMPT_SUPPORT __ompt_taskwait_dep_finish(current_task, taskwait_task_data); #endif /* OMPT_SUPPORT */ return; } kmp_depnode_t node = {0}; __kmp_init_node(&node); // the stack owns the node __kmp_node_ref(&node); if (!__kmp_check_deps(gtid, &node, NULL, ¤t_task->td_dephash, DEP_BARRIER, ndeps, dep_list, ndeps_noalias, noalias_dep_list)) { KA_TRACE(10, ("__kmpc_omp_wait_deps(exit): T#%d has no blocking " "dependencies : loc=%p\n", gtid, loc_ref)); #if OMPT_SUPPORT __ompt_taskwait_dep_finish(current_task, taskwait_task_data); #endif /* OMPT_SUPPORT */ return; } int thread_finished = FALSE; kmp_flag_32 flag( (std::atomic *)&node.dn.npredecessors, 0U); while (node.dn.npredecessors > 0) { flag.execute_tasks(thread, gtid, FALSE, &thread_finished USE_ITT_BUILD_ARG(NULL), __kmp_task_stealing_constraint); } #if OMPT_SUPPORT __ompt_taskwait_dep_finish(current_task, taskwait_task_data); #endif /* OMPT_SUPPORT */ KA_TRACE(10, ("__kmpc_omp_wait_deps(exit): T#%d finished waiting : loc=%p\n", gtid, loc_ref)); }