//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerInternal.h" #include #include #include #if defined(__has_include) #if __has_include() #include #endif #if __has_include() #include #endif #endif #define NO_SANITIZE_MEMORY #if defined(__has_feature) #if __has_feature(memory_sanitizer) #undef NO_SANITIZE_MEMORY #define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) #endif #endif namespace fuzzer { static const size_t kMaxUnitSizeToPrint = 256; thread_local bool Fuzzer::IsMyThread; static void MissingExternalApiFunction(const char *FnName) { Printf("ERROR: %s is not defined. Exiting.\n" "Did you use -fsanitize-coverage=... to build your code?\n", FnName); exit(1); } #define CHECK_EXTERNAL_FUNCTION(fn) \ do { \ if (!(EF->fn)) \ MissingExternalApiFunction(#fn); \ } while (false) // Only one Fuzzer per process. static Fuzzer *F; struct CoverageController { static void Reset() { CHECK_EXTERNAL_FUNCTION(__sanitizer_reset_coverage); EF->__sanitizer_reset_coverage(); PcMapResetCurrent(); } static void ResetCounters(const FuzzingOptions &Options) { if (Options.UseCounters) { EF->__sanitizer_update_counter_bitset_and_clear_counters(0); } } static void Prepare(const FuzzingOptions &Options, Fuzzer::Coverage *C) { if (Options.UseCounters) { size_t NumCounters = EF->__sanitizer_get_number_of_counters(); C->CounterBitmap.resize(NumCounters); } } // Records data to a maximum coverage tracker. Returns true if additional // coverage was discovered. static bool RecordMax(const FuzzingOptions &Options, Fuzzer::Coverage *C) { bool Res = false; uint64_t NewBlockCoverage = EF->__sanitizer_get_total_unique_coverage(); if (NewBlockCoverage > C->BlockCoverage) { Res = true; C->BlockCoverage = NewBlockCoverage; } if (Options.UseIndirCalls && EF->__sanitizer_get_total_unique_caller_callee_pairs) { uint64_t NewCallerCalleeCoverage = EF->__sanitizer_get_total_unique_caller_callee_pairs(); if (NewCallerCalleeCoverage > C->CallerCalleeCoverage) { Res = true; C->CallerCalleeCoverage = NewCallerCalleeCoverage; } } if (Options.UseCounters) { uint64_t CounterDelta = EF->__sanitizer_update_counter_bitset_and_clear_counters( C->CounterBitmap.data()); if (CounterDelta > 0) { Res = true; C->CounterBitmapBits += CounterDelta; } } uint64_t NewPcMapBits = PcMapMergeInto(&C->PCMap); if (NewPcMapBits > C->PcMapBits) { Res = true; C->PcMapBits = NewPcMapBits; } uintptr_t *CoverageBuf; uint64_t NewPcBufferLen = EF->__sanitizer_get_coverage_pc_buffer(&CoverageBuf); if (NewPcBufferLen > C->PcBufferLen) { Res = true; C->PcBufferLen = NewPcBufferLen; } return Res; } }; // Leak detection is expensive, so we first check if there were more mallocs // than frees (using the sanitizer malloc hooks) and only then try to call lsan. struct MallocFreeTracer { void Start() { Mallocs = 0; Frees = 0; } // Returns true if there were more mallocs than frees. bool Stop() { return Mallocs > Frees; } std::atomic Mallocs; std::atomic Frees; }; static MallocFreeTracer AllocTracer; void MallocHook(const volatile void *ptr, size_t size) { AllocTracer.Mallocs++; } void FreeHook(const volatile void *ptr) { AllocTracer.Frees++; } Fuzzer::Fuzzer(UserCallback CB, MutationDispatcher &MD, FuzzingOptions Options) : CB(CB), MD(MD), Options(Options) { SetDeathCallback(); InitializeTraceState(); assert(!F); F = this; ResetCoverage(); IsMyThread = true; if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks) EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook); } void Fuzzer::LazyAllocateCurrentUnitData() { if (CurrentUnitData || Options.MaxLen == 0) return; CurrentUnitData = new uint8_t[Options.MaxLen]; } void Fuzzer::SetDeathCallback() { CHECK_EXTERNAL_FUNCTION(__sanitizer_set_death_callback); EF->__sanitizer_set_death_callback(StaticDeathCallback); } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DumpCurrentUnit(const char *Prefix) { if (!CurrentUnitData) return; // Happens when running individual inputs. size_t UnitSize = CurrentUnitSize; if (UnitSize <= kMaxUnitSizeToPrint) { PrintHexArray(CurrentUnitData, UnitSize, "\n"); PrintASCII(CurrentUnitData, UnitSize, "\n"); } WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize}, Prefix); } NO_SANITIZE_MEMORY void Fuzzer::DeathCallback() { DumpCurrentUnit("crash-"); PrintFinalStats(); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::StaticCrashSignalCallback() { assert(F); F->CrashCallback(); } void Fuzzer::StaticInterruptCallback() { assert(F); F->InterruptCallback(); } void Fuzzer::CrashCallback() { Printf("==%d== ERROR: libFuzzer: deadly signal\n", GetPid()); if (EF->__sanitizer_print_stack_trace) EF->__sanitizer_print_stack_trace(); Printf("NOTE: libFuzzer has rudimentary signal handlers.\n" " Combine libFuzzer with AddressSanitizer or similar for better " "crash reports.\n"); Printf("SUMMARY: libFuzzer: deadly signal\n"); DumpCurrentUnit("crash-"); PrintFinalStats(); exit(Options.ErrorExitCode); } void Fuzzer::InterruptCallback() { Printf("==%d== libFuzzer: run interrupted; exiting\n", GetPid()); PrintFinalStats(); _Exit(0); // Stop right now, don't perform any at-exit actions. } NO_SANITIZE_MEMORY void Fuzzer::AlarmCallback() { assert(Options.UnitTimeoutSec > 0); if (!InFuzzingThread()) return; if (!CurrentUnitSize) return; // We have not started running units yet. size_t Seconds = duration_cast(system_clock::now() - UnitStartTime).count(); if (Seconds == 0) return; if (Options.Verbosity >= 2) Printf("AlarmCallback %zd\n", Seconds); if (Seconds >= (size_t)Options.UnitTimeoutSec) { Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds); Printf(" and the timeout value is %d (use -timeout=N to change)\n", Options.UnitTimeoutSec); DumpCurrentUnit("timeout-"); Printf("==%d== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(), Seconds); if (EF->__sanitizer_print_stack_trace) EF->__sanitizer_print_stack_trace(); Printf("SUMMARY: libFuzzer: timeout\n"); PrintFinalStats(); _Exit(Options.TimeoutExitCode); // Stop right now. } } void Fuzzer::RssLimitCallback() { Printf( "==%d== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n", GetPid(), GetPeakRSSMb(), Options.RssLimitMb); Printf(" To change the out-of-memory limit use -rss_limit_mb=\n\n"); if (EF->__sanitizer_print_memory_profile) EF->__sanitizer_print_memory_profile(50); DumpCurrentUnit("oom-"); Printf("SUMMARY: libFuzzer: out-of-memory\n"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // Stop right now. } void Fuzzer::PrintStats(const char *Where, const char *End) { size_t ExecPerSec = execPerSec(); if (Options.OutputCSV) { static bool csvHeaderPrinted = false; if (!csvHeaderPrinted) { csvHeaderPrinted = true; Printf("runs,block_cov,bits,cc_cov,corpus,execs_per_sec,tbms,reason\n"); } Printf("%zd,%zd,%zd,%zd,%zd,%zd,%s\n", TotalNumberOfRuns, MaxCoverage.BlockCoverage, MaxCoverage.CounterBitmapBits, MaxCoverage.CallerCalleeCoverage, Corpus.size(), ExecPerSec, Where); } if (!Options.Verbosity) return; Printf("#%zd\t%s", TotalNumberOfRuns, Where); if (MaxCoverage.BlockCoverage) Printf(" cov: %zd", MaxCoverage.BlockCoverage); if (MaxCoverage.PcMapBits) Printf(" path: %zd", MaxCoverage.PcMapBits); if (auto TB = MaxCoverage.CounterBitmapBits) Printf(" bits: %zd", TB); if (MaxCoverage.CallerCalleeCoverage) Printf(" indir: %zd", MaxCoverage.CallerCalleeCoverage); Printf(" units: %zd exec/s: %zd", Corpus.size(), ExecPerSec); Printf("%s", End); } void Fuzzer::PrintFinalStats() { if (!Options.PrintFinalStats) return; size_t ExecPerSec = execPerSec(); Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns); Printf("stat::average_exec_per_sec: %zd\n", ExecPerSec); Printf("stat::new_units_added: %zd\n", NumberOfNewUnitsAdded); Printf("stat::slowest_unit_time_sec: %zd\n", TimeOfLongestUnitInSeconds); Printf("stat::peak_rss_mb: %zd\n", GetPeakRSSMb()); } size_t Fuzzer::MaxUnitSizeInCorpus() const { size_t Res = 0; for (auto &X : Corpus) Res = std::max(Res, X.size()); return Res; } void Fuzzer::SetMaxLen(size_t MaxLen) { assert(Options.MaxLen == 0); // Can only reset MaxLen from 0 to non-0. assert(MaxLen); Options.MaxLen = MaxLen; Printf("INFO: -max_len is not provided, using %zd\n", Options.MaxLen); } void Fuzzer::RereadOutputCorpus(size_t MaxSize) { if (Options.OutputCorpus.empty()) return; std::vector AdditionalCorpus; ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus, &EpochOfLastReadOfOutputCorpus, MaxSize); if (Corpus.empty()) { Corpus = AdditionalCorpus; return; } if (!Options.Reload) return; if (Options.Verbosity >= 2) Printf("Reload: read %zd new units.\n", AdditionalCorpus.size()); for (auto &X : AdditionalCorpus) { if (X.size() > MaxSize) X.resize(MaxSize); if (UnitHashesAddedToCorpus.insert(Hash(X)).second) { if (RunOne(X)) { Corpus.push_back(X); UpdateCorpusDistribution(); PrintStats("RELOAD"); } } } } void Fuzzer::ShuffleCorpus(UnitVector *V) { std::random_shuffle(V->begin(), V->end(), MD.GetRand()); if (Options.PreferSmall) std::stable_sort(V->begin(), V->end(), [](const Unit &A, const Unit &B) { return A.size() < B.size(); }); } // Tries random prefixes of corpus items. void Fuzzer::TruncateUnits(std::vector *NewCorpus) { std::vector Fractions = {0.25, 0.5, 0.75, 1.0}; size_t TruncInputs = 0; for (double Fraction : Fractions) { for (const auto &U : Corpus) { uint64_t S = MD.GetRand()(U.size() * Fraction); if (!S || !RunOne(U.data(), S)) continue; TruncInputs++; Unit U1(U.begin(), U.begin() + S); NewCorpus->push_back(U1); } } if (TruncInputs) Printf("\tINFO TRUNC %zd units added to in-memory corpus\n", TruncInputs); } void Fuzzer::ShuffleAndMinimize() { PrintStats("READ "); std::vector NewCorpus; if (Options.ShuffleAtStartUp) ShuffleCorpus(&Corpus); if (Options.TruncateUnits) { ResetCoverage(); TruncateUnits(&NewCorpus); ResetCoverage(); } for (const auto &U : Corpus) { bool NewCoverage = RunOne(U); if (!Options.PruneCorpus || NewCoverage) { NewCorpus.push_back(U); if (Options.Verbosity >= 2) Printf("NEW0: %zd L %zd\n", MaxCoverage.BlockCoverage, U.size()); } TryDetectingAMemoryLeak(U.data(), U.size(), /*DuringInitialCorpusExecution*/ true); } Corpus = NewCorpus; UpdateCorpusDistribution(); for (auto &X : Corpus) UnitHashesAddedToCorpus.insert(Hash(X)); PrintStats("INITED"); if (Corpus.empty()) { Printf("ERROR: no interesting inputs were found. " "Is the code instrumented for coverage? Exiting.\n"); exit(1); } } bool Fuzzer::UpdateMaxCoverage() { uintptr_t PrevBufferLen = MaxCoverage.PcBufferLen; bool Res = CoverageController::RecordMax(Options, &MaxCoverage); if (Options.PrintNewCovPcs && PrevBufferLen != MaxCoverage.PcBufferLen) { uintptr_t *CoverageBuf; EF->__sanitizer_get_coverage_pc_buffer(&CoverageBuf); assert(CoverageBuf); for (size_t I = PrevBufferLen; I < MaxCoverage.PcBufferLen; ++I) { Printf("%p\n", CoverageBuf[I]); } } return Res; } bool Fuzzer::RunOne(const uint8_t *Data, size_t Size) { TotalNumberOfRuns++; // TODO(aizatsky): this Reset call seems to be not needed. CoverageController::ResetCounters(Options); ExecuteCallback(Data, Size); bool Res = UpdateMaxCoverage(); auto UnitStopTime = system_clock::now(); auto TimeOfUnit = duration_cast(UnitStopTime - UnitStartTime).count(); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && secondsSinceProcessStartUp() >= 2) PrintStats("pulse "); if (TimeOfUnit > TimeOfLongestUnitInSeconds && TimeOfUnit >= Options.ReportSlowUnits) { TimeOfLongestUnitInSeconds = TimeOfUnit; Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds); WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-"); } return Res; } void Fuzzer::RunOneAndUpdateCorpus(const uint8_t *Data, size_t Size) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return; if (RunOne(Data, Size)) ReportNewCoverage({Data, Data + Size}); } size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const { assert(InFuzzingThread()); *Data = CurrentUnitData; return CurrentUnitSize; } void Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) { assert(InFuzzingThread()); LazyAllocateCurrentUnitData(); UnitStartTime = system_clock::now(); // We copy the contents of Unit into a separate heap buffer // so that we reliably find buffer overflows in it. std::unique_ptr DataCopy(new uint8_t[Size]); memcpy(DataCopy.get(), Data, Size); if (CurrentUnitData && CurrentUnitData != Data) memcpy(CurrentUnitData, Data, Size); AssignTaintLabels(DataCopy.get(), Size); CurrentUnitSize = Size; AllocTracer.Start(); int Res = CB(DataCopy.get(), Size); (void)Res; HasMoreMallocsThanFrees = AllocTracer.Stop(); CurrentUnitSize = 0; assert(Res == 0); } std::string Fuzzer::Coverage::DebugString() const { std::string Result = std::string("Coverage{") + "BlockCoverage=" + std::to_string(BlockCoverage) + " CallerCalleeCoverage=" + std::to_string(CallerCalleeCoverage) + " CounterBitmapBits=" + std::to_string(CounterBitmapBits) + " PcMapBits=" + std::to_string(PcMapBits) + "}"; return Result; } void Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OnlyASCII) assert(IsASCII(U)); if (Options.OutputCorpus.empty()) return; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) Printf("Written to %s\n", Path.c_str()); } void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) { if (!Options.SaveArtifacts) return; std::string Path = Options.ArtifactPrefix + Prefix + Hash(U); if (!Options.ExactArtifactPath.empty()) Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix. WriteToFile(U, Path); Printf("artifact_prefix='%s'; Test unit written to %s\n", Options.ArtifactPrefix.c_str(), Path.c_str()); if (U.size() <= kMaxUnitSizeToPrint) Printf("Base64: %s\n", Base64(U).c_str()); } void Fuzzer::SaveCorpus() { if (Options.OutputCorpus.empty()) return; for (const auto &U : Corpus) WriteToFile(U, DirPlusFile(Options.OutputCorpus, Hash(U))); if (Options.Verbosity) Printf("Written corpus of %zd files to %s\n", Corpus.size(), Options.OutputCorpus.c_str()); } void Fuzzer::PrintStatusForNewUnit(const Unit &U) { if (!Options.PrintNEW) return; PrintStats("NEW ", ""); if (Options.Verbosity) { Printf(" L: %zd ", U.size()); MD.PrintMutationSequence(); Printf("\n"); } } void Fuzzer::ReportNewCoverage(const Unit &U) { Corpus.push_back(U); UpdateCorpusDistribution(); UnitHashesAddedToCorpus.insert(Hash(U)); MD.RecordSuccessfulMutationSequence(); PrintStatusForNewUnit(U); WriteToOutputCorpus(U); NumberOfNewUnitsAdded++; } // Finds minimal number of units in 'Extra' that add coverage to 'Initial'. // We do it by actually executing the units, sometimes more than once, // because we may be using different coverage-like signals and the only // common thing between them is that we can say "this unit found new stuff". UnitVector Fuzzer::FindExtraUnits(const UnitVector &Initial, const UnitVector &Extra) { UnitVector Res = Extra; size_t OldSize = Res.size(); for (int Iter = 0; Iter < 10; Iter++) { ShuffleCorpus(&Res); ResetCoverage(); for (auto &U : Initial) RunOne(U); Corpus.clear(); for (auto &U : Res) if (RunOne(U)) Corpus.push_back(U); char Stat[7] = "MIN "; Stat[3] = '0' + Iter; PrintStats(Stat); size_t NewSize = Corpus.size(); assert(NewSize <= OldSize); Res.swap(Corpus); if (NewSize + 5 >= OldSize) break; OldSize = NewSize; } return Res; } void Fuzzer::Merge(const std::vector &Corpora) { if (Corpora.size() <= 1) { Printf("Merge requires two or more corpus dirs\n"); return; } std::vector ExtraCorpora(Corpora.begin() + 1, Corpora.end()); assert(Options.MaxLen > 0); UnitVector Initial, Extra; ReadDirToVectorOfUnits(Corpora[0].c_str(), &Initial, nullptr, Options.MaxLen); for (auto &C : ExtraCorpora) ReadDirToVectorOfUnits(C.c_str(), &Extra, nullptr, Options.MaxLen); if (!Initial.empty()) { Printf("=== Minimizing the initial corpus of %zd units\n", Initial.size()); Initial = FindExtraUnits({}, Initial); } Printf("=== Merging extra %zd units\n", Extra.size()); auto Res = FindExtraUnits(Initial, Extra); for (auto &U: Res) WriteToOutputCorpus(U); Printf("=== Merge: written %zd units\n", Res.size()); } // Tries detecting a memory leak on the particular input that we have just // executed before calling this function. void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size, bool DuringInitialCorpusExecution) { if (!HasMoreMallocsThanFrees) return; // mallocs==frees, a leak is unlikely. if (!Options.DetectLeaks) return; if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) || !(EF->__lsan_do_recoverable_leak_check)) return; // No lsan. // Run the target once again, but with lsan disabled so that if there is // a real leak we do not report it twice. EF->__lsan_disable(); RunOne(Data, Size); EF->__lsan_enable(); if (!HasMoreMallocsThanFrees) return; // a leak is unlikely. if (NumberOfLeakDetectionAttempts++ > 1000) { Options.DetectLeaks = false; Printf("INFO: libFuzzer disabled leak detection after every mutation.\n" " Most likely the target function accumulates allocated\n" " memory in a global state w/o actually leaking it.\n" " If LeakSanitizer is enabled in this process it will still\n" " run on the process shutdown.\n"); return; } // Now perform the actual lsan pass. This is expensive and we must ensure // we don't call it too often. if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it. if (DuringInitialCorpusExecution) Printf("\nINFO: a leak has been found in the initial corpus.\n\n"); Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n"); CurrentUnitSize = Size; DumpCurrentUnit("leak-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // not exit() to disable lsan further on. } } void Fuzzer::MutateAndTestOne() { LazyAllocateCurrentUnitData(); MD.StartMutationSequence(); auto &U = ChooseUnitToMutate(); assert(CurrentUnitData); size_t Size = U.size(); assert(Size <= Options.MaxLen && "Oversized Unit"); memcpy(CurrentUnitData, U.data(), Size); for (int i = 0; i < Options.MutateDepth; i++) { size_t NewSize = 0; NewSize = MD.Mutate(CurrentUnitData, Size, Options.MaxLen); assert(NewSize > 0 && "Mutator returned empty unit"); assert(NewSize <= Options.MaxLen && "Mutator return overisized unit"); Size = NewSize; if (i == 0) StartTraceRecording(); RunOneAndUpdateCorpus(CurrentUnitData, Size); StopTraceRecording(); TryDetectingAMemoryLeak(CurrentUnitData, Size, /*DuringInitialCorpusExecution*/ false); } } // Returns an index of random unit from the corpus to mutate. // Hypothesis: units added to the corpus last are more likely to be interesting. // This function gives more weight to the more recent units. size_t Fuzzer::ChooseUnitIdxToMutate() { size_t Idx = static_cast(CorpusDistribution(MD.GetRand().Get_mt19937())); assert(Idx < Corpus.size()); return Idx; } void Fuzzer::ResetCoverage() { CoverageController::Reset(); MaxCoverage.Reset(); CoverageController::Prepare(Options, &MaxCoverage); } // Experimental search heuristic: drilling. // - Read, shuffle, execute and minimize the corpus. // - Choose one random unit. // - Reset the coverage. // - Start fuzzing as if the chosen unit was the only element of the corpus. // - When done, reset the coverage again. // - Merge the newly created corpus into the original one. void Fuzzer::Drill() { // The corpus is already read, shuffled, and minimized. assert(!Corpus.empty()); Options.PrintNEW = false; // Don't print NEW status lines when drilling. Unit U = ChooseUnitToMutate(); ResetCoverage(); std::vector SavedCorpus; SavedCorpus.swap(Corpus); Corpus.push_back(U); UpdateCorpusDistribution(); assert(Corpus.size() == 1); RunOne(U); PrintStats("DRILL "); std::string SavedOutputCorpusPath; // Don't write new units while drilling. SavedOutputCorpusPath.swap(Options.OutputCorpus); Loop(); ResetCoverage(); PrintStats("REINIT"); SavedOutputCorpusPath.swap(Options.OutputCorpus); for (auto &U : SavedCorpus) RunOne(U); PrintStats("MERGE "); Options.PrintNEW = true; size_t NumMerged = 0; for (auto &U : Corpus) { if (RunOne(U)) { PrintStatusForNewUnit(U); NumMerged++; WriteToOutputCorpus(U); } } PrintStats("MERGED"); if (NumMerged && Options.Verbosity) Printf("Drilling discovered %zd new units\n", NumMerged); } void Fuzzer::Loop() { system_clock::time_point LastCorpusReload = system_clock::now(); if (Options.DoCrossOver) MD.SetCorpus(&Corpus); while (true) { auto Now = system_clock::now(); if (duration_cast(Now - LastCorpusReload).count()) { RereadOutputCorpus(Options.MaxLen); LastCorpusReload = Now; } if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; if (Options.MaxTotalTimeSec > 0 && secondsSinceProcessStartUp() > static_cast(Options.MaxTotalTimeSec)) break; // Perform several mutations and runs. MutateAndTestOne(); } PrintStats("DONE ", "\n"); MD.PrintRecommendedDictionary(); } void Fuzzer::UpdateCorpusDistribution() { size_t N = Corpus.size(); std::vector Intervals(N + 1); std::vector Weights(N); std::iota(Intervals.begin(), Intervals.end(), 0); std::iota(Weights.begin(), Weights.end(), 1); CorpusDistribution = std::piecewise_constant_distribution( Intervals.begin(), Intervals.end(), Weights.begin()); } } // namespace fuzzer extern "C" { size_t LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) { assert(fuzzer::F); return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize); } } // extern "C"