#include "aco_ir.h" #include "aco_builder.h" #include "sid.h" #include "ac_shader_util.h" namespace aco { static const char *reduce_ops[] = { [iadd8] = "iadd8", [iadd16] = "iadd16", [iadd32] = "iadd32", [iadd64] = "iadd64", [imul8] = "imul8", [imul16] = "imul16", [imul32] = "imul32", [imul64] = "imul64", [fadd16] = "fadd16", [fadd32] = "fadd32", [fadd64] = "fadd64", [fmul16] = "fmul16", [fmul32] = "fmul32", [fmul64] = "fmul64", [imin8] = "imin8", [imin16] = "imin16", [imin32] = "imin32", [imin64] = "imin64", [imax8] = "imax8", [imax16] = "imax16", [imax32] = "imax32", [imax64] = "imax64", [umin8] = "umin8", [umin16] = "umin16", [umin32] = "umin32", [umin64] = "umin64", [umax8] = "umax8", [umax16] = "umax16", [umax32] = "umax32", [umax64] = "umax64", [fmin16] = "fmin16", [fmin32] = "fmin32", [fmin64] = "fmin64", [fmax16] = "fmax16", [fmax32] = "fmax32", [fmax64] = "fmax64", [iand8] = "iand8", [iand16] = "iand16", [iand32] = "iand32", [iand64] = "iand64", [ior8] = "ior8", [ior16] = "ior16", [ior32] = "ior32", [ior64] = "ior64", [ixor8] = "ixor8", [ixor16] = "ixor16", [ixor32] = "ixor32", [ixor64] = "ixor64", }; static void print_reg_class(const RegClass rc, FILE *output) { switch (rc) { case RegClass::s1: fprintf(output, " s1: "); return; case RegClass::s2: fprintf(output, " s2: "); return; case RegClass::s3: fprintf(output, " s3: "); return; case RegClass::s4: fprintf(output, " s4: "); return; case RegClass::s6: fprintf(output, " s6: "); return; case RegClass::s8: fprintf(output, " s8: "); return; case RegClass::s16: fprintf(output, "s16: "); return; case RegClass::v1: fprintf(output, " v1: "); return; case RegClass::v2: fprintf(output, " v2: "); return; case RegClass::v3: fprintf(output, " v3: "); return; case RegClass::v4: fprintf(output, " v4: "); return; case RegClass::v5: fprintf(output, " v5: "); return; case RegClass::v6: fprintf(output, " v6: "); return; case RegClass::v7: fprintf(output, " v7: "); return; case RegClass::v8: fprintf(output, " v8: "); return; case RegClass::v1b: fprintf(output, " v1b: "); return; case RegClass::v2b: fprintf(output, " v2b: "); return; case RegClass::v3b: fprintf(output, " v3b: "); return; case RegClass::v4b: fprintf(output, " v4b: "); return; case RegClass::v6b: fprintf(output, " v6b: "); return; case RegClass::v8b: fprintf(output, " v8b: "); return; case RegClass::v1_linear: fprintf(output, " v1: "); return; case RegClass::v2_linear: fprintf(output, " v2: "); return; } } void print_physReg(PhysReg reg, unsigned bytes, FILE *output) { if (reg == 124) { fprintf(output, ":m0"); } else if (reg == 106) { fprintf(output, ":vcc"); } else if (reg == 253) { fprintf(output, ":scc"); } else if (reg == 126) { fprintf(output, ":exec"); } else { bool is_vgpr = reg / 256; unsigned r = reg % 256; unsigned size = DIV_ROUND_UP(bytes, 4); fprintf(output, ":%c[%d", is_vgpr ? 'v' : 's', r); if (size > 1) fprintf(output, "-%d]", r + size -1); else fprintf(output, "]"); if (reg.byte() || bytes % 4) fprintf(output, "[%d:%d]", reg.byte()*8, (reg.byte()+bytes) * 8); } } static void print_constant(uint8_t reg, FILE *output) { if (reg >= 128 && reg <= 192) { fprintf(output, "%d", reg - 128); return; } else if (reg >= 192 && reg <= 208) { fprintf(output, "%d", 192 - reg); return; } switch (reg) { case 240: fprintf(output, "0.5"); break; case 241: fprintf(output, "-0.5"); break; case 242: fprintf(output, "1.0"); break; case 243: fprintf(output, "-1.0"); break; case 244: fprintf(output, "2.0"); break; case 245: fprintf(output, "-2.0"); break; case 246: fprintf(output, "4.0"); break; case 247: fprintf(output, "-4.0"); break; case 248: fprintf(output, "1/(2*PI)"); break; } } static void print_operand(const Operand *operand, FILE *output) { if (operand->isLiteral() || (operand->isConstant() && operand->bytes() == 1)) { if (operand->bytes() == 1) fprintf(output, "0x%.2x", operand->constantValue()); else if (operand->bytes() == 2) fprintf(output, "0x%.4x", operand->constantValue()); else fprintf(output, "0x%x", operand->constantValue()); } else if (operand->isConstant()) { print_constant(operand->physReg().reg(), output); } else if (operand->isUndefined()) { print_reg_class(operand->regClass(), output); fprintf(output, "undef"); } else { if (operand->isLateKill()) fprintf(output, "(latekill)"); fprintf(output, "%%%d", operand->tempId()); if (operand->isFixed()) print_physReg(operand->physReg(), operand->bytes(), output); } } static void print_definition(const Definition *definition, FILE *output) { print_reg_class(definition->regClass(), output); if (definition->isPrecise()) fprintf(output, "(precise)"); if (definition->isNUW()) fprintf(output, "(nuw)"); fprintf(output, "%%%d", definition->tempId()); if (definition->isFixed()) print_physReg(definition->physReg(), definition->bytes(), output); } static void print_storage(storage_class storage, FILE *output) { fprintf(output, " storage:"); int printed = 0; if (storage & storage_buffer) printed += fprintf(output, "%sbuffer", printed ? "," : ""); if (storage & storage_atomic_counter) printed += fprintf(output, "%satomic_counter", printed ? "," : ""); if (storage & storage_image) printed += fprintf(output, "%simage", printed ? "," : ""); if (storage & storage_shared) printed += fprintf(output, "%sshared", printed ? "," : ""); if (storage & storage_vmem_output) printed += fprintf(output, "%svmem_output", printed ? "," : ""); if (storage & storage_scratch) printed += fprintf(output, "%sscratch", printed ? "," : ""); if (storage & storage_vgpr_spill) printed += fprintf(output, "%svgpr_spill", printed ? "," : ""); } static void print_semantics(memory_semantics sem, FILE *output) { fprintf(output, " semantics:"); int printed = 0; if (sem & semantic_acquire) printed += fprintf(output, "%sacquire", printed ? "," : ""); if (sem & semantic_release) printed += fprintf(output, "%srelease", printed ? "," : ""); if (sem & semantic_volatile) printed += fprintf(output, "%svolatile", printed ? "," : ""); if (sem & semantic_private) printed += fprintf(output, "%sprivate", printed ? "," : ""); if (sem & semantic_can_reorder) printed += fprintf(output, "%sreorder", printed ? "," : ""); if (sem & semantic_atomic) printed += fprintf(output, "%satomic", printed ? "," : ""); if (sem & semantic_rmw) printed += fprintf(output, "%srmw", printed ? "," : ""); } static void print_scope(sync_scope scope, FILE *output, const char *prefix="scope") { fprintf(output, " %s:", prefix); switch (scope) { case scope_invocation: fprintf(output, "invocation"); break; case scope_subgroup: fprintf(output, "subgroup"); break; case scope_workgroup: fprintf(output, "workgroup"); break; case scope_queuefamily: fprintf(output, "queuefamily"); break; case scope_device: fprintf(output, "device"); break; } } static void print_sync(memory_sync_info sync, FILE *output) { print_storage(sync.storage, output); print_semantics(sync.semantics, output); print_scope(sync.scope, output); } static void print_instr_format_specific(const Instruction *instr, FILE *output) { switch (instr->format) { case Format::SOPK: { const SOPK_instruction* sopk = static_cast(instr); fprintf(output, " imm:%d", sopk->imm & 0x8000 ? (sopk->imm - 65536) : sopk->imm); break; } case Format::SOPP: { const SOPP_instruction* sopp = static_cast(instr); uint16_t imm = sopp->imm; switch (instr->opcode) { case aco_opcode::s_waitcnt: { /* we usually should check the chip class for vmcnt/lgkm, but * insert_waitcnt() should fill it in regardless. */ unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10); if (vmcnt != 63) fprintf(output, " vmcnt(%d)", vmcnt); if (((imm >> 4) & 0x7) < 0x7) fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7); if (((imm >> 8) & 0x3F) < 0x3F) fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F); break; } case aco_opcode::s_endpgm: case aco_opcode::s_endpgm_saved: case aco_opcode::s_endpgm_ordered_ps_done: case aco_opcode::s_wakeup: case aco_opcode::s_barrier: case aco_opcode::s_icache_inv: case aco_opcode::s_ttracedata: case aco_opcode::s_set_gpr_idx_off: { break; } case aco_opcode::s_sendmsg: { unsigned id = imm & sendmsg_id_mask; switch (id) { case sendmsg_none: fprintf(output, " sendmsg(MSG_NONE)"); break; case _sendmsg_gs: fprintf(output, " sendmsg(gs%s%s, %u)", imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8); break; case _sendmsg_gs_done: fprintf(output, " sendmsg(gs_done%s%s, %u)", imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8); break; case sendmsg_save_wave: fprintf(output, " sendmsg(save_wave)"); break; case sendmsg_stall_wave_gen: fprintf(output, " sendmsg(stall_wave_gen)"); break; case sendmsg_halt_waves: fprintf(output, " sendmsg(halt_waves)"); break; case sendmsg_ordered_ps_done: fprintf(output, " sendmsg(ordered_ps_done)"); break; case sendmsg_early_prim_dealloc: fprintf(output, " sendmsg(early_prim_dealloc)"); break; case sendmsg_gs_alloc_req: fprintf(output, " sendmsg(gs_alloc_req)"); break; } break; } default: { if (imm) fprintf(output, " imm:%u", imm); break; } } if (sopp->block != -1) fprintf(output, " block:BB%d", sopp->block); break; } case Format::SMEM: { const SMEM_instruction* smem = static_cast(instr); if (smem->glc) fprintf(output, " glc"); if (smem->dlc) fprintf(output, " dlc"); if (smem->nv) fprintf(output, " nv"); print_sync(smem->sync, output); break; } case Format::VINTRP: { const Interp_instruction* vintrp = static_cast(instr); fprintf(output, " attr%d.%c", vintrp->attribute, "xyzw"[vintrp->component]); break; } case Format::DS: { const DS_instruction* ds = static_cast(instr); if (ds->offset0) fprintf(output, " offset0:%u", ds->offset0); if (ds->offset1) fprintf(output, " offset1:%u", ds->offset1); if (ds->gds) fprintf(output, " gds"); print_sync(ds->sync, output); break; } case Format::MUBUF: { const MUBUF_instruction* mubuf = static_cast(instr); if (mubuf->offset) fprintf(output, " offset:%u", mubuf->offset); if (mubuf->offen) fprintf(output, " offen"); if (mubuf->idxen) fprintf(output, " idxen"); if (mubuf->addr64) fprintf(output, " addr64"); if (mubuf->glc) fprintf(output, " glc"); if (mubuf->dlc) fprintf(output, " dlc"); if (mubuf->slc) fprintf(output, " slc"); if (mubuf->tfe) fprintf(output, " tfe"); if (mubuf->lds) fprintf(output, " lds"); if (mubuf->disable_wqm) fprintf(output, " disable_wqm"); print_sync(mubuf->sync, output); break; } case Format::MIMG: { const MIMG_instruction* mimg = static_cast(instr); unsigned identity_dmask = !instr->definitions.empty() ? (1 << instr->definitions[0].size()) - 1 : 0xf; if ((mimg->dmask & identity_dmask) != identity_dmask) fprintf(output, " dmask:%s%s%s%s", mimg->dmask & 0x1 ? "x" : "", mimg->dmask & 0x2 ? "y" : "", mimg->dmask & 0x4 ? "z" : "", mimg->dmask & 0x8 ? "w" : ""); switch (mimg->dim) { case ac_image_1d: fprintf(output, " 1d"); break; case ac_image_2d: fprintf(output, " 2d"); break; case ac_image_3d: fprintf(output, " 3d"); break; case ac_image_cube: fprintf(output, " cube"); break; case ac_image_1darray: fprintf(output, " 1darray"); break; case ac_image_2darray: fprintf(output, " 2darray"); break; case ac_image_2dmsaa: fprintf(output, " 2dmsaa"); break; case ac_image_2darraymsaa: fprintf(output, " 2darraymsaa"); break; } if (mimg->unrm) fprintf(output, " unrm"); if (mimg->glc) fprintf(output, " glc"); if (mimg->dlc) fprintf(output, " dlc"); if (mimg->slc) fprintf(output, " slc"); if (mimg->tfe) fprintf(output, " tfe"); if (mimg->da) fprintf(output, " da"); if (mimg->lwe) fprintf(output, " lwe"); if (mimg->r128 || mimg->a16) fprintf(output, " r128/a16"); if (mimg->d16) fprintf(output, " d16"); if (mimg->disable_wqm) fprintf(output, " disable_wqm"); print_sync(mimg->sync, output); break; } case Format::EXP: { const Export_instruction* exp = static_cast(instr); unsigned identity_mask = exp->compressed ? 0x5 : 0xf; if ((exp->enabled_mask & identity_mask) != identity_mask) fprintf(output, " en:%c%c%c%c", exp->enabled_mask & 0x1 ? 'r' : '*', exp->enabled_mask & 0x2 ? 'g' : '*', exp->enabled_mask & 0x4 ? 'b' : '*', exp->enabled_mask & 0x8 ? 'a' : '*'); if (exp->compressed) fprintf(output, " compr"); if (exp->done) fprintf(output, " done"); if (exp->valid_mask) fprintf(output, " vm"); if (exp->dest <= V_008DFC_SQ_EXP_MRT + 7) fprintf(output, " mrt%d", exp->dest - V_008DFC_SQ_EXP_MRT); else if (exp->dest == V_008DFC_SQ_EXP_MRTZ) fprintf(output, " mrtz"); else if (exp->dest == V_008DFC_SQ_EXP_NULL) fprintf(output, " null"); else if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= V_008DFC_SQ_EXP_POS + 3) fprintf(output, " pos%d", exp->dest - V_008DFC_SQ_EXP_POS); else if (exp->dest >= V_008DFC_SQ_EXP_PARAM && exp->dest <= V_008DFC_SQ_EXP_PARAM + 31) fprintf(output, " param%d", exp->dest - V_008DFC_SQ_EXP_PARAM); break; } case Format::PSEUDO_BRANCH: { const Pseudo_branch_instruction* branch = static_cast(instr); /* Note: BB0 cannot be a branch target */ if (branch->target[0] != 0) fprintf(output, " BB%d", branch->target[0]); if (branch->target[1] != 0) fprintf(output, ", BB%d", branch->target[1]); break; } case Format::PSEUDO_REDUCTION: { const Pseudo_reduction_instruction* reduce = static_cast(instr); fprintf(output, " op:%s", reduce_ops[reduce->reduce_op]); if (reduce->cluster_size) fprintf(output, " cluster_size:%u", reduce->cluster_size); break; } case Format::PSEUDO_BARRIER: { const Pseudo_barrier_instruction* barrier = static_cast(instr); print_sync(barrier->sync, output); print_scope(barrier->exec_scope, output, "exec_scope"); break; } case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: { const FLAT_instruction* flat = static_cast(instr); if (flat->offset) fprintf(output, " offset:%u", flat->offset); if (flat->glc) fprintf(output, " glc"); if (flat->dlc) fprintf(output, " dlc"); if (flat->slc) fprintf(output, " slc"); if (flat->lds) fprintf(output, " lds"); if (flat->nv) fprintf(output, " nv"); if (flat->disable_wqm) fprintf(output, " disable_wqm"); print_sync(flat->sync, output); break; } case Format::MTBUF: { const MTBUF_instruction* mtbuf = static_cast(instr); fprintf(output, " dfmt:"); switch (mtbuf->dfmt) { case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break; case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break; case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break; case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break; case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break; case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break; case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break; case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break; } fprintf(output, " nfmt:"); switch (mtbuf->nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break; case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break; case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break; case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break; } if (mtbuf->offset) fprintf(output, " offset:%u", mtbuf->offset); if (mtbuf->offen) fprintf(output, " offen"); if (mtbuf->idxen) fprintf(output, " idxen"); if (mtbuf->glc) fprintf(output, " glc"); if (mtbuf->dlc) fprintf(output, " dlc"); if (mtbuf->slc) fprintf(output, " slc"); if (mtbuf->tfe) fprintf(output, " tfe"); if (mtbuf->disable_wqm) fprintf(output, " disable_wqm"); print_sync(mtbuf->sync, output); break; } case Format::VOP3P: { if (static_cast(instr)->clamp) fprintf(output, " clamp"); break; } default: { break; } } if (instr->isVOP3()) { const VOP3A_instruction* vop3 = static_cast(instr); switch (vop3->omod) { case 1: fprintf(output, " *2"); break; case 2: fprintf(output, " *4"); break; case 3: fprintf(output, " *0.5"); break; } if (vop3->clamp) fprintf(output, " clamp"); if (vop3->opsel & (1 << 3)) fprintf(output, " opsel_hi"); } else if (instr->isDPP()) { const DPP_instruction* dpp = static_cast(instr); if (dpp->dpp_ctrl <= 0xff) { fprintf(output, " quad_perm:[%d,%d,%d,%d]", dpp->dpp_ctrl & 0x3, (dpp->dpp_ctrl >> 2) & 0x3, (dpp->dpp_ctrl >> 4) & 0x3, (dpp->dpp_ctrl >> 6) & 0x3); } else if (dpp->dpp_ctrl >= 0x101 && dpp->dpp_ctrl <= 0x10f) { fprintf(output, " row_shl:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl >= 0x111 && dpp->dpp_ctrl <= 0x11f) { fprintf(output, " row_shr:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl >= 0x121 && dpp->dpp_ctrl <= 0x12f) { fprintf(output, " row_ror:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl == dpp_wf_sl1) { fprintf(output, " wave_shl:1"); } else if (dpp->dpp_ctrl == dpp_wf_rl1) { fprintf(output, " wave_rol:1"); } else if (dpp->dpp_ctrl == dpp_wf_sr1) { fprintf(output, " wave_shr:1"); } else if (dpp->dpp_ctrl == dpp_wf_rr1) { fprintf(output, " wave_ror:1"); } else if (dpp->dpp_ctrl == dpp_row_mirror) { fprintf(output, " row_mirror"); } else if (dpp->dpp_ctrl == dpp_row_half_mirror) { fprintf(output, " row_half_mirror"); } else if (dpp->dpp_ctrl == dpp_row_bcast15) { fprintf(output, " row_bcast:15"); } else if (dpp->dpp_ctrl == dpp_row_bcast31) { fprintf(output, " row_bcast:31"); } else { fprintf(output, " dpp_ctrl:0x%.3x", dpp->dpp_ctrl); } if (dpp->row_mask != 0xf) fprintf(output, " row_mask:0x%.1x", dpp->row_mask); if (dpp->bank_mask != 0xf) fprintf(output, " bank_mask:0x%.1x", dpp->bank_mask); if (dpp->bound_ctrl) fprintf(output, " bound_ctrl:1"); } else if ((int)instr->format & (int)Format::SDWA) { const SDWA_instruction* sdwa = static_cast(instr); switch (sdwa->omod) { case 1: fprintf(output, " *2"); break; case 2: fprintf(output, " *4"); break; case 3: fprintf(output, " *0.5"); break; } if (sdwa->clamp) fprintf(output, " clamp"); switch (sdwa->dst_sel & sdwa_asuint) { case sdwa_udword: break; case sdwa_ubyte0: case sdwa_ubyte1: case sdwa_ubyte2: case sdwa_ubyte3: fprintf(output, " dst_sel:%sbyte%u", sdwa->dst_sel & sdwa_sext ? "s" : "u", sdwa->dst_sel & sdwa_bytenum); break; case sdwa_uword0: case sdwa_uword1: fprintf(output, " dst_sel:%sword%u", sdwa->dst_sel & sdwa_sext ? "s" : "u", sdwa->dst_sel & sdwa_wordnum); break; } if (sdwa->dst_preserve) fprintf(output, " dst_preserve"); } } void aco_print_instr(const Instruction *instr, FILE *output) { if (!instr->definitions.empty()) { for (unsigned i = 0; i < instr->definitions.size(); ++i) { print_definition(&instr->definitions[i], output); if (i + 1 != instr->definitions.size()) fprintf(output, ", "); } fprintf(output, " = "); } fprintf(output, "%s", instr_info.name[(int)instr->opcode]); if (instr->operands.size()) { bool *const abs = (bool *)alloca(instr->operands.size() * sizeof(bool)); bool *const neg = (bool *)alloca(instr->operands.size() * sizeof(bool)); bool *const opsel = (bool *)alloca(instr->operands.size() * sizeof(bool)); uint8_t *const sel = (uint8_t *)alloca(instr->operands.size() * sizeof(uint8_t)); if ((int)instr->format & (int)Format::VOP3A) { const VOP3A_instruction* vop3 = static_cast(instr); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = vop3->abs[i]; neg[i] = vop3->neg[i]; opsel[i] = vop3->opsel & (1 << i); sel[i] = sdwa_udword; } } else if (instr->isDPP()) { const DPP_instruction* dpp = static_cast(instr); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = i < 2 ? dpp->abs[i] : false; neg[i] = i < 2 ? dpp->neg[i] : false; opsel[i] = false; sel[i] = sdwa_udword; } } else if (instr->isSDWA()) { const SDWA_instruction* sdwa = static_cast(instr); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = i < 2 ? sdwa->abs[i] : false; neg[i] = i < 2 ? sdwa->neg[i] : false; opsel[i] = false; sel[i] = i < 2 ? sdwa->sel[i] : sdwa_udword; } } else { for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = false; neg[i] = false; opsel[i] = false; sel[i] = sdwa_udword; } } for (unsigned i = 0; i < instr->operands.size(); ++i) { if (i) fprintf(output, ", "); else fprintf(output, " "); if (neg[i]) fprintf(output, "-"); if (abs[i]) fprintf(output, "|"); if (opsel[i]) fprintf(output, "hi("); else if (sel[i] & sdwa_sext) fprintf(output, "sext("); print_operand(&instr->operands[i], output); if (opsel[i] || (sel[i] & sdwa_sext)) fprintf(output, ")"); if (!(sel[i] & sdwa_isra)) { if (sel[i] == sdwa_udword || sel[i] == sdwa_sdword) { /* print nothing */ } else if (sel[i] & sdwa_isword) { unsigned index = sel[i] & sdwa_wordnum; fprintf(output, "[%u:%u]", index * 16, index * 16 + 15); } else { unsigned index = sel[i] & sdwa_bytenum; fprintf(output, "[%u:%u]", index * 8, index * 8 + 7); } } if (abs[i]) fprintf(output, "|"); if (instr->format == Format::VOP3P) { const VOP3P_instruction* vop3 = static_cast(instr); if ((vop3->opsel_lo & (1 << i)) || !(vop3->opsel_hi & (1 << i))) { fprintf(output, ".%c%c", vop3->opsel_lo & (1 << i) ? 'y' : 'x', vop3->opsel_hi & (1 << i) ? 'y' : 'x'); } if (vop3->neg_lo[i] && vop3->neg_hi[i]) fprintf(output, "*[-1,-1]"); else if (vop3->neg_lo[i]) fprintf(output, "*[-1,1]"); else if (vop3->neg_hi[i]) fprintf(output, "*[1,-1]"); } } } print_instr_format_specific(instr, output); } static void print_block_kind(uint16_t kind, FILE *output) { if (kind & block_kind_uniform) fprintf(output, "uniform, "); if (kind & block_kind_top_level) fprintf(output, "top-level, "); if (kind & block_kind_loop_preheader) fprintf(output, "loop-preheader, "); if (kind & block_kind_loop_header) fprintf(output, "loop-header, "); if (kind & block_kind_loop_exit) fprintf(output, "loop-exit, "); if (kind & block_kind_continue) fprintf(output, "continue, "); if (kind & block_kind_break) fprintf(output, "break, "); if (kind & block_kind_continue_or_break) fprintf(output, "continue_or_break, "); if (kind & block_kind_discard) fprintf(output, "discard, "); if (kind & block_kind_branch) fprintf(output, "branch, "); if (kind & block_kind_merge) fprintf(output, "merge, "); if (kind & block_kind_invert) fprintf(output, "invert, "); if (kind & block_kind_uses_discard_if) fprintf(output, "discard_if, "); if (kind & block_kind_needs_lowering) fprintf(output, "needs_lowering, "); if (kind & block_kind_uses_demote) fprintf(output, "uses_demote, "); if (kind & block_kind_export_end) fprintf(output, "export_end, "); } static void print_stage(Stage stage, FILE *output) { fprintf(output, "ACO shader stage: "); if (stage == compute_cs) fprintf(output, "compute_cs"); else if (stage == fragment_fs) fprintf(output, "fragment_fs"); else if (stage == gs_copy_vs) fprintf(output, "gs_copy_vs"); else if (stage == vertex_ls) fprintf(output, "vertex_ls"); else if (stage == vertex_es) fprintf(output, "vertex_es"); else if (stage == vertex_vs) fprintf(output, "vertex_vs"); else if (stage == tess_control_hs) fprintf(output, "tess_control_hs"); else if (stage == vertex_tess_control_hs) fprintf(output, "vertex_tess_control_hs"); else if (stage == tess_eval_es) fprintf(output, "tess_eval_es"); else if (stage == tess_eval_vs) fprintf(output, "tess_eval_vs"); else if (stage == geometry_gs) fprintf(output, "geometry_gs"); else if (stage == vertex_geometry_gs) fprintf(output, "vertex_geometry_gs"); else if (stage == tess_eval_geometry_gs) fprintf(output, "tess_eval_geometry_gs"); else if (stage == vertex_ngg) fprintf(output, "vertex_ngg"); else if (stage == tess_eval_ngg) fprintf(output, "tess_eval_ngg"); else if (stage == vertex_geometry_ngg) fprintf(output, "vertex_geometry_ngg"); else if (stage == tess_eval_geometry_ngg) fprintf(output, "tess_eval_geometry_ngg"); else fprintf(output, "unknown"); fprintf(output, "\n"); } void aco_print_block(const Block* block, FILE *output) { fprintf(output, "BB%d\n", block->index); fprintf(output, "/* logical preds: "); for (unsigned pred : block->logical_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ linear preds: "); for (unsigned pred : block->linear_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ kind: "); print_block_kind(block->kind, output); fprintf(output, "*/\n"); for (auto const& instr : block->instructions) { fprintf(output, "\t"); aco_print_instr(instr.get(), output); fprintf(output, "\n"); } } void aco_print_program(const Program *program, FILE *output) { print_stage(program->stage, output); for (Block const& block : program->blocks) aco_print_block(&block, output); if (program->constant_data.size()) { fprintf(output, "\n/* constant data */\n"); for (unsigned i = 0; i < program->constant_data.size(); i += 32) { fprintf(output, "[%06d] ", i); unsigned line_size = std::min(program->constant_data.size() - i, 32); for (unsigned j = 0; j < line_size; j += 4) { unsigned size = std::min(program->constant_data.size() - (i + j), 4); uint32_t v = 0; memcpy(&v, &program->constant_data[i + j], size); fprintf(output, " %08x", v); } fprintf(output, "\n"); } } fprintf(output, "\n"); } }