/* -*- Mode: C; tab-width: 4 -*- * * Copyright (c) 2002-2004 Apple Computer, Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Formatting notes: * This code follows the "Whitesmiths style" C indentation rules. Plenty of discussion * on C indentation can be found on the web, such as , * but for the sake of brevity here I will say just this: Curly braces are not syntactially * part of an "if" statement; they are the beginning and ending markers of a compound statement; * therefore common sense dictates that if they are part of a compound statement then they * should be indented to the same level as everything else in that compound statement. * Indenting curly braces at the same level as the "if" implies that curly braces are * part of the "if", which is false. (This is as misleading as people who write "char* x,y;" * thinking that variables x and y are both of type "char*" -- and anyone who doesn't * understand why variable y is not of type "char*" just proves the point that poor code * layout leads people to unfortunate misunderstandings about how the C language really works.) */ #include "mDNSEmbeddedAPI.h" // Defines the interface provided to the client layer above #include "DNSCommon.h" #include "mDNSPosix.h" // Defines the specific types needed to run mDNS on this platform #include "dns_sd.h" #include #include #include #include #include #include #ifndef __ANDROID__ #include #endif #include #include #include #include #include #include #include #include #include #include // platform support for UTC time #if USES_NETLINK #include #include #include #else // USES_NETLINK #include #include #endif // USES_NETLINK #include "mDNSUNP.h" #include "GenLinkedList.h" // Disallow SO_REUSEPORT on Android because we use >3.9 kernel headers to build binaries targeted to 3.4.x. #ifdef __ANDROID__ #undef SO_REUSEPORT #endif // __ANDROID__ : replaced assert(close(..)) at several points in this file. // *************************************************************************** // Structures // We keep a list of client-supplied event sources in PosixEventSource records struct PosixEventSource { mDNSPosixEventCallback Callback; void *Context; int fd; struct PosixEventSource *Next; }; typedef struct PosixEventSource PosixEventSource; // Context record for interface change callback struct IfChangeRec { int NotifySD; mDNS *mDNS; }; typedef struct IfChangeRec IfChangeRec; // Note that static data is initialized to zero in (modern) C. static fd_set gEventFDs; static int gMaxFD; // largest fd in gEventFDs static GenLinkedList gEventSources; // linked list of PosixEventSource's static sigset_t gEventSignalSet; // Signals which event loop listens for static sigset_t gEventSignals; // Signals which were received while inside loop // *************************************************************************** // Globals (for debugging) static int num_registered_interfaces = 0; static int num_pkts_accepted = 0; static int num_pkts_rejected = 0; // *************************************************************************** // Functions int gMDNSPlatformPosixVerboseLevel = 0; #define PosixErrorToStatus(errNum) ((errNum) == 0 ? mStatus_NoError : mStatus_UnknownErr) mDNSlocal void SockAddrTomDNSAddr(const struct sockaddr *const sa, mDNSAddr *ipAddr, mDNSIPPort *ipPort) { switch (sa->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in*)sa; ipAddr->type = mDNSAddrType_IPv4; ipAddr->ip.v4.NotAnInteger = sin->sin_addr.s_addr; if (ipPort) ipPort->NotAnInteger = sin->sin_port; break; } #if HAVE_IPV6 case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)sa; #ifndef NOT_HAVE_SA_LEN assert(sin6->sin6_len == sizeof(*sin6)); #endif ipAddr->type = mDNSAddrType_IPv6; ipAddr->ip.v6 = *(mDNSv6Addr*)&sin6->sin6_addr; if (ipPort) ipPort->NotAnInteger = sin6->sin6_port; break; } #endif default: verbosedebugf("SockAddrTomDNSAddr: Uknown address family %d\n", sa->sa_family); ipAddr->type = mDNSAddrType_None; if (ipPort) ipPort->NotAnInteger = 0; break; } } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark ***** Send and Receive #endif // mDNS core calls this routine when it needs to send a packet. mDNSexport mStatus mDNSPlatformSendUDP(const mDNS *const m, const void *const msg, const mDNSu8 *const end, mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst, mDNSIPPort dstPort) { int err = 0; struct sockaddr_storage to; PosixNetworkInterface * thisIntf = (PosixNetworkInterface *)(InterfaceID); int sendingsocket = -1; (void)src; // Will need to use this parameter once we implement mDNSPlatformUDPSocket/mDNSPlatformUDPClose assert(m != NULL); assert(msg != NULL); assert(end != NULL); assert((((char *) end) - ((char *) msg)) > 0); if (dstPort.NotAnInteger == 0) { LogMsg("mDNSPlatformSendUDP: Invalid argument -dstPort is set to 0"); return PosixErrorToStatus(EINVAL); } if (dst->type == mDNSAddrType_IPv4) { struct sockaddr_in *sin = (struct sockaddr_in*)&to; #ifndef NOT_HAVE_SA_LEN sin->sin_len = sizeof(*sin); #endif sin->sin_family = AF_INET; sin->sin_port = dstPort.NotAnInteger; sin->sin_addr.s_addr = dst->ip.v4.NotAnInteger; sendingsocket = thisIntf ? thisIntf->multicastSocket4 : m->p->unicastSocket4; } #if HAVE_IPV6 else if (dst->type == mDNSAddrType_IPv6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&to; mDNSPlatformMemZero(sin6, sizeof(*sin6)); #ifndef NOT_HAVE_SA_LEN sin6->sin6_len = sizeof(*sin6); #endif sin6->sin6_family = AF_INET6; sin6->sin6_port = dstPort.NotAnInteger; sin6->sin6_addr = *(struct in6_addr*)&dst->ip.v6; sendingsocket = thisIntf ? thisIntf->multicastSocket6 : m->p->unicastSocket6; } #endif if (sendingsocket >= 0) err = sendto(sendingsocket, msg, (char*)end - (char*)msg, 0, (struct sockaddr *)&to, GET_SA_LEN(to)); if (err > 0) err = 0; else if (err < 0) { static int MessageCount = 0; // Don't report EHOSTDOWN (i.e. ARP failure), ENETDOWN, or no route to host for unicast destinations if (!mDNSAddressIsAllDNSLinkGroup(dst)) if (errno == EHOSTDOWN || errno == ENETDOWN || errno == EHOSTUNREACH || errno == ENETUNREACH) return(mStatus_TransientErr); if (MessageCount < 1000) { MessageCount++; if (thisIntf) LogMsg("mDNSPlatformSendUDP got error %d (%s) sending packet to %#a on interface %#a/%s/%d", errno, strerror(errno), dst, &thisIntf->coreIntf.ip, thisIntf->intfName, thisIntf->index); else LogMsg("mDNSPlatformSendUDP got error %d (%s) sending packet to %#a", errno, strerror(errno), dst); } } return PosixErrorToStatus(err); } // This routine is called when the main loop detects that data is available on a socket. mDNSlocal void SocketDataReady(mDNS *const m, PosixNetworkInterface *intf, int skt) { mDNSAddr senderAddr, destAddr; mDNSIPPort senderPort; ssize_t packetLen; DNSMessage packet; struct my_in_pktinfo packetInfo; struct sockaddr_storage from; socklen_t fromLen; int flags; mDNSu8 ttl; mDNSBool reject; const mDNSInterfaceID InterfaceID = intf ? intf->coreIntf.InterfaceID : NULL; assert(m != NULL); assert(skt >= 0); fromLen = sizeof(from); flags = 0; packetLen = recvfrom_flags(skt, &packet, sizeof(packet), &flags, (struct sockaddr *) &from, &fromLen, &packetInfo, &ttl); if (packetLen >= 0) { SockAddrTomDNSAddr((struct sockaddr*)&from, &senderAddr, &senderPort); SockAddrTomDNSAddr((struct sockaddr*)&packetInfo.ipi_addr, &destAddr, NULL); // If we have broken IP_RECVDSTADDR functionality (so far // I've only seen this on OpenBSD) then apply a hack to // convince mDNS Core that this isn't a spoof packet. // Basically what we do is check to see whether the // packet arrived as a multicast and, if so, set its // destAddr to the mDNS address. // // I must admit that I could just be doing something // wrong on OpenBSD and hence triggering this problem // but I'm at a loss as to how. // // If this platform doesn't have IP_PKTINFO or IP_RECVDSTADDR, then we have // no way to tell the destination address or interface this packet arrived on, // so all we can do is just assume it's a multicast #if HAVE_BROKEN_RECVDSTADDR || (!defined(IP_PKTINFO) && !defined(IP_RECVDSTADDR)) if ((destAddr.NotAnInteger == 0) && (flags & MSG_MCAST)) { destAddr.type = senderAddr.type; if (senderAddr.type == mDNSAddrType_IPv4) destAddr.ip.v4 = AllDNSLinkGroup_v4.ip.v4; else if (senderAddr.type == mDNSAddrType_IPv6) destAddr.ip.v6 = AllDNSLinkGroup_v6.ip.v6; } #endif // We only accept the packet if the interface on which it came // in matches the interface associated with this socket. // We do this match by name or by index, depending on which // information is available. recvfrom_flags sets the name // to "" if the name isn't available, or the index to -1 // if the index is available. This accomodates the various // different capabilities of our target platforms. reject = mDNSfalse; if (!intf) { // Ignore multicasts accidentally delivered to our unicast receiving socket if (mDNSAddrIsDNSMulticast(&destAddr)) packetLen = -1; } else { if (packetInfo.ipi_ifname[0] != 0) reject = (strcmp(packetInfo.ipi_ifname, intf->intfName) != 0); else if (packetInfo.ipi_ifindex != -1) reject = (packetInfo.ipi_ifindex != intf->index); if (reject) { verbosedebugf("SocketDataReady ignored a packet from %#a to %#a on interface %s/%d expecting %#a/%s/%d/%d", &senderAddr, &destAddr, packetInfo.ipi_ifname, packetInfo.ipi_ifindex, &intf->coreIntf.ip, intf->intfName, intf->index, skt); packetLen = -1; num_pkts_rejected++; if (num_pkts_rejected > (num_pkts_accepted + 1) * (num_registered_interfaces + 1) * 2) { fprintf(stderr, "*** WARNING: Received %d packets; Accepted %d packets; Rejected %d packets because of interface mismatch\n", num_pkts_accepted + num_pkts_rejected, num_pkts_accepted, num_pkts_rejected); num_pkts_accepted = 0; num_pkts_rejected = 0; } } else { verbosedebugf("SocketDataReady got a packet from %#a to %#a on interface %#a/%s/%d/%d", &senderAddr, &destAddr, &intf->coreIntf.ip, intf->intfName, intf->index, skt); num_pkts_accepted++; } } } if (packetLen >= 0) mDNSCoreReceive(m, &packet, (mDNSu8 *)&packet + packetLen, &senderAddr, senderPort, &destAddr, MulticastDNSPort, InterfaceID); } mDNSexport TCPSocket *mDNSPlatformTCPSocket(mDNS * const m, TCPSocketFlags flags, mDNSIPPort * port) { (void)m; // Unused (void)flags; // Unused (void)port; // Unused return NULL; } mDNSexport TCPSocket *mDNSPlatformTCPAccept(TCPSocketFlags flags, int sd) { (void)flags; // Unused (void)sd; // Unused return NULL; } mDNSexport int mDNSPlatformTCPGetFD(TCPSocket *sock) { (void)sock; // Unused return -1; } mDNSexport mStatus mDNSPlatformTCPConnect(TCPSocket *sock, const mDNSAddr *dst, mDNSOpaque16 dstport, domainname *hostname, mDNSInterfaceID InterfaceID, TCPConnectionCallback callback, void *context) { (void)sock; // Unused (void)dst; // Unused (void)dstport; // Unused (void)hostname; // Unused (void)InterfaceID; // Unused (void)callback; // Unused (void)context; // Unused return(mStatus_UnsupportedErr); } mDNSexport void mDNSPlatformTCPCloseConnection(TCPSocket *sock) { (void)sock; // Unused } mDNSexport long mDNSPlatformReadTCP(TCPSocket *sock, void *buf, unsigned long buflen, mDNSBool * closed) { (void)sock; // Unused (void)buf; // Unused (void)buflen; // Unused (void)closed; // Unused return 0; } mDNSexport long mDNSPlatformWriteTCP(TCPSocket *sock, const char *msg, unsigned long len) { (void)sock; // Unused (void)msg; // Unused (void)len; // Unused return 0; } mDNSexport UDPSocket *mDNSPlatformUDPSocket(mDNS * const m, mDNSIPPort port) { (void)m; // Unused (void)port; // Unused return NULL; } mDNSexport void mDNSPlatformUDPClose(UDPSocket *sock) { (void)sock; // Unused } mDNSexport void mDNSPlatformUpdateProxyList(mDNS *const m, const mDNSInterfaceID InterfaceID) { (void)m; // Unused (void)InterfaceID; // Unused } mDNSexport void mDNSPlatformSendRawPacket(const void *const msg, const mDNSu8 *const end, mDNSInterfaceID InterfaceID) { (void)msg; // Unused (void)end; // Unused (void)InterfaceID; // Unused } mDNSexport void mDNSPlatformSetLocalAddressCacheEntry(mDNS *const m, const mDNSAddr *const tpa, const mDNSEthAddr *const tha, mDNSInterfaceID InterfaceID) { (void)m; // Unused (void)tpa; // Unused (void)tha; // Unused (void)InterfaceID; // Unused } mDNSexport mStatus mDNSPlatformTLSSetupCerts(void) { return(mStatus_UnsupportedErr); } mDNSexport void mDNSPlatformTLSTearDownCerts(void) { } mDNSexport void mDNSPlatformSetAllowSleep(mDNS *const m, mDNSBool allowSleep, const char *reason) { (void) m; (void) allowSleep; (void) reason; } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark - #pragma mark - /etc/hosts support #endif mDNSexport void FreeEtcHosts(mDNS *const m, AuthRecord *const rr, mStatus result) { (void)m; // unused (void)rr; (void)result; } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark ***** DDNS Config Platform Functions #endif mDNSexport void mDNSPlatformSetDNSConfig(mDNS *const m, mDNSBool setservers, mDNSBool setsearch, domainname *const fqdn, DNameListElem **RegDomains, DNameListElem **BrowseDomains) { (void) m; (void) setservers; (void) fqdn; (void) setsearch; (void) RegDomains; (void) BrowseDomains; } mDNSexport mStatus mDNSPlatformGetPrimaryInterface(mDNS * const m, mDNSAddr * v4, mDNSAddr * v6, mDNSAddr * router) { (void) m; (void) v4; (void) v6; (void) router; return mStatus_UnsupportedErr; } mDNSexport void mDNSPlatformDynDNSHostNameStatusChanged(const domainname *const dname, const mStatus status) { (void) dname; (void) status; } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark ***** Init and Term #endif // This gets the current hostname, truncating it at the first dot if necessary mDNSlocal void GetUserSpecifiedRFC1034ComputerName(domainlabel *const namelabel) { int len = 0; #ifndef __ANDROID__ gethostname((char *)(&namelabel->c[1]), MAX_DOMAIN_LABEL); #else // use an appropriate default label rather than the linux default of 'localhost' strncpy(&namelabel->c[1], "Android", MAX_DOMAIN_LABEL); #endif while (len < MAX_DOMAIN_LABEL && namelabel->c[len+1] && namelabel->c[len+1] != '.') len++; namelabel->c[0] = len; } // On OS X this gets the text of the field labelled "Computer Name" in the Sharing Prefs Control Panel // Other platforms can either get the information from the appropriate place, // or they can alternatively just require all registering services to provide an explicit name mDNSlocal void GetUserSpecifiedFriendlyComputerName(domainlabel *const namelabel) { // On Unix we have no better name than the host name, so we just use that. GetUserSpecifiedRFC1034ComputerName(namelabel); } mDNSexport int ParseDNSServers(mDNS *m, const char *filePath) { char line[256]; char nameserver[16]; char keyword[10]; int numOfServers = 0; FILE *fp = fopen(filePath, "r"); if (fp == NULL) return -1; while (fgets(line,sizeof(line),fp)) { struct in_addr ina; line[255]='\0'; // just to be safe if (sscanf(line,"%10s %15s", keyword, nameserver) != 2) continue; // it will skip whitespaces if (strncasecmp(keyword,"nameserver",10)) continue; if (inet_aton(nameserver, (struct in_addr *)&ina) != 0) { mDNSAddr DNSAddr; DNSAddr.type = mDNSAddrType_IPv4; DNSAddr.ip.v4.NotAnInteger = ina.s_addr; mDNS_AddDNSServer(m, NULL, mDNSInterface_Any, &DNSAddr, UnicastDNSPort, mDNSfalse, 0); numOfServers++; } } // __ANDROID__ : if fp was opened, it needs to be closed int fp_closed = fclose(fp); assert(fp_closed == 0); return (numOfServers > 0) ? 0 : -1; } // Searches the interface list looking for the named interface. // Returns a pointer to if it found, or NULL otherwise. mDNSlocal PosixNetworkInterface *SearchForInterfaceByName(mDNS *const m, const char *intfName) { PosixNetworkInterface *intf; assert(m != NULL); assert(intfName != NULL); intf = (PosixNetworkInterface*)(m->HostInterfaces); while ((intf != NULL) && (strcmp(intf->intfName, intfName) != 0)) intf = (PosixNetworkInterface *)(intf->coreIntf.next); return intf; } mDNSexport mDNSInterfaceID mDNSPlatformInterfaceIDfromInterfaceIndex(mDNS *const m, mDNSu32 index) { PosixNetworkInterface *intf; assert(m != NULL); if (index == kDNSServiceInterfaceIndexLocalOnly) return(mDNSInterface_LocalOnly); if (index == kDNSServiceInterfaceIndexP2P ) return(mDNSInterface_P2P); if (index == kDNSServiceInterfaceIndexAny ) return(mDNSInterface_Any); intf = (PosixNetworkInterface*)(m->HostInterfaces); while ((intf != NULL) && (mDNSu32) intf->index != index) intf = (PosixNetworkInterface *)(intf->coreIntf.next); return (mDNSInterfaceID) intf; } mDNSexport mDNSu32 mDNSPlatformInterfaceIndexfromInterfaceID(mDNS *const m, mDNSInterfaceID id, mDNSBool suppressNetworkChange) { PosixNetworkInterface *intf; (void) suppressNetworkChange; // Unused assert(m != NULL); if (id == mDNSInterface_LocalOnly) return(kDNSServiceInterfaceIndexLocalOnly); if (id == mDNSInterface_P2P ) return(kDNSServiceInterfaceIndexP2P); if (id == mDNSInterface_Any ) return(kDNSServiceInterfaceIndexAny); intf = (PosixNetworkInterface*)(m->HostInterfaces); while ((intf != NULL) && (mDNSInterfaceID) intf != id) intf = (PosixNetworkInterface *)(intf->coreIntf.next); return intf ? intf->index : 0; } // Frees the specified PosixNetworkInterface structure. The underlying // interface must have already been deregistered with the mDNS core. mDNSlocal void FreePosixNetworkInterface(PosixNetworkInterface *intf) { assert(intf != NULL); if (intf->intfName != NULL) free((void *)intf->intfName); if (intf->multicastSocket4 != -1) { int ipv4_closed = close(intf->multicastSocket4); assert(ipv4_closed == 0); } #if HAVE_IPV6 if (intf->multicastSocket6 != -1) { int ipv6_closed = close(intf->multicastSocket6); assert(ipv6_closed == 0); } #endif free(intf); } // Grab the first interface, deregister it, free it, and repeat until done. mDNSlocal void ClearInterfaceList(mDNS *const m) { assert(m != NULL); while (m->HostInterfaces) { PosixNetworkInterface *intf = (PosixNetworkInterface*)(m->HostInterfaces); mDNS_DeregisterInterface(m, &intf->coreIntf, mDNSfalse); if (gMDNSPlatformPosixVerboseLevel > 0) fprintf(stderr, "Deregistered interface %s\n", intf->intfName); FreePosixNetworkInterface(intf); } num_registered_interfaces = 0; num_pkts_accepted = 0; num_pkts_rejected = 0; } // Sets up a send/receive socket. // If mDNSIPPort port is non-zero, then it's a multicast socket on the specified interface // If mDNSIPPort port is zero, then it's a randomly assigned port number, used for sending unicast queries mDNSlocal int SetupSocket(struct sockaddr *intfAddr, mDNSIPPort port, int interfaceIndex, int *sktPtr) { int err = 0; static const int kOn = 1; static const int kIntTwoFiveFive = 255; static const unsigned char kByteTwoFiveFive = 255; const mDNSBool JoinMulticastGroup = (port.NotAnInteger != 0); (void) interfaceIndex; // This parameter unused on plaforms that don't have IPv6 assert(intfAddr != NULL); assert(sktPtr != NULL); assert(*sktPtr == -1); // Open the socket... if (intfAddr->sa_family == AF_INET) *sktPtr = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); #if HAVE_IPV6 else if (intfAddr->sa_family == AF_INET6) *sktPtr = socket(PF_INET6, SOCK_DGRAM, IPPROTO_UDP); #endif else return EINVAL; if (*sktPtr < 0) { err = errno; perror((intfAddr->sa_family == AF_INET) ? "socket AF_INET" : "socket AF_INET6"); } // ... with a shared UDP port, if it's for multicast receiving if (err == 0 && port.NotAnInteger) { #if defined(SO_REUSEPORT) err = setsockopt(*sktPtr, SOL_SOCKET, SO_REUSEPORT, &kOn, sizeof(kOn)); #elif defined(SO_REUSEADDR) err = setsockopt(*sktPtr, SOL_SOCKET, SO_REUSEADDR, &kOn, sizeof(kOn)); #else #error This platform has no way to avoid address busy errors on multicast. #endif if (err < 0) { err = errno; perror("setsockopt - SO_REUSExxxx"); } } // We want to receive destination addresses and interface identifiers. if (intfAddr->sa_family == AF_INET) { struct ip_mreq imr; struct sockaddr_in bindAddr; if (err == 0) { #if defined(IP_PKTINFO) // Linux err = setsockopt(*sktPtr, IPPROTO_IP, IP_PKTINFO, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IP_PKTINFO"); } #elif defined(IP_RECVDSTADDR) || defined(IP_RECVIF) // BSD and Solaris #if defined(IP_RECVDSTADDR) err = setsockopt(*sktPtr, IPPROTO_IP, IP_RECVDSTADDR, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IP_RECVDSTADDR"); } #endif #if defined(IP_RECVIF) if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IP, IP_RECVIF, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IP_RECVIF"); } } #endif #else #warning This platform has no way to get the destination interface information -- will only work for single-homed hosts #endif } #if defined(IP_RECVTTL) // Linux if (err == 0) { setsockopt(*sktPtr, IPPROTO_IP, IP_RECVTTL, &kOn, sizeof(kOn)); // We no longer depend on being able to get the received TTL, so don't worry if the option fails } #endif // Add multicast group membership on this interface if (err == 0 && JoinMulticastGroup) { imr.imr_multiaddr.s_addr = AllDNSLinkGroup_v4.ip.v4.NotAnInteger; imr.imr_interface = ((struct sockaddr_in*)intfAddr)->sin_addr; err = setsockopt(*sktPtr, IPPROTO_IP, IP_ADD_MEMBERSHIP, &imr, sizeof(imr)); if (err < 0) { err = errno; perror("setsockopt - IP_ADD_MEMBERSHIP"); } } // Specify outgoing interface too if (err == 0 && JoinMulticastGroup) { err = setsockopt(*sktPtr, IPPROTO_IP, IP_MULTICAST_IF, &((struct sockaddr_in*)intfAddr)->sin_addr, sizeof(struct in_addr)); if (err < 0) { err = errno; perror("setsockopt - IP_MULTICAST_IF"); } } // Per the mDNS spec, send unicast packets with TTL 255 if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IP, IP_TTL, &kIntTwoFiveFive, sizeof(kIntTwoFiveFive)); if (err < 0) { err = errno; perror("setsockopt - IP_TTL"); } } // and multicast packets with TTL 255 too // There's some debate as to whether IP_MULTICAST_TTL is an int or a byte so we just try both. if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IP, IP_MULTICAST_TTL, &kByteTwoFiveFive, sizeof(kByteTwoFiveFive)); if (err < 0 && errno == EINVAL) err = setsockopt(*sktPtr, IPPROTO_IP, IP_MULTICAST_TTL, &kIntTwoFiveFive, sizeof(kIntTwoFiveFive)); if (err < 0) { err = errno; perror("setsockopt - IP_MULTICAST_TTL"); } } // And start listening for packets if (err == 0) { bindAddr.sin_family = AF_INET; bindAddr.sin_port = port.NotAnInteger; bindAddr.sin_addr.s_addr = INADDR_ANY; // Want to receive multicasts AND unicasts on this socket err = bind(*sktPtr, (struct sockaddr *) &bindAddr, sizeof(bindAddr)); if (err < 0) { err = errno; perror("bind"); fflush(stderr); } } } // endif (intfAddr->sa_family == AF_INET) #if HAVE_IPV6 else if (intfAddr->sa_family == AF_INET6) { struct ipv6_mreq imr6; struct sockaddr_in6 bindAddr6; #if defined(IPV6_PKTINFO) if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_2292_PKTINFO, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IPV6_PKTINFO"); } } #else #warning This platform has no way to get the destination interface information for IPv6 -- will only work for single-homed hosts #endif #if defined(IPV6_HOPLIMIT) if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_2292_HOPLIMIT, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IPV6_HOPLIMIT"); } } #endif // Add multicast group membership on this interface if (err == 0 && JoinMulticastGroup) { imr6.ipv6mr_multiaddr = *(const struct in6_addr*)&AllDNSLinkGroup_v6.ip.v6; imr6.ipv6mr_interface = interfaceIndex; //LogMsg("Joining %.16a on %d", &imr6.ipv6mr_multiaddr, imr6.ipv6mr_interface); err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_JOIN_GROUP, &imr6, sizeof(imr6)); if (err < 0) { err = errno; verbosedebugf("IPV6_JOIN_GROUP %.16a on %d failed.\n", &imr6.ipv6mr_multiaddr, imr6.ipv6mr_interface); perror("setsockopt - IPV6_JOIN_GROUP"); } } // Specify outgoing interface too if (err == 0 && JoinMulticastGroup) { u_int multicast_if = interfaceIndex; err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_MULTICAST_IF, &multicast_if, sizeof(multicast_if)); if (err < 0) { err = errno; perror("setsockopt - IPV6_MULTICAST_IF"); } } // We want to receive only IPv6 packets on this socket. // Without this option, we may get IPv4 addresses as mapped addresses. if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_V6ONLY, &kOn, sizeof(kOn)); if (err < 0) { err = errno; perror("setsockopt - IPV6_V6ONLY"); } } // Per the mDNS spec, send unicast packets with TTL 255 if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &kIntTwoFiveFive, sizeof(kIntTwoFiveFive)); if (err < 0) { err = errno; perror("setsockopt - IPV6_UNICAST_HOPS"); } } // and multicast packets with TTL 255 too // There's some debate as to whether IPV6_MULTICAST_HOPS is an int or a byte so we just try both. if (err == 0) { err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &kByteTwoFiveFive, sizeof(kByteTwoFiveFive)); if (err < 0 && errno == EINVAL) err = setsockopt(*sktPtr, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &kIntTwoFiveFive, sizeof(kIntTwoFiveFive)); if (err < 0) { err = errno; perror("setsockopt - IPV6_MULTICAST_HOPS"); } } // And start listening for packets if (err == 0) { mDNSPlatformMemZero(&bindAddr6, sizeof(bindAddr6)); #ifndef NOT_HAVE_SA_LEN bindAddr6.sin6_len = sizeof(bindAddr6); #endif bindAddr6.sin6_family = AF_INET6; bindAddr6.sin6_port = port.NotAnInteger; bindAddr6.sin6_flowinfo = 0; bindAddr6.sin6_addr = in6addr_any; // Want to receive multicasts AND unicasts on this socket bindAddr6.sin6_scope_id = 0; err = bind(*sktPtr, (struct sockaddr *) &bindAddr6, sizeof(bindAddr6)); if (err < 0) { err = errno; perror("bind"); fflush(stderr); } } } // endif (intfAddr->sa_family == AF_INET6) #endif // Set the socket to non-blocking. if (err == 0) { err = fcntl(*sktPtr, F_GETFL, 0); if (err < 0) err = errno; else { err = fcntl(*sktPtr, F_SETFL, err | O_NONBLOCK); if (err < 0) err = errno; } } // Clean up if (err != 0 && *sktPtr != -1) { int sktClosed = close(*sktPtr); assert(sktClosed == 0); *sktPtr = -1; } assert((err == 0) == (*sktPtr != -1)); return err; } // Creates a PosixNetworkInterface for the interface whose IP address is // intfAddr and whose name is intfName and registers it with mDNS core. mDNSlocal int SetupOneInterface(mDNS *const m, struct sockaddr *intfAddr, struct sockaddr *intfMask, const char *intfName, int intfIndex) { int err = 0; PosixNetworkInterface *intf; PosixNetworkInterface *alias = NULL; assert(m != NULL); assert(intfAddr != NULL); assert(intfName != NULL); assert(intfMask != NULL); // Allocate the interface structure itself. intf = (PosixNetworkInterface*)malloc(sizeof(*intf)); if (intf == NULL) { assert(0); err = ENOMEM; } // And make a copy of the intfName. if (err == 0) { intf->intfName = strdup(intfName); if (intf->intfName == NULL) { assert(0); err = ENOMEM; } } if (err == 0) { // Set up the fields required by the mDNS core. SockAddrTomDNSAddr(intfAddr, &intf->coreIntf.ip, NULL); SockAddrTomDNSAddr(intfMask, &intf->coreIntf.mask, NULL); //LogMsg("SetupOneInterface: %#a %#a", &intf->coreIntf.ip, &intf->coreIntf.mask); strncpy(intf->coreIntf.ifname, intfName, sizeof(intf->coreIntf.ifname)); intf->coreIntf.ifname[sizeof(intf->coreIntf.ifname)-1] = 0; intf->coreIntf.Advertise = m->AdvertiseLocalAddresses; intf->coreIntf.McastTxRx = mDNStrue; // Set up the extra fields in PosixNetworkInterface. assert(intf->intfName != NULL); // intf->intfName already set up above intf->index = intfIndex; intf->multicastSocket4 = -1; #if HAVE_IPV6 intf->multicastSocket6 = -1; #endif alias = SearchForInterfaceByName(m, intf->intfName); if (alias == NULL) alias = intf; intf->coreIntf.InterfaceID = (mDNSInterfaceID)alias; if (alias != intf) debugf("SetupOneInterface: %s %#a is an alias of %#a", intfName, &intf->coreIntf.ip, &alias->coreIntf.ip); } // Set up the multicast socket if (err == 0) { if (alias->multicastSocket4 == -1 && intfAddr->sa_family == AF_INET) err = SetupSocket(intfAddr, MulticastDNSPort, intf->index, &alias->multicastSocket4); #if HAVE_IPV6 else if (alias->multicastSocket6 == -1 && intfAddr->sa_family == AF_INET6) err = SetupSocket(intfAddr, MulticastDNSPort, intf->index, &alias->multicastSocket6); #endif } // The interface is all ready to go, let's register it with the mDNS core. if (err == 0) err = mDNS_RegisterInterface(m, &intf->coreIntf, mDNSfalse); // Clean up. if (err == 0) { num_registered_interfaces++; debugf("SetupOneInterface: %s %#a Registered", intf->intfName, &intf->coreIntf.ip); if (gMDNSPlatformPosixVerboseLevel > 0) fprintf(stderr, "Registered interface %s\n", intf->intfName); } else { // Use intfName instead of intf->intfName in the next line to avoid dereferencing NULL. debugf("SetupOneInterface: %s %#a failed to register %d", intfName, &intf->coreIntf.ip, err); if (intf) { FreePosixNetworkInterface(intf); intf = NULL; } } assert((err == 0) == (intf != NULL)); return err; } // Call get_ifi_info() to obtain a list of active interfaces and call SetupOneInterface() on each one. mDNSlocal int SetupInterfaceList(mDNS *const m) { mDNSBool foundav4 = mDNSfalse; int err = 0; struct ifi_info *intfList = get_ifi_info(AF_INET, mDNStrue); struct ifi_info *firstLoopback = NULL; assert(m != NULL); debugf("SetupInterfaceList"); if (intfList == NULL) err = ENOENT; #if HAVE_IPV6 if (err == 0) /* Link the IPv6 list to the end of the IPv4 list */ { struct ifi_info **p = &intfList; while (*p) p = &(*p)->ifi_next; *p = get_ifi_info(AF_INET6, mDNStrue); } #endif if (err == 0) { struct ifi_info *i = intfList; while (i) { if ( ((i->ifi_addr->sa_family == AF_INET) #if HAVE_IPV6 || (i->ifi_addr->sa_family == AF_INET6) #endif ) && (i->ifi_flags & IFF_UP) && !(i->ifi_flags & IFF_POINTOPOINT)) { if (i->ifi_flags & IFF_LOOPBACK) { if (firstLoopback == NULL) firstLoopback = i; } else if (i->ifi_flags & (IFF_MULTICAST | IFF_BROADCAST)) // http://b/25669326 { if (SetupOneInterface(m, i->ifi_addr, i->ifi_netmask, i->ifi_name, i->ifi_index) == 0) if (i->ifi_addr->sa_family == AF_INET) foundav4 = mDNStrue; } } i = i->ifi_next; } // If we found no normal interfaces but we did find a loopback interface, register the // loopback interface. This allows self-discovery if no interfaces are configured. // Temporary workaround: Multicast loopback on IPv6 interfaces appears not to work. // In the interim, we skip loopback interface only if we found at least one v4 interface to use // if ((m->HostInterfaces == NULL) && (firstLoopback != NULL)) if (!foundav4 && firstLoopback) (void) SetupOneInterface(m, firstLoopback->ifi_addr, firstLoopback->ifi_netmask, firstLoopback->ifi_name, firstLoopback->ifi_index); } // Clean up. if (intfList != NULL) free_ifi_info(intfList); return err; } #if USES_NETLINK // See for a description of NetLink // Open a socket that will receive interface change notifications mDNSlocal mStatus OpenIfNotifySocket(int *pFD) { mStatus err = mStatus_NoError; struct sockaddr_nl snl; int sock; int ret; sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock < 0) return errno; // Configure read to be non-blocking because inbound msg size is not known in advance (void) fcntl(sock, F_SETFL, O_NONBLOCK); /* Subscribe the socket to Link & IP addr notifications. */ mDNSPlatformMemZero(&snl, sizeof snl); snl.nl_family = AF_NETLINK; snl.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR; ret = bind(sock, (struct sockaddr *) &snl, sizeof snl); if (0 == ret) *pFD = sock; else err = errno; return err; } #if MDNS_DEBUGMSGS mDNSlocal void PrintNetLinkMsg(const struct nlmsghdr *pNLMsg) { const char *kNLMsgTypes[] = { "", "NLMSG_NOOP", "NLMSG_ERROR", "NLMSG_DONE", "NLMSG_OVERRUN" }; const char *kNLRtMsgTypes[] = { "RTM_NEWLINK", "RTM_DELLINK", "RTM_GETLINK", "RTM_NEWADDR", "RTM_DELADDR", "RTM_GETADDR" }; printf("nlmsghdr len=%d, type=%s, flags=0x%x\n", pNLMsg->nlmsg_len, pNLMsg->nlmsg_type < RTM_BASE ? kNLMsgTypes[pNLMsg->nlmsg_type] : kNLRtMsgTypes[pNLMsg->nlmsg_type - RTM_BASE], pNLMsg->nlmsg_flags); if (RTM_NEWLINK <= pNLMsg->nlmsg_type && pNLMsg->nlmsg_type <= RTM_GETLINK) { struct ifinfomsg *pIfInfo = (struct ifinfomsg*) NLMSG_DATA(pNLMsg); printf("ifinfomsg family=%d, type=%d, index=%d, flags=0x%x, change=0x%x\n", pIfInfo->ifi_family, pIfInfo->ifi_type, pIfInfo->ifi_index, pIfInfo->ifi_flags, pIfInfo->ifi_change); } else if (RTM_NEWADDR <= pNLMsg->nlmsg_type && pNLMsg->nlmsg_type <= RTM_GETADDR) { struct ifaddrmsg *pIfAddr = (struct ifaddrmsg*) NLMSG_DATA(pNLMsg); printf("ifaddrmsg family=%d, index=%d, flags=0x%x\n", pIfAddr->ifa_family, pIfAddr->ifa_index, pIfAddr->ifa_flags); } printf("\n"); } #endif mDNSlocal mDNSu32 ProcessRoutingNotification(int sd) // Read through the messages on sd and if any indicate that any interface records should // be torn down and rebuilt, return affected indices as a bitmask. Otherwise return 0. { ssize_t readCount; char buff[4096]; struct nlmsghdr *pNLMsg = (struct nlmsghdr*) buff; mDNSu32 result = 0; // The structure here is more complex than it really ought to be because, // unfortunately, there's no good way to size a buffer in advance large // enough to hold all pending data and so avoid message fragmentation. // (Note that FIONREAD is not supported on AF_NETLINK.) readCount = read(sd, buff, sizeof buff); while (1) { // Make sure we've got an entire nlmsghdr in the buffer, and payload, too. // If not, discard already-processed messages in buffer and read more data. if (((char*) &pNLMsg[1] > (buff + readCount)) || // i.e. *pNLMsg extends off end of buffer ((char*) pNLMsg + pNLMsg->nlmsg_len > (buff + readCount))) { if (buff < (char*) pNLMsg) // we have space to shuffle { // discard processed data readCount -= ((char*) pNLMsg - buff); memmove(buff, pNLMsg, readCount); pNLMsg = (struct nlmsghdr*) buff; // read more data readCount += read(sd, buff + readCount, sizeof buff - readCount); continue; // spin around and revalidate with new readCount } else break; // Otherwise message does not fit in buffer } #if MDNS_DEBUGMSGS PrintNetLinkMsg(pNLMsg); #endif // Process the NetLink message if (pNLMsg->nlmsg_type == RTM_GETLINK || pNLMsg->nlmsg_type == RTM_NEWLINK) result |= 1 << ((struct ifinfomsg*) NLMSG_DATA(pNLMsg))->ifi_index; else if (pNLMsg->nlmsg_type == RTM_DELADDR || pNLMsg->nlmsg_type == RTM_NEWADDR) result |= 1 << ((struct ifaddrmsg*) NLMSG_DATA(pNLMsg))->ifa_index; // Advance pNLMsg to the next message in the buffer if ((pNLMsg->nlmsg_flags & NLM_F_MULTI) != 0 && pNLMsg->nlmsg_type != NLMSG_DONE) { ssize_t len = readCount - ((char*)pNLMsg - buff); pNLMsg = NLMSG_NEXT(pNLMsg, len); } else break; // all done! } return result; } #else // USES_NETLINK // Open a socket that will receive interface change notifications mDNSlocal mStatus OpenIfNotifySocket(int *pFD) { *pFD = socket(AF_ROUTE, SOCK_RAW, 0); if (*pFD < 0) return mStatus_UnknownErr; // Configure read to be non-blocking because inbound msg size is not known in advance (void) fcntl(*pFD, F_SETFL, O_NONBLOCK); return mStatus_NoError; } #if MDNS_DEBUGMSGS mDNSlocal void PrintRoutingSocketMsg(const struct ifa_msghdr *pRSMsg) { const char *kRSMsgTypes[] = { "", "RTM_ADD", "RTM_DELETE", "RTM_CHANGE", "RTM_GET", "RTM_LOSING", "RTM_REDIRECT", "RTM_MISS", "RTM_LOCK", "RTM_OLDADD", "RTM_OLDDEL", "RTM_RESOLVE", "RTM_NEWADDR", "RTM_DELADDR", "RTM_IFINFO", "RTM_NEWMADDR", "RTM_DELMADDR" }; int index = pRSMsg->ifam_type == RTM_IFINFO ? ((struct if_msghdr*) pRSMsg)->ifm_index : pRSMsg->ifam_index; printf("ifa_msghdr len=%d, type=%s, index=%d\n", pRSMsg->ifam_msglen, kRSMsgTypes[pRSMsg->ifam_type], index); } #endif mDNSlocal mDNSu32 ProcessRoutingNotification(int sd) // Read through the messages on sd and if any indicate that any interface records should // be torn down and rebuilt, return affected indices as a bitmask. Otherwise return 0. { ssize_t readCount; char buff[4096]; struct ifa_msghdr *pRSMsg = (struct ifa_msghdr*) buff; mDNSu32 result = 0; readCount = read(sd, buff, sizeof buff); if (readCount < (ssize_t) sizeof(struct ifa_msghdr)) return mStatus_UnsupportedErr; // cannot decipher message #if MDNS_DEBUGMSGS PrintRoutingSocketMsg(pRSMsg); #endif // Process the message if (pRSMsg->ifam_type == RTM_NEWADDR || pRSMsg->ifam_type == RTM_DELADDR || pRSMsg->ifam_type == RTM_IFINFO) { if (pRSMsg->ifam_type == RTM_IFINFO) result |= 1 << ((struct if_msghdr*) pRSMsg)->ifm_index; else result |= 1 << pRSMsg->ifam_index; } return result; } #endif // USES_NETLINK // Called when data appears on interface change notification socket mDNSlocal void InterfaceChangeCallback(int fd, short filter, void *context) { IfChangeRec *pChgRec = (IfChangeRec*) context; fd_set readFDs; mDNSu32 changedInterfaces = 0; struct timeval zeroTimeout = { 0, 0 }; (void)fd; // Unused (void)filter; // Unused FD_ZERO(&readFDs); FD_SET(pChgRec->NotifySD, &readFDs); do { changedInterfaces |= ProcessRoutingNotification(pChgRec->NotifySD); } while (0 < select(pChgRec->NotifySD + 1, &readFDs, (fd_set*) NULL, (fd_set*) NULL, &zeroTimeout)); // Currently we rebuild the entire interface list whenever any interface change is // detected. If this ever proves to be a performance issue in a multi-homed // configuration, more care should be paid to changedInterfaces. if (changedInterfaces) mDNSPlatformPosixRefreshInterfaceList(pChgRec->mDNS); } // Register with either a Routing Socket or RtNetLink to listen for interface changes. mDNSlocal mStatus WatchForInterfaceChange(mDNS *const m) { mStatus err; IfChangeRec *pChgRec; pChgRec = (IfChangeRec*) mDNSPlatformMemAllocate(sizeof *pChgRec); if (pChgRec == NULL) return mStatus_NoMemoryErr; pChgRec->mDNS = m; err = OpenIfNotifySocket(&pChgRec->NotifySD); if (err == 0) err = mDNSPosixAddFDToEventLoop(pChgRec->NotifySD, InterfaceChangeCallback, pChgRec); return err; } // Test to see if we're the first client running on UDP port 5353, by trying to bind to 5353 without using SO_REUSEPORT. // If we fail, someone else got here first. That's not a big problem; we can share the port for multicast responses -- // we just need to be aware that we shouldn't expect to successfully receive unicast UDP responses. mDNSlocal mDNSBool mDNSPlatformInit_CanReceiveUnicast(void) { int err; int s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); struct sockaddr_in s5353; s5353.sin_family = AF_INET; s5353.sin_port = MulticastDNSPort.NotAnInteger; s5353.sin_addr.s_addr = 0; err = bind(s, (struct sockaddr *)&s5353, sizeof(s5353)); close(s); if (err) debugf("No unicast UDP responses"); else debugf("Unicast UDP responses okay"); return(err == 0); } // mDNS core calls this routine to initialise the platform-specific data. mDNSexport mStatus mDNSPlatformInit(mDNS *const m) { int err = 0; struct sockaddr sa; assert(m != NULL); if (mDNSPlatformInit_CanReceiveUnicast()) m->CanReceiveUnicastOn5353 = mDNStrue; // Tell mDNS core the names of this machine. // Set up the nice label m->nicelabel.c[0] = 0; GetUserSpecifiedFriendlyComputerName(&m->nicelabel); if (m->nicelabel.c[0] == 0) MakeDomainLabelFromLiteralString(&m->nicelabel, "Computer"); // Set up the RFC 1034-compliant label m->hostlabel.c[0] = 0; GetUserSpecifiedRFC1034ComputerName(&m->hostlabel); if (m->hostlabel.c[0] == 0) MakeDomainLabelFromLiteralString(&m->hostlabel, "Computer"); mDNS_SetFQDN(m); sa.sa_family = AF_INET; m->p->unicastSocket4 = -1; if (err == mStatus_NoError) err = SetupSocket(&sa, zeroIPPort, 0, &m->p->unicastSocket4); #if HAVE_IPV6 sa.sa_family = AF_INET6; m->p->unicastSocket6 = -1; if (err == mStatus_NoError) err = SetupSocket(&sa, zeroIPPort, 0, &m->p->unicastSocket6); #endif // Tell mDNS core about the network interfaces on this machine. if (err == mStatus_NoError) err = SetupInterfaceList(m); // Tell mDNS core about DNS Servers mDNS_Lock(m); if (err == mStatus_NoError) ParseDNSServers(m, uDNS_SERVERS_FILE); mDNS_Unlock(m); if (err == mStatus_NoError) { err = WatchForInterfaceChange(m); // Failure to observe interface changes is non-fatal. if (err != mStatus_NoError) { fprintf(stderr, "mDNS(%d) WARNING: Unable to detect interface changes (%d).\n", getpid(), err); err = mStatus_NoError; } } // We don't do asynchronous initialization on the Posix platform, so by the time // we get here the setup will already have succeeded or failed. If it succeeded, // we should just call mDNSCoreInitComplete() immediately. if (err == mStatus_NoError) mDNSCoreInitComplete(m, mStatus_NoError); return PosixErrorToStatus(err); } // mDNS core calls this routine to clean up the platform-specific data. // In our case all we need to do is to tear down every network interface. mDNSexport void mDNSPlatformClose(mDNS *const m) { assert(m != NULL); ClearInterfaceList(m); if (m->p->unicastSocket4 != -1) { int ipv4_closed = close(m->p->unicastSocket4); assert(ipv4_closed == 0); } #if HAVE_IPV6 if (m->p->unicastSocket6 != -1) { int ipv6_closed = close(m->p->unicastSocket6); assert(ipv6_closed == 0); } #endif } mDNSexport mStatus mDNSPlatformPosixRefreshInterfaceList(mDNS *const m) { int err; ClearInterfaceList(m); err = SetupInterfaceList(m); return PosixErrorToStatus(err); } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark ***** Locking #endif // On the Posix platform, locking is a no-op because we only ever enter // mDNS core on the main thread. // mDNS core calls this routine when it wants to prevent // the platform from reentering mDNS core code. mDNSexport void mDNSPlatformLock (const mDNS *const m) { (void) m; // Unused } // mDNS core calls this routine when it release the lock taken by // mDNSPlatformLock and allow the platform to reenter mDNS core code. mDNSexport void mDNSPlatformUnlock (const mDNS *const m) { (void) m; // Unused } #if COMPILER_LIKES_PRAGMA_MARK #pragma mark ***** Strings #endif // mDNS core calls this routine to copy C strings. // On the Posix platform this maps directly to the ANSI C strcpy. mDNSexport void mDNSPlatformStrCopy(void *dst, const void *src) { strcpy((char *)dst, (char *)src); } mDNSexport mDNSu32 mDNSPlatformStrLCopy(void *dst, const void *src, mDNSu32 len) { #if HAVE_STRLCPY return ((mDNSu32)strlcpy((char *)dst, (const char *)src, len)); #else size_t srcLen; srcLen = strlen((const char *)src); if (srcLen < len) { memcpy(dst, src, srcLen + 1); } else if (len > 0) { memcpy(dst, src, len - 1); ((char *)dst)[len - 1] = '\0'; } return ((mDNSu32)srcLen); #endif } // mDNS core calls this routine to get the length of a C string. // On the Posix platform this maps directly to the ANSI C strlen. mDNSexport mDNSu32 mDNSPlatformStrLen (const void *src) { return strlen((char*)src); } // mDNS core calls this routine to copy memory. // On the Posix platform this maps directly to the ANSI C memcpy. mDNSexport void mDNSPlatformMemCopy(void *dst, const void *src, mDNSu32 len) { memcpy(dst, src, len); } // mDNS core calls this routine to test whether blocks of memory are byte-for-byte // identical. On the Posix platform this is a simple wrapper around ANSI C memcmp. mDNSexport mDNSBool mDNSPlatformMemSame(const void *dst, const void *src, mDNSu32 len) { return memcmp(dst, src, len) == 0; } // mDNS core calls this routine to clear blocks of memory. // On the Posix platform this is a simple wrapper around ANSI C memset. mDNSexport void mDNSPlatformMemZero(void *dst, mDNSu32 len) { memset(dst, 0, len); } mDNSexport void * mDNSPlatformMemAllocate(mDNSu32 len) { return(malloc(len)); } mDNSexport void mDNSPlatformMemFree (void *mem) { free(mem); } mDNSexport mDNSu32 mDNSPlatformRandomSeed(void) { struct timeval tv; gettimeofday(&tv, NULL); return(tv.tv_usec); } mDNSexport mDNSs32 mDNSPlatformOneSecond = 1024; mDNSexport mStatus mDNSPlatformTimeInit(void) { // No special setup is required on Posix -- we just use gettimeofday(); // This is not really safe, because gettimeofday can go backwards if the user manually changes the date or time // We should find a better way to do this return(mStatus_NoError); } mDNSexport mDNSs32 mDNSPlatformRawTime() { struct timeval tv; gettimeofday(&tv, NULL); // tv.tv_sec is seconds since 1st January 1970 (GMT, with no adjustment for daylight savings time) // tv.tv_usec is microseconds since the start of this second (i.e. values 0 to 999999) // We use the lower 22 bits of tv.tv_sec for the top 22 bits of our result // and we multiply tv.tv_usec by 16 / 15625 to get a value in the range 0-1023 to go in the bottom 10 bits. // This gives us a proper modular (cyclic) counter that has a resolution of roughly 1ms (actually 1/1024 second) // and correctly cycles every 2^22 seconds (4194304 seconds = approx 48 days). return((tv.tv_sec << 10) | (tv.tv_usec * 16 / 15625)); } mDNSexport mDNSs32 mDNSPlatformUTC(void) { return time(NULL); } mDNSexport void mDNSPlatformSendWakeupPacket(mDNS *const m, mDNSInterfaceID InterfaceID, char *EthAddr, char *IPAddr, int iteration) { (void) m; (void) InterfaceID; (void) EthAddr; (void) IPAddr; (void) iteration; } mDNSexport mDNSBool mDNSPlatformValidRecordForInterface(AuthRecord *rr, const NetworkInterfaceInfo *intf) { (void) rr; (void) intf; return 1; } mDNSlocal void mDNSPosixAddToFDSet(int *nfds, fd_set *readfds, int s) { if (*nfds < s + 1) *nfds = s + 1; FD_SET(s, readfds); } mDNSexport void mDNSPosixGetFDSet(mDNS *m, int *nfds, fd_set *readfds, struct timeval *timeout) { mDNSs32 ticks; struct timeval interval; // 1. Call mDNS_Execute() to let mDNSCore do what it needs to do mDNSs32 nextevent = mDNS_Execute(m); // 2. Build our list of active file descriptors PosixNetworkInterface *info = (PosixNetworkInterface *)(m->HostInterfaces); if (m->p->unicastSocket4 != -1) mDNSPosixAddToFDSet(nfds, readfds, m->p->unicastSocket4); #if HAVE_IPV6 if (m->p->unicastSocket6 != -1) mDNSPosixAddToFDSet(nfds, readfds, m->p->unicastSocket6); #endif while (info) { if (info->multicastSocket4 != -1) mDNSPosixAddToFDSet(nfds, readfds, info->multicastSocket4); #if HAVE_IPV6 if (info->multicastSocket6 != -1) mDNSPosixAddToFDSet(nfds, readfds, info->multicastSocket6); #endif info = (PosixNetworkInterface *)(info->coreIntf.next); } // 3. Calculate the time remaining to the next scheduled event (in struct timeval format) ticks = nextevent - mDNS_TimeNow(m); if (ticks < 1) ticks = 1; interval.tv_sec = ticks >> 10; // The high 22 bits are seconds interval.tv_usec = ((ticks & 0x3FF) * 15625) / 16; // The low 10 bits are 1024ths // 4. If client's proposed timeout is more than what we want, then reduce it if (timeout->tv_sec > interval.tv_sec || (timeout->tv_sec == interval.tv_sec && timeout->tv_usec > interval.tv_usec)) *timeout = interval; } mDNSexport void mDNSPosixProcessFDSet(mDNS *const m, fd_set *readfds) { PosixNetworkInterface *info; assert(m != NULL); assert(readfds != NULL); info = (PosixNetworkInterface *)(m->HostInterfaces); if (m->p->unicastSocket4 != -1 && FD_ISSET(m->p->unicastSocket4, readfds)) { FD_CLR(m->p->unicastSocket4, readfds); SocketDataReady(m, NULL, m->p->unicastSocket4); } #if HAVE_IPV6 if (m->p->unicastSocket6 != -1 && FD_ISSET(m->p->unicastSocket6, readfds)) { FD_CLR(m->p->unicastSocket6, readfds); SocketDataReady(m, NULL, m->p->unicastSocket6); } #endif while (info) { if (info->multicastSocket4 != -1 && FD_ISSET(info->multicastSocket4, readfds)) { FD_CLR(info->multicastSocket4, readfds); SocketDataReady(m, info, info->multicastSocket4); } #if HAVE_IPV6 if (info->multicastSocket6 != -1 && FD_ISSET(info->multicastSocket6, readfds)) { FD_CLR(info->multicastSocket6, readfds); SocketDataReady(m, info, info->multicastSocket6); } #endif info = (PosixNetworkInterface *)(info->coreIntf.next); } } // update gMaxFD mDNSlocal void DetermineMaxEventFD(void) { PosixEventSource *iSource; gMaxFD = 0; for (iSource=(PosixEventSource*)gEventSources.Head; iSource; iSource = iSource->Next) if (gMaxFD < iSource->fd) gMaxFD = iSource->fd; } // Add a file descriptor to the set that mDNSPosixRunEventLoopOnce() listens to. mStatus mDNSPosixAddFDToEventLoop(int fd, mDNSPosixEventCallback callback, void *context) { PosixEventSource *newSource; if (gEventSources.LinkOffset == 0) InitLinkedList(&gEventSources, offsetof(PosixEventSource, Next)); if (fd >= (int) FD_SETSIZE || fd < 0) return mStatus_UnsupportedErr; if (callback == NULL) return mStatus_BadParamErr; newSource = (PosixEventSource*) malloc(sizeof *newSource); if (NULL == newSource) return mStatus_NoMemoryErr; newSource->Callback = callback; newSource->Context = context; newSource->fd = fd; AddToTail(&gEventSources, newSource); FD_SET(fd, &gEventFDs); DetermineMaxEventFD(); return mStatus_NoError; } // Remove a file descriptor from the set that mDNSPosixRunEventLoopOnce() listens to. mStatus mDNSPosixRemoveFDFromEventLoop(int fd) { PosixEventSource *iSource; for (iSource=(PosixEventSource*)gEventSources.Head; iSource; iSource = iSource->Next) { if (fd == iSource->fd) { FD_CLR(fd, &gEventFDs); RemoveFromList(&gEventSources, iSource); free(iSource); DetermineMaxEventFD(); return mStatus_NoError; } } return mStatus_NoSuchNameErr; } // Simply note the received signal in gEventSignals. mDNSlocal void NoteSignal(int signum) { sigaddset(&gEventSignals, signum); } // Tell the event package to listen for signal and report it in mDNSPosixRunEventLoopOnce(). mStatus mDNSPosixListenForSignalInEventLoop(int signum) { struct sigaction action; mStatus err; mDNSPlatformMemZero(&action, sizeof action); // more portable than member-wise assignment action.sa_handler = NoteSignal; err = sigaction(signum, &action, (struct sigaction*) NULL); sigaddset(&gEventSignalSet, signum); return err; } // Tell the event package to stop listening for signal in mDNSPosixRunEventLoopOnce(). mStatus mDNSPosixIgnoreSignalInEventLoop(int signum) { struct sigaction action; mStatus err; mDNSPlatformMemZero(&action, sizeof action); // more portable than member-wise assignment action.sa_handler = SIG_DFL; err = sigaction(signum, &action, (struct sigaction*) NULL); sigdelset(&gEventSignalSet, signum); return err; } // Do a single pass through the attendent event sources and dispatch any found to their callbacks. // Return as soon as internal timeout expires, or a signal we're listening for is received. mStatus mDNSPosixRunEventLoopOnce(mDNS *m, const struct timeval *pTimeout, sigset_t *pSignalsReceived, mDNSBool *pDataDispatched) { fd_set listenFDs = gEventFDs; int fdMax = 0, numReady; struct timeval timeout = *pTimeout; // Include the sockets that are listening to the wire in our select() set mDNSPosixGetFDSet(m, &fdMax, &listenFDs, &timeout); // timeout may get modified if (fdMax < gMaxFD) fdMax = gMaxFD; numReady = select(fdMax + 1, &listenFDs, (fd_set*) NULL, (fd_set*) NULL, &timeout); // If any data appeared, invoke its callback if (numReady > 0) { PosixEventSource *iSource; (void) mDNSPosixProcessFDSet(m, &listenFDs); // call this first to process wire data for clients for (iSource=(PosixEventSource*)gEventSources.Head; iSource; iSource = iSource->Next) { if (FD_ISSET(iSource->fd, &listenFDs)) { iSource->Callback(iSource->fd, 0, iSource->Context); break; // in case callback removed elements from gEventSources } } *pDataDispatched = mDNStrue; } else *pDataDispatched = mDNSfalse; (void) sigprocmask(SIG_BLOCK, &gEventSignalSet, (sigset_t*) NULL); *pSignalsReceived = gEventSignals; sigemptyset(&gEventSignals); (void) sigprocmask(SIG_UNBLOCK, &gEventSignalSet, (sigset_t*) NULL); return mStatus_NoError; }