#include #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/u_dynarray.h" #include "util/u_inlines.h" #include "util/u_debug.h" #include "util/u_memory.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_ureg.h" #include "nouveau_debug.h" #include "nv_object.xml.h" #include "nv30/nv30-40_3d.xml.h" #include "nv30/nvfx_shader.h" #include "nv30/nv30_state.h" struct nvfx_fpc { struct nv30_fragprog *fp; unsigned max_temps; unsigned long long r_temps; unsigned long long r_temps_discard; struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS]; struct nvfx_reg r_input[PIPE_MAX_SHADER_INPUTS]; struct nvfx_reg *r_temp; int num_regs; unsigned inst_offset; unsigned have_const; unsigned is_nv4x; struct util_dynarray imm_data; struct nvfx_reg* r_imm; unsigned nr_imm; struct util_dynarray if_stack; //struct util_dynarray loop_stack; struct util_dynarray label_relocs; }; static inline struct nvfx_reg temp(struct nvfx_fpc *fpc) { int idx = __builtin_ctzll(~fpc->r_temps); if (idx >= fpc->max_temps) { NOUVEAU_ERR("out of temps!!\n"); return nvfx_reg(NVFXSR_TEMP, 0); } fpc->r_temps |= (1ULL << idx); fpc->r_temps_discard |= (1ULL << idx); return nvfx_reg(NVFXSR_TEMP, idx); } static inline void release_temps(struct nvfx_fpc *fpc) { fpc->r_temps &= ~fpc->r_temps_discard; fpc->r_temps_discard = 0ULL; } static inline struct nvfx_reg nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d) { float v[4] = {a, b, c, d}; int idx = fpc->imm_data.size >> 4; memcpy(util_dynarray_grow(&fpc->imm_data, float, 4), v, 4 * sizeof(float)); return nvfx_reg(NVFXSR_IMM, idx); } static void grow_insns(struct nvfx_fpc *fpc, int size) { struct nv30_fragprog *fp = fpc->fp; fp->insn_len += size; fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len); } static void emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src) { struct nv30_fragprog *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; uint32_t sr = 0; switch (src.reg.type) { case NVFXSR_INPUT: sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT); hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT); break; case NVFXSR_OUTPUT: sr |= NVFX_FP_REG_SRC_HALF; /* fall-through */ case NVFXSR_TEMP: sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT); sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT); break; case NVFXSR_IMM: if (!fpc->have_const) { grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; fpc->have_const = 1; } memcpy(&fp->insn[fpc->inst_offset + 4], (float*)fpc->imm_data.data + src.reg.index * 4, sizeof(uint32_t) * 4); sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT); break; case NVFXSR_CONST: if (!fpc->have_const) { grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; fpc->have_const = 1; } { struct nv30_fragprog_data *fpd; fp->consts = realloc(fp->consts, ++fp->nr_consts * sizeof(*fpd)); fpd = &fp->consts[fp->nr_consts - 1]; fpd->offset = fpc->inst_offset + 4; fpd->index = src.reg.index; memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4); } sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT); break; case NVFXSR_NONE: sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT); break; default: assert(0); } if (src.negate) sr |= NVFX_FP_REG_NEGATE; if (src.abs) hw[1] |= (1 << (29 + pos)); sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) | (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) | (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) | (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT)); hw[pos + 1] |= sr; } static void emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst) { struct nv30_fragprog *fp = fpc->fp; uint32_t *hw = &fp->insn[fpc->inst_offset]; switch (dst.type) { case NVFXSR_OUTPUT: if (dst.index == 1) fp->fp_control |= 0x0000000e; else { hw[0] |= NVFX_FP_OP_OUT_REG_HALF; dst.index <<= 1; } /* fall-through */ case NVFXSR_TEMP: if (fpc->num_regs < (dst.index + 1)) fpc->num_regs = dst.index + 1; break; case NVFXSR_NONE: hw[0] |= (1 << 30); break; default: assert(0); } hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT); } static void nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn) { struct nv30_fragprog *fp = fpc->fp; uint32_t *hw; fpc->inst_offset = fp->insn_len; fpc->have_const = 0; grow_insns(fpc, 4); hw = &fp->insn[fpc->inst_offset]; memset(hw, 0, sizeof(uint32_t) * 4); if (insn.op == NVFX_FP_OP_OPCODE_KIL) fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL; hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT); hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT); hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT); if (insn.sat) hw[0] |= NVFX_FP_OP_OUT_SAT; if (insn.cc_update) hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE; hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT); hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) | (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) | (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT)); if(insn.unit >= 0) { hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT); } emit_dst(fpc, insn.dst); emit_src(fpc, 0, insn.src[0]); emit_src(fpc, 1, insn.src[1]); emit_src(fpc, 2, insn.src[2]); } #define arith(s,o,d,m,s0,s1,s2) \ nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \ (d), (m), (s0), (s1), (s2)) #define tex(s,o,u,d,m,s0,s1,s2) \ nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \ (d), (m), (s0), none, none) /* IF src.x != 0, as TGSI specifies */ static void nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src) { const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none); uint32_t *hw; insn.cc_update = 1; nvfx_fp_emit(fpc, insn); fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) | (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) | (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT); hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */ hw[3] = 0; /* | endif_offset */ util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset); } /* IF src.x != 0, as TGSI specifies */ static void nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */ hw[3] = 0; reloc.target = target; reloc.location = fpc->inst_offset + 2; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); } static void nv40_fp_ret(struct nvfx_fpc *fpc) { uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */ hw[3] = 0; } static void nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | (count << NV40_FP_OP_REP_COUNT1_SHIFT) | (count << NV40_FP_OP_REP_COUNT2_SHIFT) | (count << NV40_FP_OP_REP_COUNT3_SHIFT); hw[3] = 0; /* | end_offset */ reloc.target = target; reloc.location = fpc->inst_offset + 3; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); //util_dynarray_append(&fpc->loop_stack, unsigned, target); } #if 0 /* documentation only */ /* warning: this only works forward, and probably only if not inside any IF */ static void nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target) { struct nvfx_relocation reloc; uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE | (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT); /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */ hw[3] = 0; /* | endif_offset */ reloc.target = target; reloc.location = fpc->inst_offset + 2; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); reloc.target = target; reloc.location = fpc->inst_offset + 3; util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc); } #endif static void nv40_fp_brk(struct nvfx_fpc *fpc) { uint32_t *hw; fpc->inst_offset = fpc->fp->insn_len; grow_insns(fpc, 4); hw = &fpc->fp->insn[fpc->inst_offset]; /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */ hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) | NV40_FP_OP_OUT_NONE; /* Use .xxxx swizzle so that we check only src[0].x*/ hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) | (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT); hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; hw[3] = 0; } static inline struct nvfx_src tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc) { struct nvfx_src src; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: src.reg = fpc->r_input[fsrc->Register.Index]; break; case TGSI_FILE_CONSTANT: src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index); break; case TGSI_FILE_IMMEDIATE: assert(fsrc->Register.Index < fpc->nr_imm); src.reg = fpc->r_imm[fsrc->Register.Index]; break; case TGSI_FILE_TEMPORARY: src.reg = fpc->r_temp[fsrc->Register.Index]; break; /* NV40 fragprog result regs are just temps, so this is simple */ case TGSI_FILE_OUTPUT: src.reg = fpc->r_result[fsrc->Register.Index]; break; default: NOUVEAU_ERR("bad src file\n"); src.reg.index = 0; src.reg.type = 0; break; } src.abs = fsrc->Register.Absolute; src.negate = fsrc->Register.Negate; src.swz[0] = fsrc->Register.SwizzleX; src.swz[1] = fsrc->Register.SwizzleY; src.swz[2] = fsrc->Register.SwizzleZ; src.swz[3] = fsrc->Register.SwizzleW; src.indirect = 0; src.indirect_reg = 0; src.indirect_swz = 0; return src; } static inline struct nvfx_reg tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) { switch (fdst->Register.File) { case TGSI_FILE_OUTPUT: return fpc->r_result[fdst->Register.Index]; case TGSI_FILE_TEMPORARY: return fpc->r_temp[fdst->Register.Index]; case TGSI_FILE_NULL: return nvfx_reg(NVFXSR_NONE, 0); default: NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File); return nvfx_reg(NVFXSR_NONE, 0); } } static inline int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W; return mask; } static bool nvfx_fragprog_parse_instruction(struct nvfx_fpc *fpc, const struct tgsi_full_instruction *finst) { const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn; struct nvfx_src src[3], tmp; struct nvfx_reg dst; int mask, sat, unit = 0; int ai = -1, ci = -1, ii = -1; int i; if (finst->Instruction.Opcode == TGSI_OPCODE_END) return true; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; if (fsrc->Register.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(fpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if(fpc->fp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0 || fsrc->Register.SwizzleX == PIPE_SWIZZLE_W || fsrc->Register.SwizzleY == PIPE_SWIZZLE_W || fsrc->Register.SwizzleZ == PIPE_SWIZZLE_W || fsrc->Register.SwizzleW == PIPE_SWIZZLE_W )) { /* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */ struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1)); addend.swz[0] = fsrc->Register.SwizzleX; addend.swz[1] = fsrc->Register.SwizzleY; addend.swz[2] = fsrc->Register.SwizzleZ; addend.swz[3] = fsrc->Register.SwizzleW; src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none)); } else if (ai == -1 || ai == fsrc->Register.Index) { ai = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_CONSTANT: if ((ci == -1 && ii == -1) || ci == fsrc->Register.Index) { ci = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_IMMEDIATE: if ((ci == -1 && ii == -1) || ii == fsrc->Register.Index) { ii = fsrc->Register.Index; src[i] = tgsi_src(fpc, fsrc); } else { src[i] = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none)); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; case TGSI_FILE_SAMPLER: unit = fsrc->Register.Index; break; case TGSI_FILE_OUTPUT: break; default: NOUVEAU_ERR("bad src file\n"); return false; } } dst = tgsi_dst(fpc, &finst->Dst[0]); mask = tgsi_mask(finst->Dst[0].Register.WriteMask); sat = finst->Instruction.Saturate; switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ADD: nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_CEIL: tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, neg(src[0]), none, none)); nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, neg(tmp), none, none)); break; case TGSI_OPCODE_CMP: insn = arith(0, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); insn = arith(sat, MOV, dst, mask, src[2], none, none); insn.cc_test = NVFX_COND_GE; nvfx_fp_emit(fpc, insn); insn = arith(sat, MOV, dst, mask, src[1], none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_COS: nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_DDX: if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none)); nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none)); nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none)); nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none)); } else { nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none)); } break; case TGSI_OPCODE_DDY: if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none)); nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none)); nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none)); nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none)); } else { nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none)); } break; case TGSI_OPCODE_DP2: tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none)); nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none)); break; case TGSI_OPCODE_DP3: nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DP4: nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DST: nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_EX2: nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FLR: nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FRC: nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_KILL: nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_KILL_IF: insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); insn = arith(0, KIL, none.reg, 0, none, none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_LG2: nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_LIT: if(!fpc->is_nv4x) nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], none, none)); else { /* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by * specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement * * NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead */ struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0)); tmp = nvfx_src(temp(fpc)); if (ci>= 0 || ii >= 0) { nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none)); maxs = tmp; } nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none)); nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none)); nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none)); } break; case TGSI_OPCODE_LRP: if(!fpc->is_nv4x) nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2])); else { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2])); nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp)); } break; case TGSI_OPCODE_MAD: nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2])); break; case TGSI_OPCODE_MAX: nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MIN: nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MOV: nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_MUL: nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_NOP: break; case TGSI_OPCODE_POW: if(!fpc->is_nv4x) nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none)); else { tmp = nvfx_src(temp(fpc)); nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none)); nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none)); nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none)); } break; case TGSI_OPCODE_RCP: nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_RSQ: if(!fpc->is_nv4x) nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none)); else { tmp = nvfx_src(temp(fpc)); insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none); insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X; nvfx_fp_emit(fpc, insn); nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none)); } break; case TGSI_OPCODE_SEQ: nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGE: nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGT: nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SIN: nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_SLE: nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SLT: nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SNE: nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SSG: { struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X); insn = arith(sat, MOV, dst, mask, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); insn = arith(0, STR, dst, mask, none, none, none); insn.cc_test = NVFX_COND_GT; nvfx_fp_emit(fpc, insn); if(!sat) { insn = arith(0, MOV, dst, mask, minones, none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); } break; } case TGSI_OPCODE_TEX: nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TRUNC: tmp = nvfx_src(temp(fpc)); insn = arith(0, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_fp_emit(fpc, insn); nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none)); nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none)); insn = arith(sat, MOV, dst, mask, neg(tmp), none, none); insn.cc_test = NVFX_COND_LT; nvfx_fp_emit(fpc, insn); break; case TGSI_OPCODE_TXB: nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TXL: if(fpc->is_nv4x) nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none)); else /* unsupported on nv30, use TEX and hope they like it */ nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_TXP: nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_IF: // MOVRC0 R31 (TR0.xyzw), R: // IF (NE.xxxx) ELSE END if(!fpc->is_nv4x) goto nv3x_cflow; nv40_fp_if(fpc, src[0]); break; case TGSI_OPCODE_ELSE: { uint32_t *hw; if(!fpc->is_nv4x) goto nv3x_cflow; assert(util_dynarray_contains(&fpc->if_stack, unsigned)); hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)]; hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len; break; } case TGSI_OPCODE_ENDIF: { uint32_t *hw; if(!fpc->is_nv4x) goto nv3x_cflow; assert(util_dynarray_contains(&fpc->if_stack, unsigned)); hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)]; if(!hw[2]) hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len; hw[3] = fpc->fp->insn_len; break; } case TGSI_OPCODE_BGNSUB: case TGSI_OPCODE_ENDSUB: /* nothing to do here */ break; case TGSI_OPCODE_CAL: if(!fpc->is_nv4x) goto nv3x_cflow; nv40_fp_cal(fpc, finst->Label.Label); break; case TGSI_OPCODE_RET: if(!fpc->is_nv4x) goto nv3x_cflow; nv40_fp_ret(fpc); break; case TGSI_OPCODE_BGNLOOP: if(!fpc->is_nv4x) goto nv3x_cflow; /* TODO: we should support using two nested REPs to allow a > 255 iteration count */ nv40_fp_rep(fpc, 255, finst->Label.Label); break; case TGSI_OPCODE_ENDLOOP: break; case TGSI_OPCODE_BRK: if(!fpc->is_nv4x) goto nv3x_cflow; nv40_fp_brk(fpc); break; case TGSI_OPCODE_CONT: { static int warned = 0; if(!warned) { NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n"); warned = 1; } break; } default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return false; } out: release_temps(fpc); return true; nv3x_cflow: { static int warned = 0; if(!warned) { NOUVEAU_ERR( "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n" "If rendering is incorrect, try to disable GLSL support in the application.\n"); warned = 1; } } goto out; } static bool nvfx_fragprog_parse_decl_input(struct nvfx_fpc *fpc, const struct tgsi_full_declaration *fdec) { unsigned idx = fdec->Range.First; unsigned hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = NVFX_FP_OP_INPUT_SRC_POSITION; break; case TGSI_SEMANTIC_COLOR: hw = NVFX_FP_OP_INPUT_SRC_COL0 + fdec->Semantic.Index; break; case TGSI_SEMANTIC_FOG: hw = NVFX_FP_OP_INPUT_SRC_FOGC; break; case TGSI_SEMANTIC_FACE: hw = NV40_FP_OP_INPUT_SRC_FACING; break; case TGSI_SEMANTIC_TEXCOORD: assert(fdec->Semantic.Index < 8); fpc->fp->texcoord[fdec->Semantic.Index] = fdec->Semantic.Index; fpc->fp->texcoords |= (1 << fdec->Semantic.Index); fpc->fp->vp_or |= (0x00004000 << fdec->Semantic.Index); hw = NVFX_FP_OP_INPUT_SRC_TC(fdec->Semantic.Index); break; case TGSI_SEMANTIC_GENERIC: case TGSI_SEMANTIC_PCOORD: /* will be assigned to remaining TC slots later */ return true; default: assert(0); return false; } fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw); return true; } static bool nvfx_fragprog_assign_generic(struct nvfx_fpc *fpc, const struct tgsi_full_declaration *fdec) { unsigned num_texcoords = fpc->is_nv4x ? 10 : 8; unsigned idx = fdec->Range.First; unsigned hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_GENERIC: case TGSI_SEMANTIC_PCOORD: for (hw = 0; hw < num_texcoords; hw++) { if (fpc->fp->texcoord[hw] == 0xffff) { if (hw <= 7) { fpc->fp->texcoords |= (0x1 << hw); fpc->fp->vp_or |= (0x00004000 << hw); } else { fpc->fp->vp_or |= (0x00001000 << (hw - 8)); } if (fdec->Semantic.Name == TGSI_SEMANTIC_PCOORD) { fpc->fp->texcoord[hw] = 0xfffe; fpc->fp->point_sprite_control |= (0x00000100 << hw); } else { fpc->fp->texcoord[hw] = fdec->Semantic.Index + 8; } hw = NVFX_FP_OP_INPUT_SRC_TC(hw); fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw); return true; } } return false; default: return true; } } static bool nvfx_fragprog_parse_decl_output(struct nvfx_fpc *fpc, const struct tgsi_full_declaration *fdec) { unsigned idx = fdec->Range.First; unsigned hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = 1; break; case TGSI_SEMANTIC_COLOR: hw = ~0; switch (fdec->Semantic.Index) { case 0: hw = 0; break; case 1: hw = 2; break; case 2: hw = 3; break; case 3: hw = 4; break; } if(hw > ((fpc->is_nv4x) ? 4 : 2)) { NOUVEAU_ERR("bad rcol index\n"); return false; } break; default: NOUVEAU_ERR("bad output semantic\n"); return false; } fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw); fpc->r_temps |= (1ULL << hw); return true; } static bool nvfx_fragprog_prepare(struct nvfx_fpc *fpc) { struct tgsi_parse_context p; int high_temp = -1, i; fpc->r_imm = CALLOC(fpc->fp->info.immediate_count, sizeof(struct nvfx_reg)); tgsi_parse_init(&p, fpc->fp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch(tok->Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_INPUT: if (!nvfx_fragprog_parse_decl_input(fpc, fdec)) goto out_err; break; case TGSI_FILE_OUTPUT: if (!nvfx_fragprog_parse_decl_output(fpc, fdec)) goto out_err; break; case TGSI_FILE_TEMPORARY: if (fdec->Range.Last > high_temp) { high_temp = fdec->Range.Last; } break; default: break; } } break; case TGSI_TOKEN_TYPE_IMMEDIATE: { struct tgsi_full_immediate *imm; imm = &p.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(fpc->nr_imm < fpc->fp->info.immediate_count); fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); break; } default: break; } } tgsi_parse_free(&p); tgsi_parse_init(&p, fpc->fp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const struct tgsi_full_declaration *fdec; tgsi_parse_token(&p); switch(p.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_DECLARATION: fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_INPUT: if (!nvfx_fragprog_assign_generic(fpc, fdec)) goto out_err; break; default: break; } break; default: break; } } tgsi_parse_free(&p); if (++high_temp) { fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg)); for (i = 0; i < high_temp; i++) fpc->r_temp[i] = temp(fpc); fpc->r_temps_discard = 0ULL; } return true; out_err: FREE(fpc->r_temp); fpc->r_temp = NULL; tgsi_parse_free(&p); return false; } DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", false) void _nvfx_fragprog_translate(uint16_t oclass, struct nv30_fragprog *fp) { struct tgsi_parse_context parse; struct nvfx_fpc *fpc = NULL; struct util_dynarray insns; fp->translated = false; fp->point_sprite_control = 0; fp->vp_or = 0; fpc = CALLOC_STRUCT(nvfx_fpc); if (!fpc) goto out_err; fpc->is_nv4x = (oclass >= NV40_3D_CLASS) ? ~0 : 0; fpc->max_temps = fpc->is_nv4x ? 48 : 32; fpc->fp = fp; fpc->num_regs = 2; memset(fp->texcoord, 0xff, sizeof(fp->texcoord)); if (fp->info.properties[TGSI_PROPERTY_FS_COORD_ORIGIN]) fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED; if (fp->info.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER]) fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER; if (fp->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]) fp->rt_enable |= NV30_3D_RT_ENABLE_MRT; if (!nvfx_fragprog_prepare(fpc)) goto out_err; tgsi_parse_init(&parse, fp->pipe.tokens); util_dynarray_init(&insns, NULL); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; util_dynarray_append(&insns, unsigned, fp->insn_len); finst = &parse.FullToken.FullInstruction; if (!nvfx_fragprog_parse_instruction(fpc, finst)) goto out_err; } break; default: break; } } util_dynarray_append(&insns, unsigned, fp->insn_len); for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation)) { struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i); fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target]; } util_dynarray_fini(&insns); if(!fpc->is_nv4x) fp->fp_control |= (fpc->num_regs-1)/2; else fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT; /* Terminate final instruction */ if(fp->insn) fp->insn[fpc->inst_offset] |= 0x00000001; /* Append NOP + END instruction for branches to the end of the program */ fpc->inst_offset = fp->insn_len; grow_insns(fpc, 4); fp->insn[fpc->inst_offset + 0] = 0x00000001; fp->insn[fpc->inst_offset + 1] = 0x00000000; fp->insn[fpc->inst_offset + 2] = 0x00000000; fp->insn[fpc->inst_offset + 3] = 0x00000000; if(debug_get_option_nvfx_dump_fp()) { debug_printf("\n"); tgsi_dump(fp->pipe.tokens, 0); debug_printf("\n%s fragment program:\n", fpc->is_nv4x ? "nv4x" : "nv3x"); for (unsigned i = 0; i < fp->insn_len; i += 4) debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]); debug_printf("\n"); } fp->translated = true; out: tgsi_parse_free(&parse); if (fpc) { FREE(fpc->r_temp); FREE(fpc->r_imm); util_dynarray_fini(&fpc->if_stack); util_dynarray_fini(&fpc->label_relocs); util_dynarray_fini(&fpc->imm_data); //util_dynarray_fini(&fpc->loop_stack); FREE(fpc); } return; out_err: _debug_printf("Error: failed to compile this fragment program:\n"); tgsi_dump(fp->pipe.tokens, 0); goto out; }