/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * Copyright 2008-2010 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * Texture sampling * * Authors: * Brian Paul * Keith Whitwell */ #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "util/u_math.h" #include "util/format/u_format.h" #include "util/u_memory.h" #include "util/u_inlines.h" #include "sp_quad.h" /* only for #define QUAD_* tokens */ #include "sp_tex_sample.h" #include "sp_texture.h" #include "sp_tex_tile_cache.h" /** Set to one to help debug texture sampling */ #define DEBUG_TEX 0 /* * Return fractional part of 'f'. Used for computing interpolation weights. * Need to be careful with negative values. * Note, if this function isn't perfect you'll sometimes see 1-pixel bands * of improperly weighted linear-filtered textures. * The tests/texwrap.c demo is a good test. */ static inline float frac(float f) { return f - floorf(f); } /** * Linear interpolation macro */ static inline float lerp(float a, float v0, float v1) { return v0 + a * (v1 - v0); } /** * Do 2D/bilinear interpolation of float values. * v00, v10, v01 and v11 are typically four texture samples in a square/box. * a and b are the horizontal and vertical interpolants. * It's important that this function is inlined when compiled with * optimization! If we find that's not true on some systems, convert * to a macro. */ static inline float lerp_2d(float a, float b, float v00, float v10, float v01, float v11) { const float temp0 = lerp(a, v00, v10); const float temp1 = lerp(a, v01, v11); return lerp(b, temp0, temp1); } /** * As above, but 3D interpolation of 8 values. */ static inline float lerp_3d(float a, float b, float c, float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111) { const float temp0 = lerp_2d(a, b, v000, v100, v010, v110); const float temp1 = lerp_2d(a, b, v001, v101, v011, v111); return lerp(c, temp0, temp1); } /** * Compute coord % size for repeat wrap modes. * Note that if coord is negative, coord % size doesn't give the right * value. To avoid that problem we add a large multiple of the size * (rather than using a conditional). */ static inline int repeat(int coord, unsigned size) { return (coord + size * 1024) % size; } /** * Apply texture coord wrapping mode and return integer texture indexes * for a vector of four texcoords (S or T or P). * \param wrapMode PIPE_TEX_WRAP_x * \param s the incoming texcoords * \param size the texture image size * \param icoord returns the integer texcoords */ static void wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord) { /* s limited to [0,1) */ /* i limited to [0,size-1] */ const int i = util_ifloor(s * size); *icoord = repeat(i + offset, size); } static void wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord) { /* s limited to [0,1] */ /* i limited to [0,size-1] */ s *= size; s += offset; if (s <= 0.0F) *icoord = 0; else if (s >= size) *icoord = size - 1; else *icoord = util_ifloor(s); } static void wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord) { /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 0.5F; const float max = (float)size - 0.5F; s *= size; s += offset; if (s < min) *icoord = 0; else if (s > max) *icoord = size - 1; else *icoord = util_ifloor(s); } static void wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord) { /* s limited to [min,max] */ /* i limited to [-1, size] */ const float min = -0.5F; const float max = size + 0.5F; s *= size; s += offset; if (s <= min) *icoord = -1; else if (s >= max) *icoord = size; else *icoord = util_ifloor(s); } static void wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord) { const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; int flr; float u; s += (float)offset / size; flr = util_ifloor(s); u = frac(s); if (flr & 1) u = 1.0F - u; if (u < min) *icoord = 0; else if (u > max) *icoord = size - 1; else *icoord = util_ifloor(u * size); } static void wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord) { /* s limited to [0,1] */ /* i limited to [0,size-1] */ const float u = fabsf(s * size + offset); if (u <= 0.0F) *icoord = 0; else if (u >= size) *icoord = size - 1; else *icoord = util_ifloor(u); } static void wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord) { /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 0.5F; const float max = (float)size - 0.5F; const float u = fabsf(s * size + offset); if (u < min) *icoord = 0; else if (u > max) *icoord = size - 1; else *icoord = util_ifloor(u); } static void wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord) { /* u limited to [-0.5, size-0.5] */ const float min = -0.5F; const float max = (float)size + 0.5F; const float u = fabsf(s * size + offset); if (u < min) *icoord = -1; else if (u > max) *icoord = size; else *icoord = util_ifloor(u); } /** * Used to compute texel locations for linear sampling * \param wrapMode PIPE_TEX_WRAP_x * \param s the texcoord * \param size the texture image size * \param icoord0 returns first texture index * \param icoord1 returns second texture index (usually icoord0 + 1) * \param w returns blend factor/weight between texture indices * \param icoord returns the computed integer texture coord */ static void wrap_linear_repeat(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float u = s * size - 0.5F; *icoord0 = repeat(util_ifloor(u) + offset, size); *icoord1 = repeat(*icoord0 + 1, size); *w = frac(u); } static void wrap_linear_clamp(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; *w = frac(u); } static void wrap_linear_clamp_to_edge(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; if (*icoord0 < 0) *icoord0 = 0; if (*icoord1 >= (int) size) *icoord1 = size - 1; *w = frac(u); } static void wrap_linear_clamp_to_border(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float min = -1.0F; const float max = (float)size + 0.5F; const float u = CLAMP(s * size + offset, min, max) - 0.5f; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; *w = frac(u); } static void wrap_linear_mirror_repeat(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { int flr; float u; bool no_mirror; s += (float)offset / size; flr = util_ifloor(s); no_mirror = !(flr & 1); u = frac(s); if (no_mirror) { u = u * size - 0.5F; } else { u = 1.0F - u; u = u * size + 0.5F; } *icoord0 = util_ifloor(u); *icoord1 = (no_mirror) ? *icoord0 + 1 : *icoord0 - 1; if (*icoord0 < 0) *icoord0 = 1 + *icoord0; if (*icoord0 >= (int) size) *icoord0 = size - 1; if (*icoord1 >= (int) size) *icoord1 = size - 1; if (*icoord1 < 0) *icoord1 = 1 + *icoord1; *w = (no_mirror) ? frac(u) : frac(1.0f - u); } static void wrap_linear_mirror_clamp(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { float u = fabsf(s * size + offset); if (u >= size) u = (float) size; u -= 0.5F; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; *w = frac(u); } static void wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { float u = fabsf(s * size + offset); if (u >= size) u = (float) size; u -= 0.5F; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; if (*icoord0 < 0) *icoord0 = 0; if (*icoord1 >= (int) size) *icoord1 = size - 1; *w = frac(u); } static void wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float min = -0.5F; const float max = size + 0.5F; const float t = fabsf(s * size + offset); const float u = CLAMP(t, min, max) - 0.5F; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; *w = frac(u); } /** * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord) { const int i = util_ifloor(s); *icoord = CLAMP(i + offset, 0, (int) size-1); } /** * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord) { *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) ); } /** * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords. */ static void wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord) { *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) ); } /** * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { /* Not exactly what the spec says, but it matches NVIDIA output */ const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f); *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; *w = frac(u); } /** * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; if (*icoord1 > (int) size - 1) *icoord1 = size - 1; *w = frac(u); } /** * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords. */ static void wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord0, int *icoord1, float *w) { const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F; *icoord0 = util_ifloor(u); *icoord1 = *icoord0 + 1; if (*icoord1 > (int) size - 1) *icoord1 = size - 1; *w = frac(u); } /** * Do coordinate to array index conversion. For array textures. */ static inline int coord_to_layer(float coord, unsigned first_layer, unsigned last_layer) { const int c = util_ifloor(coord + 0.5F); return CLAMP(c, (int)first_layer, (int)last_layer); } static void compute_gradient_1d(const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], float derivs[3][2][TGSI_QUAD_SIZE]) { memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float)); derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]; derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]; } static float compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview, const float derivs[3][2][TGSI_QUAD_SIZE], uint quad) { const struct pipe_resource *texture = sview->base.texture; const float dsdx = fabsf(derivs[0][0][quad]); const float dsdy = fabsf(derivs[0][1][quad]); const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level); return util_fast_log2(rho); } /** * Examine the quad's texture coordinates to compute the partial * derivatives w.r.t X and Y, then compute lambda (level of detail). */ static float compute_lambda_1d(const struct sp_sampler_view *sview, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE]) { float derivs[3][2][TGSI_QUAD_SIZE]; compute_gradient_1d(s, t, p, derivs); return compute_lambda_1d_explicit_gradients(sview, derivs, 0); } static void compute_gradient_2d(const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], float derivs[3][2][TGSI_QUAD_SIZE]) { memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float)); derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]; derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]; derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]; derivs[1][1][0] = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]; } static float compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview, const float derivs[3][2][TGSI_QUAD_SIZE], uint quad) { const struct pipe_resource *texture = sview->base.texture; const float dsdx = fabsf(derivs[0][0][quad]); const float dsdy = fabsf(derivs[0][1][quad]); const float dtdx = fabsf(derivs[1][0][quad]); const float dtdy = fabsf(derivs[1][1][quad]); const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level); const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level); const float rho = MAX2(maxx, maxy); return util_fast_log2(rho); } static float compute_lambda_2d(const struct sp_sampler_view *sview, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE]) { float derivs[3][2][TGSI_QUAD_SIZE]; compute_gradient_2d(s, t, p, derivs); return compute_lambda_2d_explicit_gradients(sview, derivs, 0); } static void compute_gradient_3d(const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], float derivs[3][2][TGSI_QUAD_SIZE]) { memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float)); derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]); derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]); derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]); derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]); } static float compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview, const float derivs[3][2][TGSI_QUAD_SIZE], uint quad) { const struct pipe_resource *texture = sview->base.texture; const float dsdx = fabsf(derivs[0][0][quad]); const float dsdy = fabsf(derivs[0][1][quad]); const float dtdx = fabsf(derivs[1][0][quad]); const float dtdy = fabsf(derivs[1][1][quad]); const float dpdx = fabsf(derivs[2][0][quad]); const float dpdy = fabsf(derivs[2][1][quad]); const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level); const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level); const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level); const float rho = MAX3(maxx, maxy, maxz); return util_fast_log2(rho); } static float compute_lambda_3d(const struct sp_sampler_view *sview, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE]) { float derivs[3][2][TGSI_QUAD_SIZE]; compute_gradient_3d(s, t, p, derivs); return compute_lambda_3d_explicit_gradients(sview, derivs, 0); } static float compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview, const float derivs[3][2][TGSI_QUAD_SIZE], uint quad) { const struct pipe_resource *texture = sview->base.texture; const float dsdx = fabsf(derivs[0][0][quad]); const float dsdy = fabsf(derivs[0][1][quad]); const float dtdx = fabsf(derivs[1][0][quad]); const float dtdy = fabsf(derivs[1][1][quad]); const float dpdx = fabsf(derivs[2][0][quad]); const float dpdy = fabsf(derivs[2][1][quad]); const float maxx = MAX2(dsdx, dsdy); const float maxy = MAX2(dtdx, dtdy); const float maxz = MAX2(dpdx, dpdy); const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f; return util_fast_log2(rho); } static float compute_lambda_cube(const struct sp_sampler_view *sview, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE]) { float derivs[3][2][TGSI_QUAD_SIZE]; compute_gradient_3d(s, t, p, derivs); return compute_lambda_cube_explicit_gradients(sview, derivs, 0); } /** * Compute lambda for a vertex texture sampler. * Since there aren't derivatives to use, just return 0. */ static float compute_lambda_vert(const struct sp_sampler_view *sview, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE]) { return 0.0f; } compute_lambda_from_grad_func softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view, enum pipe_shader_type shader) { switch (view->target) { case PIPE_BUFFER: case PIPE_TEXTURE_1D: case PIPE_TEXTURE_1D_ARRAY: return compute_lambda_1d_explicit_gradients; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_RECT: return compute_lambda_2d_explicit_gradients; case PIPE_TEXTURE_CUBE: case PIPE_TEXTURE_CUBE_ARRAY: return compute_lambda_cube_explicit_gradients; case PIPE_TEXTURE_3D: return compute_lambda_3d_explicit_gradients; default: assert(0); return compute_lambda_1d_explicit_gradients; } } /** * Get a texel from a texture, using the texture tile cache. * * \param addr the template tex address containing cube, z, face info. * \param x the x coord of texel within 2D image * \param y the y coord of texel within 2D image * \param rgba the quad to put the texel/color into * * XXX maybe move this into sp_tex_tile_cache.c and merge with the * sp_get_cached_tile_tex() function. */ static inline const float * get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, int x, unsigned elmsize) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x * elmsize / TEX_TILE_SIZE; assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x); x %= TEX_TILE_SIZE / elmsize; tile = sp_get_cached_tile_tex(sp_sview->cache, addr); return &tile->data.color[0][x][0]; } static inline const float * get_texel_2d_no_border(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, int x, int y) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TEX_TILE_SIZE; addr.bits.y = y / TEX_TILE_SIZE; y %= TEX_TILE_SIZE; x %= TEX_TILE_SIZE; tile = sp_get_cached_tile_tex(sp_sview->cache, addr); return &tile->data.color[y][x][0]; } static inline const float * get_texel_2d(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, union tex_tile_address addr, int x, int y) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level)) { return sp_sview->border_color.f; } else { return get_texel_2d_no_border( sp_sview, addr, x, y ); } } /* * Here's the complete logic (HOLY CRAP) for finding next face and doing the * corresponding coord wrapping, implemented by get_next_face, * get_next_xcoord, get_next_ycoord. * Read like that (first line): * If face is +x and s coord is below zero, then * new face is +z, new s is max , new t is old t * (max is always cube size - 1). * * +x s- -> +z: s = max, t = t * +x s+ -> -z: s = 0, t = t * +x t- -> +y: s = max, t = max-s * +x t+ -> -y: s = max, t = s * * -x s- -> -z: s = max, t = t * -x s+ -> +z: s = 0, t = t * -x t- -> +y: s = 0, t = s * -x t+ -> -y: s = 0, t = max-s * * +y s- -> -x: s = t, t = 0 * +y s+ -> +x: s = max-t, t = 0 * +y t- -> -z: s = max-s, t = 0 * +y t+ -> +z: s = s, t = 0 * * -y s- -> -x: s = max-t, t = max * -y s+ -> +x: s = t, t = max * -y t- -> +z: s = s, t = max * -y t+ -> -z: s = max-s, t = max * +z s- -> -x: s = max, t = t * +z s+ -> +x: s = 0, t = t * +z t- -> +y: s = s, t = max * +z t+ -> -y: s = s, t = 0 * -z s- -> +x: s = max, t = t * -z s+ -> -x: s = 0, t = t * -z t- -> +y: s = max-s, t = 0 * -z t+ -> -y: s = max-s, t = max */ /* * seamless cubemap neighbour array. * this array is used to find the adjacent face in each of 4 directions, * left, right, up, down. (or -x, +x, -y, +y). */ static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = { /* pos X first then neg X is Z different, Y the same */ /* PIPE_TEX_FACE_POS_X,*/ { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }, /* PIPE_TEX_FACE_NEG_X */ { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }, /* pos Y first then neg Y is X different, X the same */ /* PIPE_TEX_FACE_POS_Y */ { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z }, /* PIPE_TEX_FACE_NEG_Y */ { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z }, /* pos Z first then neg Y is X different, X the same */ /* PIPE_TEX_FACE_POS_Z */ { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }, /* PIPE_TEX_FACE_NEG_Z */ { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y } }; static inline unsigned get_next_face(unsigned face, int idx) { return face_array[face][idx]; } /* * return a new xcoord based on old face, old coords, cube size * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+) */ static inline int get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc) { if ((face == 0 && fall_off_index != 1) || (face == 1 && fall_off_index == 0) || (face == 4 && fall_off_index == 0) || (face == 5 && fall_off_index == 0)) { return max; } if ((face == 1 && fall_off_index != 0) || (face == 0 && fall_off_index == 1) || (face == 4 && fall_off_index == 1) || (face == 5 && fall_off_index == 1)) { return 0; } if ((face == 4 && fall_off_index >= 2) || (face == 2 && fall_off_index == 3) || (face == 3 && fall_off_index == 2)) { return xc; } if ((face == 5 && fall_off_index >= 2) || (face == 2 && fall_off_index == 2) || (face == 3 && fall_off_index == 3)) { return max - xc; } if ((face == 2 && fall_off_index == 0) || (face == 3 && fall_off_index == 1)) { return yc; } /* (face == 2 && fall_off_index == 1) || (face == 3 && fall_off_index == 0)) */ return max - yc; } /* * return a new ycoord based on old face, old coords, cube size * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+) */ static inline int get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc) { if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) { return yc; } if (face == 2 || (face == 4 && fall_off_index == 3) || (face == 5 && fall_off_index == 2)) { return 0; } if (face == 3 || (face == 4 && fall_off_index == 2) || (face == 5 && fall_off_index == 3)) { return max; } if ((face == 0 && fall_off_index == 3) || (face == 1 && fall_off_index == 2)) { return xc; } /* (face == 0 && fall_off_index == 2) || (face == 1 && fall_off_index == 3) */ return max - xc; } /* Gather a quad of adjacent texels within a tile: */ static inline void get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, unsigned x, unsigned y, const float *out[4]) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TEX_TILE_SIZE; addr.bits.y = y / TEX_TILE_SIZE; y %= TEX_TILE_SIZE; x %= TEX_TILE_SIZE; tile = sp_get_cached_tile_tex(sp_sview->cache, addr); out[0] = &tile->data.color[y ][x ][0]; out[1] = &tile->data.color[y ][x+1][0]; out[2] = &tile->data.color[y+1][x ][0]; out[3] = &tile->data.color[y+1][x+1][0]; } /* Gather a quad of potentially non-adjacent texels: */ static inline void get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, int x0, int y0, int x1, int y1, const float *out[4]) { out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 ); out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 ); out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 ); out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 ); } /* 3d variants: */ static inline const float * get_texel_3d_no_border(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, int x, int y, int z) { const struct softpipe_tex_cached_tile *tile; addr.bits.x = x / TEX_TILE_SIZE; addr.bits.y = y / TEX_TILE_SIZE; addr.bits.z = z; y %= TEX_TILE_SIZE; x %= TEX_TILE_SIZE; tile = sp_get_cached_tile_tex(sp_sview->cache, addr); return &tile->data.color[y][x][0]; } static inline const float * get_texel_3d(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, union tex_tile_address addr, int x, int y, int z) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level) || z < 0 || z >= (int) u_minify(texture->depth0, level)) { return sp_sview->border_color.f; } else { return get_texel_3d_no_border( sp_sview, addr, x, y, z ); } } /* Get texel pointer for 1D array texture */ static inline const float * get_texel_1d_array(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, union tex_tile_address addr, int x, int y) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; if (x < 0 || x >= (int) u_minify(texture->width0, level)) { return sp_sview->border_color.f; } else { return get_texel_2d_no_border(sp_sview, addr, x, y); } } /* Get texel pointer for 2D array texture */ static inline const float * get_texel_2d_array(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, union tex_tile_address addr, int x, int y, int layer) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; assert(layer < (int) texture->array_size); assert(layer >= 0); if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level)) { return sp_sview->border_color.f; } else { return get_texel_3d_no_border(sp_sview, addr, x, y, layer); } } static inline const float * get_texel_cube_seamless(const struct sp_sampler_view *sp_sview, union tex_tile_address addr, int x, int y, float *corner, int layer, unsigned face) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; int new_x, new_y, max_x; max_x = (int) u_minify(texture->width0, level); assert(texture->width0 == texture->height0); new_x = x; new_y = y; /* change the face */ if (x < 0) { /* * Cheat with corners. They are difficult and I believe because we don't get * per-pixel faces we can actually have multiple corner texels per pixel, * which screws things up majorly in any case (as the per spec behavior is * to average the 3 remaining texels, which we might not have). * Hence just make sure that the 2nd coord is clamped, will simply pick the * sample which would have fallen off the x coord, but not y coord. * So the filter weight of the samples will be wrong, but at least this * ensures that only valid texels near the corner are used. */ if (y < 0 || y >= max_x) { y = CLAMP(y, 0, max_x - 1); } new_x = get_next_xcoord(face, 0, max_x -1, x, y); new_y = get_next_ycoord(face, 0, max_x -1, x, y); face = get_next_face(face, 0); } else if (x >= max_x) { if (y < 0 || y >= max_x) { y = CLAMP(y, 0, max_x - 1); } new_x = get_next_xcoord(face, 1, max_x -1, x, y); new_y = get_next_ycoord(face, 1, max_x -1, x, y); face = get_next_face(face, 1); } else if (y < 0) { new_x = get_next_xcoord(face, 2, max_x -1, x, y); new_y = get_next_ycoord(face, 2, max_x -1, x, y); face = get_next_face(face, 2); } else if (y >= max_x) { new_x = get_next_xcoord(face, 3, max_x -1, x, y); new_y = get_next_ycoord(face, 3, max_x -1, x, y); face = get_next_face(face, 3); } return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face); } /* Get texel pointer for cube array texture */ static inline const float * get_texel_cube_array(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, union tex_tile_address addr, int x, int y, int layer) { const struct pipe_resource *texture = sp_sview->base.texture; const unsigned level = addr.bits.level; assert(layer < (int) texture->array_size); assert(layer >= 0); if (x < 0 || x >= (int) u_minify(texture->width0, level) || y < 0 || y >= (int) u_minify(texture->height0, level)) { return sp_sview->border_color.f; } else { return get_texel_3d_no_border(sp_sview, addr, x, y, layer); } } /** * Given the logbase2 of a mipmap's base level size and a mipmap level, * return the size (in texels) of that mipmap level. * For example, if level[0].width = 256 then base_pot will be 8. * If level = 2, then we'll return 64 (the width at level=2). * Return 1 if level > base_pot. */ static inline unsigned pot_level_size(unsigned base_pot, unsigned level) { return (base_pot >= level) ? (1 << (base_pot - level)) : 1; } static void print_sample(const char *function, const float *rgba) { debug_printf("%s %g %g %g %g\n", function, rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]); } static void print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n", function, rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0], rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1], rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2], rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]); } /* Some image-filter fastpaths: */ static inline void img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const unsigned xpot = pot_level_size(sp_sview->xpot, args->level); const unsigned ypot = pot_level_size(sp_sview->ypot, args->level); const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */ const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */ union tex_tile_address addr; int c; const float u = (args->s * xpot - 0.5F) + args->offset[0]; const float v = (args->t * ypot - 0.5F) + args->offset[1]; const int uflr = util_ifloor(u); const int vflr = util_ifloor(v); const float xw = u - (float)uflr; const float yw = v - (float)vflr; const int x0 = uflr & (xpot - 1); const int y0 = vflr & (ypot - 1); const float *tx[4]; addr.value = 0; addr.bits.level = args->level; addr.bits.z = sp_sview->base.u.tex.first_layer; /* Can we fetch all four at once: */ if (x0 < xmax && y0 < ymax) { get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx); } else { const unsigned x1 = (x0 + 1) & (xpot - 1); const unsigned y1 = (y0 + 1) & (ypot - 1); get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx); } /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) { rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static inline void img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const unsigned xpot = pot_level_size(sp_sview->xpot, args->level); const unsigned ypot = pot_level_size(sp_sview->ypot, args->level); const float *out; union tex_tile_address addr; int c; const float u = args->s * xpot + args->offset[0]; const float v = args->t * ypot + args->offset[1]; const int uflr = util_ifloor(u); const int vflr = util_ifloor(v); const int x0 = uflr & (xpot - 1); const int y0 = vflr & (ypot - 1); addr.value = 0; addr.bits.level = args->level; addr.bits.z = sp_sview->base.u.tex.first_layer; out = get_texel_2d_no_border(sp_sview, addr, x0, y0); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static inline void img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const unsigned xpot = pot_level_size(sp_sview->xpot, args->level); const unsigned ypot = pot_level_size(sp_sview->ypot, args->level); union tex_tile_address addr; int c; const float u = args->s * xpot + args->offset[0]; const float v = args->t * ypot + args->offset[1]; int x0, y0; const float *out; addr.value = 0; addr.bits.level = args->level; addr.bits.z = sp_sview->base.u.tex.first_layer; x0 = util_ifloor(u); if (x0 < 0) x0 = 0; else if (x0 > (int) xpot - 1) x0 = xpot - 1; y0 = util_ifloor(v); if (y0 < 0) y0 = 0; else if (y0 > (int) ypot - 1) y0 = ypot - 1; out = get_texel_2d_no_border(sp_sview, addr, x0, y0); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_1d_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); int x; union tex_tile_address addr; const float *out; int c; assert(width > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); out = get_texel_1d_array(sp_sview, sp_samp, addr, x, sp_sview->base.u.tex.first_layer); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); int x; union tex_tile_address addr; const float *out; int c; assert(width > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_2d_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); int x, y; union tex_tile_address addr; const float *out; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; addr.bits.z = sp_sview->base.u.tex.first_layer; sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y); out = get_texel_2d(sp_sview, sp_samp, addr, x, y); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); int x, y; union tex_tile_address addr; const float *out; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y); out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_cube_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layerface = args->face_id + sp_sview->base.u.tex.first_layer; int x, y; union tex_tile_address addr; const float *out; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; /* * If NEAREST filtering is done within a miplevel, always apply wrap * mode CLAMP_TO_EDGE. */ if (sp_samp->base.seamless_cube_map) { wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x); wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y); } else { /* Would probably make sense to ignore mode and just do edge clamp */ sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y); } out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layerface = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer - 5) + args->face_id; int x, y; union tex_tile_address addr; const float *out; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y); out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; if (DEBUG_TEX) { print_sample(__FUNCTION__, rgba); } } static void img_filter_3d_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int depth = u_minify(texture->depth0, args->level); int x, y, z; union tex_tile_address addr; const float *out; int c; assert(width > 0); assert(height > 0); assert(depth > 0); sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x); sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y); sp_samp->nearest_texcoord_p(args->p, depth, args->offset[2], &z); addr.value = 0; addr.bits.level = args->level; out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = out[c]; } static void img_filter_1d_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); int x0, x1; float xw; /* weights */ union tex_tile_address addr; const float *tx0, *tx1; int c; assert(width > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, sp_sview->base.u.tex.first_layer); tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, sp_sview->base.u.tex.first_layer); /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]); } static void img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); int x0, x1; float xw; /* weights */ union tex_tile_address addr; const float *tx0, *tx1; int c; assert(width > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer); tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer); /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]); } /* * Retrieve the gathered value, need to convert to the * TGSI expected interface, and take component select * and swizzling into account. */ static float get_gather_value(const struct sp_sampler_view *sp_sview, int chan_in, int comp_sel, const float *tx[4]) { int chan; unsigned swizzle; /* * softpipe samples in a different order * to TGSI expects, so we need to swizzle, * the samples into the correct slots. */ switch (chan_in) { case 0: chan = 2; break; case 1: chan = 3; break; case 2: chan = 1; break; case 3: chan = 0; break; default: assert(0); return 0.0; } /* pick which component to use for the swizzle */ switch (comp_sel) { case 0: swizzle = sp_sview->base.swizzle_r; break; case 1: swizzle = sp_sview->base.swizzle_g; break; case 2: swizzle = sp_sview->base.swizzle_b; break; case 3: swizzle = sp_sview->base.swizzle_a; break; default: assert(0); return 0.0; } /* get correct result using the channel and swizzle */ switch (swizzle) { case PIPE_SWIZZLE_0: return 0.0; case PIPE_SWIZZLE_1: return sp_sview->oneval; default: return tx[chan][swizzle]; } } static void img_filter_2d_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); int x0, y0, x1, y1; float xw, yw; /* weights */ union tex_tile_address addr; const float *tx[4]; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; addr.bits.z = sp_sview->base.u.tex.first_layer; sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw); tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0); tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0); tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1); tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1); if (args->gather_only) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c, args->gather_comp, tx); } else { /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } static void img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); int x0, y0, x1, y1; float xw, yw; /* weights */ union tex_tile_address addr; const float *tx[4]; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw); tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer); tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer); tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer); tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer); if (args->gather_only) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c, args->gather_comp, tx); } else { /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } static void img_filter_cube_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layer = sp_sview->base.u.tex.first_layer; int x0, y0, x1, y1; float xw, yw; /* weights */ union tex_tile_address addr; const float *tx[4]; float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE], corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE]; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; /* * For seamless if LINEAR filtering is done within a miplevel, * always apply wrap mode CLAMP_TO_BORDER. */ if (sp_samp->base.seamless_cube_map) { /* Note this is a bit overkill, actual clamping is not required */ wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw); wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw); } else { /* Would probably make sense to ignore mode and just do edge clamp */ sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw); } if (sp_samp->base.seamless_cube_map) { tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id); tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id); tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id); tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id); } else { tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id); tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id); tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id); tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id); } if (args->gather_only) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c, args->gather_comp, tx); } else { /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } static void img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int layer = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer - 5); int x0, y0, x1, y1; float xw, yw; /* weights */ union tex_tile_address addr; const float *tx[4]; float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE], corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE]; int c; assert(width > 0); assert(height > 0); addr.value = 0; addr.bits.level = args->level; /* * For seamless if LINEAR filtering is done within a miplevel, * always apply wrap mode CLAMP_TO_BORDER. */ if (sp_samp->base.seamless_cube_map) { /* Note this is a bit overkill, actual clamping is not required */ wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw); wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw); } else { /* Would probably make sense to ignore mode and just do edge clamp */ sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw); } if (sp_samp->base.seamless_cube_map) { tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id); tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id); tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id); tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id); } else { tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id); tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id); tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id); tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id); } if (args->gather_only) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c, args->gather_comp, tx); } else { /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } static void img_filter_3d_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const struct img_filter_args *args, float *rgba) { const struct pipe_resource *texture = sp_sview->base.texture; const int width = u_minify(texture->width0, args->level); const int height = u_minify(texture->height0, args->level); const int depth = u_minify(texture->depth0, args->level); int x0, x1, y0, y1, z0, z1; float xw, yw, zw; /* interpolation weights */ union tex_tile_address addr; const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13; int c; addr.value = 0; addr.bits.level = args->level; assert(width > 0); assert(height > 0); assert(depth > 0); sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw); sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw); sp_samp->linear_texcoord_p(args->p, depth, args->offset[2], &z0, &z1, &zw); tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0); tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0); tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0); tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0); tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1); tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1); tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1); tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1); /* interpolate R, G, B, A */ for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw, tx00[c], tx01[c], tx02[c], tx03[c], tx10[c], tx11[c], tx12[c], tx13[c]); } /* Calculate level of detail for every fragment, * with lambda already computed. * Note that lambda has already been biased by global LOD bias. * \param biased_lambda per-quad lambda. * \param lod_in per-fragment lod_bias or explicit_lod. * \param lod returns the per-fragment lod. */ static inline void compute_lod(const struct pipe_sampler_state *sampler, enum tgsi_sampler_control control, const float biased_lambda, const float lod_in[TGSI_QUAD_SIZE], float lod[TGSI_QUAD_SIZE]) { const float min_lod = sampler->min_lod; const float max_lod = sampler->max_lod; uint i; switch (control) { case TGSI_SAMPLER_LOD_NONE: case TGSI_SAMPLER_LOD_ZERO: lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod); break; case TGSI_SAMPLER_DERIVS_EXPLICIT: for (i = 0; i < TGSI_QUAD_SIZE; i++) lod[i] = lod_in[i]; break; case TGSI_SAMPLER_LOD_BIAS: for (i = 0; i < TGSI_QUAD_SIZE; i++) { lod[i] = biased_lambda + lod_in[i]; lod[i] = CLAMP(lod[i], min_lod, max_lod); } break; case TGSI_SAMPLER_LOD_EXPLICIT: for (i = 0; i < TGSI_QUAD_SIZE; i++) { lod[i] = CLAMP(lod_in[i], min_lod, max_lod); } break; default: assert(0); lod[0] = lod[1] = lod[2] = lod[3] = 0.0f; } } /* Calculate level of detail for every fragment. The computed value is not * clamped to lod_min and lod_max. * \param lod_in per-fragment lod_bias or explicit_lod. * \param lod results per-fragment lod. */ static inline void compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const float derivs[3][2][TGSI_QUAD_SIZE], const float lod_in[TGSI_QUAD_SIZE], enum tgsi_sampler_control control, float lod[TGSI_QUAD_SIZE]) { const struct pipe_sampler_state *sampler = &sp_samp->base; const float lod_bias = sampler->lod_bias; float lambda; uint i; switch (control) { case TGSI_SAMPLER_LOD_NONE: lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias; lod[0] = lod[1] = lod[2] = lod[3] = lambda; break; case TGSI_SAMPLER_DERIVS_EXPLICIT: for (i = 0; i < TGSI_QUAD_SIZE; i++) lod[i] = sp_sview->compute_lambda_from_grad(sp_sview, derivs, i); break; case TGSI_SAMPLER_LOD_BIAS: lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias; for (i = 0; i < TGSI_QUAD_SIZE; i++) { lod[i] = lambda + lod_in[i]; } break; case TGSI_SAMPLER_LOD_EXPLICIT: for (i = 0; i < TGSI_QUAD_SIZE; i++) { lod[i] = lod_in[i] + lod_bias; } break; case TGSI_SAMPLER_LOD_ZERO: case TGSI_SAMPLER_GATHER: lod[0] = lod[1] = lod[2] = lod[3] = lod_bias; break; default: assert(0); lod[0] = lod[1] = lod[2] = lod[3] = 0.0f; } } /* Calculate level of detail for every fragment. * \param lod_in per-fragment lod_bias or explicit_lod. * \param lod results per-fragment lod. */ static inline void compute_lambda_lod(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], float derivs[3][2][TGSI_QUAD_SIZE], const float lod_in[TGSI_QUAD_SIZE], enum tgsi_sampler_control control, float lod[TGSI_QUAD_SIZE]) { const struct pipe_sampler_state *sampler = &sp_samp->base; const float min_lod = sampler->min_lod; const float max_lod = sampler->max_lod; int i; compute_lambda_lod_unclamped(sp_sview, sp_samp, s, t, p, derivs, lod_in, control, lod); for (i = 0; i < TGSI_QUAD_SIZE; i++) { lod[i] = CLAMP(lod[i], min_lod, max_lod); } } static inline unsigned get_gather_component(const float lod_in[TGSI_QUAD_SIZE]) { /* gather component is stored in lod_in slot as unsigned */ return (*(unsigned int *)lod_in) & 0x3; } /** * Clamps given lod to both lod limits and mip level limits. Clamping to the * latter limits is done so that lod is relative to the first (base) level. */ static void clamp_lod(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float clamped[TGSI_QUAD_SIZE]) { const float min_lod = sp_samp->base.min_lod; const float max_lod = sp_samp->base.max_lod; const float min_level = sp_sview->base.u.tex.first_level; const float max_level = sp_sview->base.u.tex.last_level; int i; for (i = 0; i < TGSI_QUAD_SIZE; i++) { float cl = lod[i]; cl = CLAMP(cl, min_lod, max_lod); cl = CLAMP(cl, 0, max_level - min_level); clamped[i] = cl; } } /** * Get mip level relative to base level for linear mip filter */ static void mip_rel_level_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { clamp_lod(sp_sview, sp_samp, lod, level); } static void mip_filter_linear(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], int gather_comp, const float lod[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_sampler_view *psview = &sp_sview->base; int j; struct img_filter_args args; args.offset = filt_args->offset; args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER; args.gather_comp = gather_comp; for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int level0 = psview->u.tex.first_level + (int)lod[j]; args.s = s[j]; args.t = t[j]; args.p = p[j]; args.face_id = filt_args->faces[j]; if (lod[j] <= 0.0 && !args.gather_only) { args.level = psview->u.tex.first_level; mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } else if (level0 >= (int) psview->u.tex.last_level) { args.level = psview->u.tex.last_level; min_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } else { float levelBlend = frac(lod[j]); float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; int c; args.level = level0; min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]); args.level = level0+1; min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]); for (c = 0; c < 4; c++) { rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]); } } } if (DEBUG_TEX) { print_sample_4(__FUNCTION__, rgba); } } /** * Get mip level relative to base level for nearest mip filter */ static void mip_rel_level_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { int j; clamp_lod(sp_sview, sp_samp, lod, level); for (j = 0; j < TGSI_QUAD_SIZE; j++) /* TODO: It should rather be: * level[j] = ceil(level[j] + 0.5F) - 1.0F; */ level[j] = (int)(level[j] + 0.5F); } /** * Compute nearest mipmap level from texcoords. * Then sample the texture level for four elements of a quad. * \param c0 the LOD bias factors, or absolute LODs (depending on control) */ static void mip_filter_nearest(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], int gather_component, const float lod[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_sampler_view *psview = &sp_sview->base; int j; struct img_filter_args args; args.offset = filt_args->offset; args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER; args.gather_comp = gather_component; for (j = 0; j < TGSI_QUAD_SIZE; j++) { args.s = s[j]; args.t = t[j]; args.p = p[j]; args.face_id = filt_args->faces[j]; if (lod[j] <= 0.0f && !args.gather_only) { args.level = psview->u.tex.first_level; mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } else { const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F); args.level = MIN2(level, (int)psview->u.tex.last_level); min_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } } if (DEBUG_TEX) { print_sample_4(__FUNCTION__, rgba); } } /** * Get mip level relative to base level for none mip filter */ static void mip_rel_level_none(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { int j; for (j = 0; j < TGSI_QUAD_SIZE; j++) { level[j] = 0; } } static void mip_filter_none(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], int gather_component, const float lod[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { int j; struct img_filter_args args; args.level = sp_sview->base.u.tex.first_level; args.offset = filt_args->offset; args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER; args.gather_comp = gather_component; for (j = 0; j < TGSI_QUAD_SIZE; j++) { args.s = s[j]; args.t = t[j]; args.p = p[j]; args.face_id = filt_args->faces[j]; if (lod[j] <= 0.0f && !args.gather_only) { mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } else { min_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } } } /** * Get mip level relative to base level for none mip filter */ static void mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { mip_rel_level_none(sp_sview, sp_samp, lod, level); } static void mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], int gather_comp, const float lod_in[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { int j; struct img_filter_args args; args.level = sp_sview->base.u.tex.first_level; args.offset = filt_args->offset; args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER; args.gather_comp = gather_comp; for (j = 0; j < TGSI_QUAD_SIZE; j++) { args.s = s[j]; args.t = t[j]; args.p = p[j]; args.face_id = filt_args->faces[j]; mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } } /* For anisotropic filtering */ #define WEIGHT_LUT_SIZE 1024 static const float *weightLut = NULL; /** * Creates the look-up table used to speed-up EWA sampling */ static void create_filter_table(void) { unsigned i; if (!weightLut) { float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float)); for (i = 0; i < WEIGHT_LUT_SIZE; ++i) { const float alpha = 2; const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1); const float weight = (float) expf(-alpha * r2); lut[i] = weight; } weightLut = lut; } } /** * Elliptical weighted average (EWA) filter for producing high quality * anisotropic filtered results. * Based on the Higher Quality Elliptical Weighted Average Filter * published by Paul S. Heckbert in his Master's Thesis * "Fundamentals of Texture Mapping and Image Warping" (1989) */ static void img_filter_2d_ewa(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const uint faces[TGSI_QUAD_SIZE], const int8_t *offset, unsigned level, const float dudx, const float dvdx, const float dudy, const float dvdy, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_resource *texture = sp_sview->base.texture; // ??? Won't the image filters blow up if level is negative? const unsigned level0 = level > 0 ? level : 0; const float scaling = 1.0f / (1 << level0); const int width = u_minify(texture->width0, level0); const int height = u_minify(texture->height0, level0); struct img_filter_args args; const float ux = dudx * scaling; const float vx = dvdx * scaling; const float uy = dudy * scaling; const float vy = dvdy * scaling; /* compute ellipse coefficients to bound the region: * A*x*x + B*x*y + C*y*y = F. */ float A = vx*vx+vy*vy+1; float B = -2*(ux*vx+uy*vy); float C = ux*ux+uy*uy+1; float F = A*C-B*B/4.0f; /* check if it is an ellipse */ /* assert(F > 0.0); */ /* Compute the ellipse's (u,v) bounding box in texture space */ const float d = -B*B+4.0f*C*A; const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */ const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */ float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; float s_buffer[TGSI_QUAD_SIZE]; float t_buffer[TGSI_QUAD_SIZE]; float weight_buffer[TGSI_QUAD_SIZE]; int j; /* For each quad, the du and dx values are the same and so the ellipse is * also the same. Note that texel/image access can only be performed using * a quad, i.e. it is not possible to get the pixel value for a single * tex coord. In order to have a better performance, the access is buffered * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is * full, then the pixel values are read from the image. */ const float ddq = 2 * A; /* Scale ellipse formula to directly index the Filter Lookup Table. * i.e. scale so that F = WEIGHT_LUT_SIZE-1 */ const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F; A *= formScale; B *= formScale; C *= formScale; /* F *= formScale; */ /* no need to scale F as we don't use it below here */ args.level = level; args.offset = offset; for (j = 0; j < TGSI_QUAD_SIZE; j++) { /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse * and incrementally update the value of Ax^2+Bxy*Cy^2; when this * value, q, is less than F, we're inside the ellipse */ const float tex_u = -0.5F + s[j] * texture->width0 * scaling; const float tex_v = -0.5F + t[j] * texture->height0 * scaling; const int u0 = (int) floorf(tex_u - box_u); const int u1 = (int) ceilf(tex_u + box_u); const int v0 = (int) floorf(tex_v - box_v); const int v1 = (int) ceilf(tex_v + box_v); const float U = u0 - tex_u; float num[4] = {0.0F, 0.0F, 0.0F, 0.0F}; unsigned buffer_next = 0; float den = 0; int v; args.face_id = faces[j]; for (v = v0; v <= v1; ++v) { const float V = v - tex_v; float dq = A * (2 * U + 1) + B * V; float q = (C * V + B * U) * V + A * U * U; int u; for (u = u0; u <= u1; ++u) { /* Note that the ellipse has been pre-scaled so F = * WEIGHT_LUT_SIZE - 1 */ if (q < WEIGHT_LUT_SIZE) { /* as a LUT is used, q must never be negative; * should not happen, though */ const int qClamped = q >= 0.0F ? q : 0; const float weight = weightLut[qClamped]; weight_buffer[buffer_next] = weight; s_buffer[buffer_next] = u / ((float) width); t_buffer[buffer_next] = v / ((float) height); buffer_next++; if (buffer_next == TGSI_QUAD_SIZE) { /* 4 texel coords are in the buffer -> read it now */ unsigned jj; /* it is assumed that samp->min_img_filter is set to * img_filter_2d_nearest or one of the * accelerated img_filter_2d_nearest_XXX functions. */ for (jj = 0; jj < buffer_next; jj++) { args.s = s_buffer[jj]; args.t = t_buffer[jj]; args.p = p[jj]; min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]); num[0] += weight_buffer[jj] * rgba_temp[0][jj]; num[1] += weight_buffer[jj] * rgba_temp[1][jj]; num[2] += weight_buffer[jj] * rgba_temp[2][jj]; num[3] += weight_buffer[jj] * rgba_temp[3][jj]; } buffer_next = 0; } den += weight; } q += dq; dq += ddq; } } /* if the tex coord buffer contains unread values, we will read * them now. */ if (buffer_next > 0) { unsigned jj; /* it is assumed that samp->min_img_filter is set to * img_filter_2d_nearest or one of the * accelerated img_filter_2d_nearest_XXX functions. */ for (jj = 0; jj < buffer_next; jj++) { args.s = s_buffer[jj]; args.t = t_buffer[jj]; args.p = p[jj]; min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]); num[0] += weight_buffer[jj] * rgba_temp[0][jj]; num[1] += weight_buffer[jj] * rgba_temp[1][jj]; num[2] += weight_buffer[jj] * rgba_temp[2][jj]; num[3] += weight_buffer[jj] * rgba_temp[3][jj]; } } if (den <= 0.0F) { /* Reaching this place would mean that no pixels intersected * the ellipse. This should never happen because the filter * we use always intersects at least one pixel. */ /*rgba[0]=0; rgba[1]=0; rgba[2]=0; rgba[3]=0;*/ /* not enough pixels in resampling, resort to direct interpolation */ args.s = s[j]; args.t = t[j]; args.p = p[j]; min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]); den = 1; num[0] = rgba_temp[0][j]; num[1] = rgba_temp[1][j]; num[2] = rgba_temp[2][j]; num[3] = rgba_temp[3][j]; } rgba[0][j] = num[0] / den; rgba[1][j] = num[1] / den; rgba[2][j] = num[2] / den; rgba[3][j] = num[3] / den; } } /** * Get mip level relative to base level for linear mip filter */ static void mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { mip_rel_level_linear(sp_sview, sp_samp, lod, level); } /** * Sample 2D texture using an anisotropic filter. */ static void mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], UNUSED int gather_comp, const float lod_in[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_resource *texture = sp_sview->base.texture; const struct pipe_sampler_view *psview = &sp_sview->base; int level0; float lambda; float lod[TGSI_QUAD_SIZE]; const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level); const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level); const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u; const float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u; const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v; const float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v; struct img_filter_args args; args.offset = filt_args->offset; if (filt_args->control == TGSI_SAMPLER_LOD_BIAS || filt_args->control == TGSI_SAMPLER_LOD_NONE || /* XXX FIXME */ filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) { /* note: instead of working with Px and Py, we will use the * squared length instead, to avoid sqrt. */ const float Px2 = dudx * dudx + dvdx * dvdx; const float Py2 = dudy * dudy + dvdy * dvdy; float Pmax2; float Pmin2; float e; const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy; if (Px2 < Py2) { Pmax2 = Py2; Pmin2 = Px2; } else { Pmax2 = Px2; Pmin2 = Py2; } /* if the eccentricity of the ellipse is too big, scale up the shorter * of the two vectors to limit the maximum amount of work per pixel */ e = Pmax2 / Pmin2; if (e > maxEccentricity) { /* float s=e / maxEccentricity; minor[0] *= s; minor[1] *= s; Pmin2 *= s; */ Pmin2 = Pmax2 / maxEccentricity; } /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid * this since 0.5*log(x) = log(sqrt(x)) */ lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias; compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod); } else { assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT || filt_args->control == TGSI_SAMPLER_LOD_ZERO); compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod); } /* XXX: Take into account all lod values. */ lambda = lod[0]; level0 = psview->u.tex.first_level + (int)lambda; /* If the ellipse covers the whole image, we can * simply return the average of the whole image. */ if (level0 >= (int) psview->u.tex.last_level) { int j; for (j = 0; j < TGSI_QUAD_SIZE; j++) { args.s = s[j]; args.t = t[j]; args.p = p[j]; args.level = psview->u.tex.last_level; args.face_id = filt_args->faces[j]; /* * XXX: we overwrote any linear filter with nearest, so this * isn't right (albeit if last level is 1x1 and no border it * will work just the same). */ min_filter(sp_sview, sp_samp, &args, &rgba[0][j]); } } else { /* don't bother interpolating between multiple LODs; it doesn't * seem to be worth the extra running time. */ img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter, s, t, p, filt_args->faces, filt_args->offset, level0, dudx, dvdx, dudy, dvdy, rgba); } if (DEBUG_TEX) { print_sample_4(__FUNCTION__, rgba); } } /** * Get mip level relative to base level for linear mip filter */ static void mip_rel_level_linear_2d_linear_repeat_POT( const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float lod[TGSI_QUAD_SIZE], float level[TGSI_QUAD_SIZE]) { mip_rel_level_linear(sp_sview, sp_samp, lod, level); } /** * Specialized version of mip_filter_linear with hard-wired calls to * 2d lambda calculation and 2d_linear_repeat_POT img filters. */ static void mip_filter_linear_2d_linear_repeat_POT( const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, img_filter_func min_filter, img_filter_func mag_filter, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], int gather_comp, const float lod[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_sampler_view *psview = &sp_sview->base; int j; for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int level0 = psview->u.tex.first_level + (int)lod[j]; struct img_filter_args args; /* Catches both negative and large values of level0: */ args.s = s[j]; args.t = t[j]; args.p = p[j]; args.face_id = filt_args->faces[j]; args.offset = filt_args->offset; args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER; args.gather_comp = gather_comp; if ((unsigned)level0 >= psview->u.tex.last_level) { if (level0 < 0) args.level = psview->u.tex.first_level; else args.level = psview->u.tex.last_level; img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgba[0][j]); } else { const float levelBlend = frac(lod[j]); float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; int c; args.level = level0; img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]); args.level = level0+1; img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]); for (c = 0; c < TGSI_NUM_CHANNELS; c++) rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]); } } if (DEBUG_TEX) { print_sample_4(__FUNCTION__, rgba); } } static const struct sp_filter_funcs funcs_linear = { mip_rel_level_linear, mip_filter_linear }; static const struct sp_filter_funcs funcs_nearest = { mip_rel_level_nearest, mip_filter_nearest }; static const struct sp_filter_funcs funcs_none = { mip_rel_level_none, mip_filter_none }; static const struct sp_filter_funcs funcs_none_no_filter_select = { mip_rel_level_none_no_filter_select, mip_filter_none_no_filter_select }; static const struct sp_filter_funcs funcs_linear_aniso = { mip_rel_level_linear_aniso, mip_filter_linear_aniso }; static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = { mip_rel_level_linear_2d_linear_repeat_POT, mip_filter_linear_2d_linear_repeat_POT }; /** * Do shadow/depth comparisons. */ static void sample_compare(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float c0[TGSI_QUAD_SIZE], enum tgsi_sampler_control control, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct pipe_sampler_state *sampler = &sp_samp->base; int j, v; int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; float pc[4]; const struct util_format_description *format_desc = util_format_description(sp_sview->base.format); /* not entirely sure we couldn't end up with non-valid swizzle here */ const unsigned chan_type = format_desc->swizzle[0] <= PIPE_SWIZZLE_W ? format_desc->channel[format_desc->swizzle[0]].type : UTIL_FORMAT_TYPE_FLOAT; const bool is_gather = (control == TGSI_SAMPLER_GATHER); /** * Compare texcoord 'p' (aka R) against texture value 'rgba[0]' * for 2D Array texture we need to use the 'c0' (aka Q). * When we sampled the depth texture, the depth value was put into all * RGBA channels. We look at the red channel here. */ if (chan_type != UTIL_FORMAT_TYPE_FLOAT) { /* * clamping is a result of conversion to texture format, hence * doesn't happen with floats. Technically also should do comparison * in texture format (quantization!). */ pc[0] = CLAMP(c0[0], 0.0F, 1.0F); pc[1] = CLAMP(c0[1], 0.0F, 1.0F); pc[2] = CLAMP(c0[2], 0.0F, 1.0F); pc[3] = CLAMP(c0[3], 0.0F, 1.0F); } else { pc[0] = c0[0]; pc[1] = c0[1]; pc[2] = c0[2]; pc[3] = c0[3]; } for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) { /* compare four texcoords vs. four texture samples */ switch (sampler->compare_func) { case PIPE_FUNC_LESS: k[v][0] = pc[0] < rgba[v][0]; k[v][1] = pc[1] < rgba[v][1]; k[v][2] = pc[2] < rgba[v][2]; k[v][3] = pc[3] < rgba[v][3]; break; case PIPE_FUNC_LEQUAL: k[v][0] = pc[0] <= rgba[v][0]; k[v][1] = pc[1] <= rgba[v][1]; k[v][2] = pc[2] <= rgba[v][2]; k[v][3] = pc[3] <= rgba[v][3]; break; case PIPE_FUNC_GREATER: k[v][0] = pc[0] > rgba[v][0]; k[v][1] = pc[1] > rgba[v][1]; k[v][2] = pc[2] > rgba[v][2]; k[v][3] = pc[3] > rgba[v][3]; break; case PIPE_FUNC_GEQUAL: k[v][0] = pc[0] >= rgba[v][0]; k[v][1] = pc[1] >= rgba[v][1]; k[v][2] = pc[2] >= rgba[v][2]; k[v][3] = pc[3] >= rgba[v][3]; break; case PIPE_FUNC_EQUAL: k[v][0] = pc[0] == rgba[v][0]; k[v][1] = pc[1] == rgba[v][1]; k[v][2] = pc[2] == rgba[v][2]; k[v][3] = pc[3] == rgba[v][3]; break; case PIPE_FUNC_NOTEQUAL: k[v][0] = pc[0] != rgba[v][0]; k[v][1] = pc[1] != rgba[v][1]; k[v][2] = pc[2] != rgba[v][2]; k[v][3] = pc[3] != rgba[v][3]; break; case PIPE_FUNC_ALWAYS: k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1; break; case PIPE_FUNC_NEVER: k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0; break; default: k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0; assert(0); break; } } if (is_gather) { for (j = 0; j < TGSI_QUAD_SIZE; j++) { for (v = 0; v < TGSI_NUM_CHANNELS; v++) { rgba[v][j] = k[v][j]; } } } else { for (j = 0; j < TGSI_QUAD_SIZE; j++) { rgba[0][j] = k[0][j]; rgba[1][j] = k[0][j]; rgba[2][j] = k[0][j]; rgba[3][j] = 1.0F; } } } static void do_swizzling(const struct pipe_sampler_view *sview, float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE], float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { struct sp_sampler_view *sp_sview = (struct sp_sampler_view *)sview; int j; const unsigned swizzle_r = sview->swizzle_r; const unsigned swizzle_g = sview->swizzle_g; const unsigned swizzle_b = sview->swizzle_b; const unsigned swizzle_a = sview->swizzle_a; switch (swizzle_r) { case PIPE_SWIZZLE_0: for (j = 0; j < 4; j++) out[0][j] = 0.0f; break; case PIPE_SWIZZLE_1: for (j = 0; j < 4; j++) out[0][j] = sp_sview->oneval; break; default: assert(swizzle_r < 4); for (j = 0; j < 4; j++) out[0][j] = in[swizzle_r][j]; } switch (swizzle_g) { case PIPE_SWIZZLE_0: for (j = 0; j < 4; j++) out[1][j] = 0.0f; break; case PIPE_SWIZZLE_1: for (j = 0; j < 4; j++) out[1][j] = sp_sview->oneval; break; default: assert(swizzle_g < 4); for (j = 0; j < 4; j++) out[1][j] = in[swizzle_g][j]; } switch (swizzle_b) { case PIPE_SWIZZLE_0: for (j = 0; j < 4; j++) out[2][j] = 0.0f; break; case PIPE_SWIZZLE_1: for (j = 0; j < 4; j++) out[2][j] = sp_sview->oneval; break; default: assert(swizzle_b < 4); for (j = 0; j < 4; j++) out[2][j] = in[swizzle_b][j]; } switch (swizzle_a) { case PIPE_SWIZZLE_0: for (j = 0; j < 4; j++) out[3][j] = 0.0f; break; case PIPE_SWIZZLE_1: for (j = 0; j < 4; j++) out[3][j] = sp_sview->oneval; break; default: assert(swizzle_a < 4); for (j = 0; j < 4; j++) out[3][j] = in[swizzle_a][j]; } } static wrap_nearest_func get_nearest_unorm_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_nearest_unorm_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_unorm_clamp_to_border; default: debug_printf("illegal wrap mode %d with non-normalized coords\n", mode); return wrap_nearest_unorm_clamp; } } static wrap_nearest_func get_nearest_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_nearest_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_nearest_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_nearest_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_nearest_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_nearest_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_nearest_mirror_clamp_to_border; default: assert(0); return wrap_nearest_repeat; } } static wrap_linear_func get_linear_unorm_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_linear_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_linear_unorm_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_unorm_clamp_to_border; default: debug_printf("illegal wrap mode %d with non-normalized coords\n", mode); return wrap_linear_unorm_clamp; } } static wrap_linear_func get_linear_wrap(unsigned mode) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_linear_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_linear_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_linear_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_linear_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_linear_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_linear_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_linear_mirror_clamp_to_border; default: assert(0); return wrap_linear_repeat; } } /** * Is swizzling needed for the given state key? */ static inline bool any_swizzle(const struct pipe_sampler_view *view) { return (view->swizzle_r != PIPE_SWIZZLE_X || view->swizzle_g != PIPE_SWIZZLE_Y || view->swizzle_b != PIPE_SWIZZLE_Z || view->swizzle_a != PIPE_SWIZZLE_W); } static img_filter_func get_img_filter(const struct sp_sampler_view *sp_sview, const struct pipe_sampler_state *sampler, unsigned filter, bool gather) { switch (sp_sview->base.target) { case PIPE_BUFFER: case PIPE_TEXTURE_1D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_1d_nearest; else return img_filter_1d_linear; break; case PIPE_TEXTURE_1D_ARRAY: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_1d_array_nearest; else return img_filter_1d_array_linear; break; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_RECT: /* Try for fast path: */ if (!gather && sp_sview->pot2d && sampler->wrap_s == sampler->wrap_t && sampler->normalized_coords) { switch (sampler->wrap_s) { case PIPE_TEX_WRAP_REPEAT: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_repeat_POT; case PIPE_TEX_FILTER_LINEAR: return img_filter_2d_linear_repeat_POT; default: break; } break; case PIPE_TEX_WRAP_CLAMP: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_clamp_POT; default: break; } } } /* Otherwise use default versions: */ if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_2d_nearest; else return img_filter_2d_linear; break; case PIPE_TEXTURE_2D_ARRAY: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_2d_array_nearest; else return img_filter_2d_array_linear; break; case PIPE_TEXTURE_CUBE: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_cube_nearest; else return img_filter_cube_linear; break; case PIPE_TEXTURE_CUBE_ARRAY: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_cube_array_nearest; else return img_filter_cube_array_linear; break; case PIPE_TEXTURE_3D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_3d_nearest; else return img_filter_3d_linear; break; default: assert(0); return img_filter_1d_nearest; } } /** * Get mip filter funcs, and optionally both img min filter and img mag * filter. Note that both img filter function pointers must be either non-NULL * or NULL. */ static void get_filters(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const enum tgsi_sampler_control control, const struct sp_filter_funcs **funcs, img_filter_func *min, img_filter_func *mag) { assert(funcs); if (control == TGSI_SAMPLER_GATHER) { *funcs = &funcs_nearest; if (min) { *min = get_img_filter(sp_sview, &sp_samp->base, PIPE_TEX_FILTER_LINEAR, true); } } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) { *funcs = &funcs_linear_2d_linear_repeat_POT; } else { *funcs = sp_samp->filter_funcs; if (min) { assert(mag); *min = get_img_filter(sp_sview, &sp_samp->base, sp_samp->min_img_filter, false); if (sp_samp->min_mag_equal) { *mag = *min; } else { *mag = get_img_filter(sp_sview, &sp_samp->base, sp_samp->base.mag_img_filter, false); } } } } static void sample_mip(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const float c0[TGSI_QUAD_SIZE], int gather_comp, const float lod[TGSI_QUAD_SIZE], const struct filter_args *filt_args, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct sp_filter_funcs *funcs = NULL; img_filter_func min_img_filter = NULL; img_filter_func mag_img_filter = NULL; get_filters(sp_sview, sp_samp, filt_args->control, &funcs, &min_img_filter, &mag_img_filter); funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter, s, t, p, gather_comp, lod, filt_args, rgba); if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) { sample_compare(sp_sview, sp_samp, c0, filt_args->control, rgba); } if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) { float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; memcpy(rgba_temp, rgba, sizeof(rgba_temp)); do_swizzling(&sp_sview->base, rgba_temp, rgba); } } /** * This function uses cube texture coordinates to choose a face of a cube and * computes the 2D cube face coordinates. Puts face info into the sampler * faces[] array. */ static void convert_cube(const struct sp_sampler_view *sp_sview, const struct sp_sampler *sp_samp, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const float c0[TGSI_QUAD_SIZE], float ssss[TGSI_QUAD_SIZE], float tttt[TGSI_QUAD_SIZE], float pppp[TGSI_QUAD_SIZE], uint faces[TGSI_QUAD_SIZE]) { unsigned j; pppp[0] = c0[0]; pppp[1] = c0[1]; pppp[2] = c0[2]; pppp[3] = c0[3]; /* major axis direction target sc tc ma ---------- ------------------------------- --- --- --- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz */ /* Choose the cube face and compute new s/t coords for the 2D face. * * Use the same cube face for all four pixels in the quad. * * This isn't ideal, but if we want to use a different cube face * per pixel in the quad, we'd have to also compute the per-face * LOD here too. That's because the four post-face-selection * texcoords are no longer related to each other (they're * per-face!) so we can't use subtraction to compute the partial * deriviates to compute the LOD. Doing so (near cube edges * anyway) gives us pretty much random values. */ for (j = 0; j < TGSI_QUAD_SIZE; j++) { const float rx = s[j], ry = t[j], rz = p[j]; const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz); if (arx >= ary && arx >= arz) { const float sign = (rx >= 0.0F) ? 1.0F : -1.0F; const uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X; const float ima = -0.5F / fabsf(s[j]); ssss[j] = sign * p[j] * ima + 0.5F; tttt[j] = t[j] * ima + 0.5F; faces[j] = face; } else if (ary >= arx && ary >= arz) { const float sign = (ry >= 0.0F) ? 1.0F : -1.0F; const uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y; const float ima = -0.5F / fabsf(t[j]); ssss[j] = -s[j] * ima + 0.5F; tttt[j] = sign * -p[j] * ima + 0.5F; faces[j] = face; } else { const float sign = (rz >= 0.0F) ? 1.0F : -1.0F; const uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z; const float ima = -0.5F / fabsf(p[j]); ssss[j] = sign * -s[j] * ima + 0.5F; tttt[j] = t[j] * ima + 0.5F; faces[j] = face; } } } static void sp_get_dims(const struct sp_sampler_view *sp_sview, int level, int dims[4]) { const struct pipe_sampler_view *view = &sp_sview->base; const struct pipe_resource *texture = view->texture; if (view->target == PIPE_BUFFER) { dims[0] = view->u.buf.size / util_format_get_blocksize(view->format); /* the other values are undefined, but let's avoid potential valgrind * warnings. */ dims[1] = dims[2] = dims[3] = 0; return; } /* undefined according to EXT_gpu_program */ level += view->u.tex.first_level; if (level > view->u.tex.last_level) return; dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1; dims[0] = u_minify(texture->width0, level); switch (view->target) { case PIPE_TEXTURE_1D_ARRAY: dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1; /* fallthrough */ case PIPE_TEXTURE_1D: return; case PIPE_TEXTURE_2D_ARRAY: dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1; /* fallthrough */ case PIPE_TEXTURE_2D: case PIPE_TEXTURE_CUBE: case PIPE_TEXTURE_RECT: dims[1] = u_minify(texture->height0, level); return; case PIPE_TEXTURE_3D: dims[1] = u_minify(texture->height0, level); dims[2] = u_minify(texture->depth0, level); return; case PIPE_TEXTURE_CUBE_ARRAY: dims[1] = u_minify(texture->height0, level); dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6; break; default: assert(!"unexpected texture target in sp_get_dims()"); return; } } /** * This function is only used for getting unfiltered texels via the * TXF opcode. The GL spec says that out-of-bounds texel fetches * produce undefined results. Instead of crashing, lets just clamp * coords to the texture image size. */ static void sp_get_texels(const struct sp_sampler_view *sp_sview, const int v_i[TGSI_QUAD_SIZE], const int v_j[TGSI_QUAD_SIZE], const int v_k[TGSI_QUAD_SIZE], const int lod[TGSI_QUAD_SIZE], const int8_t offset[3], float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { union tex_tile_address addr; const struct pipe_resource *texture = sp_sview->base.texture; int j, c; const float *tx; /* TODO write a better test for LOD */ const unsigned level = sp_sview->base.target == PIPE_BUFFER ? 0 : CLAMP(lod[0] + sp_sview->base.u.tex.first_level, sp_sview->base.u.tex.first_level, sp_sview->base.u.tex.last_level); const int width = u_minify(texture->width0, level); const int height = u_minify(texture->height0, level); const int depth = u_minify(texture->depth0, level); unsigned elem_size, first_element, last_element; addr.value = 0; addr.bits.level = level; switch (sp_sview->base.target) { case PIPE_BUFFER: elem_size = util_format_get_blocksize(sp_sview->base.format); first_element = sp_sview->base.u.buf.offset / elem_size; last_element = (sp_sview->base.u.buf.offset + sp_sview->base.u.buf.size) / elem_size - 1; for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int x = CLAMP(v_i[j] + offset[0] + first_element, first_element, last_element); tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_1D: for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int x = CLAMP(v_i[j] + offset[0], 0, width - 1); tx = get_texel_2d_no_border(sp_sview, addr, x, sp_sview->base.u.tex.first_layer); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_1D_ARRAY: for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int x = CLAMP(v_i[j] + offset[0], 0, width - 1); const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); tx = get_texel_2d_no_border(sp_sview, addr, x, y); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_RECT: for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int x = CLAMP(v_i[j] + offset[0], 0, width - 1); const int y = CLAMP(v_j[j] + offset[1], 0, height - 1); tx = get_texel_3d_no_border(sp_sview, addr, x, y, sp_sview->base.u.tex.first_layer); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_2D_ARRAY: for (j = 0; j < TGSI_QUAD_SIZE; j++) { const int x = CLAMP(v_i[j] + offset[0], 0, width - 1); const int y = CLAMP(v_j[j] + offset[1], 0, height - 1); const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer); tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_3D: for (j = 0; j < TGSI_QUAD_SIZE; j++) { int x = CLAMP(v_i[j] + offset[0], 0, width - 1); int y = CLAMP(v_j[j] + offset[1], 0, height - 1); int z = CLAMP(v_k[j] + offset[2], 0, depth - 1); tx = get_texel_3d_no_border(sp_sview, addr, x, y, z); for (c = 0; c < 4; c++) { rgba[c][j] = tx[c]; } } break; case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */ case PIPE_TEXTURE_CUBE_ARRAY: default: assert(!"Unknown or CUBE texture type in TXF processing\n"); break; } if (sp_sview->need_swizzle) { float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]; memcpy(rgba_temp, rgba, sizeof(rgba_temp)); do_swizzling(&sp_sview->base, rgba_temp, rgba); } } void * softpipe_create_sampler_state(struct pipe_context *pipe, const struct pipe_sampler_state *sampler) { struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler); samp->base = *sampler; /* Note that (for instance) linear_texcoord_s and * nearest_texcoord_s may be active at the same time, if the * sampler min_img_filter differs from its mag_img_filter. */ if (sampler->normalized_coords) { samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r ); } else { samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r ); } samp->min_img_filter = sampler->min_img_filter; switch (sampler->min_mip_filter) { case PIPE_TEX_MIPFILTER_NONE: if (sampler->min_img_filter == sampler->mag_img_filter) samp->filter_funcs = &funcs_none_no_filter_select; else samp->filter_funcs = &funcs_none; break; case PIPE_TEX_MIPFILTER_NEAREST: samp->filter_funcs = &funcs_nearest; break; case PIPE_TEX_MIPFILTER_LINEAR: if (sampler->min_img_filter == sampler->mag_img_filter && sampler->normalized_coords && sampler->wrap_s == PIPE_TEX_WRAP_REPEAT && sampler->wrap_t == PIPE_TEX_WRAP_REPEAT && sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR && sampler->max_anisotropy <= 1) { samp->min_mag_equal_repeat_linear = TRUE; } samp->filter_funcs = &funcs_linear; /* Anisotropic filtering extension. */ if (sampler->max_anisotropy > 1) { samp->filter_funcs = &funcs_linear_aniso; /* Override min_img_filter: * min_img_filter needs to be set to NEAREST since we need to access * each texture pixel as it is and weight it later; using linear * filters will have incorrect results. * By setting the filter to NEAREST here, we can avoid calling the * generic img_filter_2d_nearest in the anisotropic filter function, * making it possible to use one of the accelerated implementations */ samp->min_img_filter = PIPE_TEX_FILTER_NEAREST; /* on first access create the lookup table containing the filter weights. */ if (!weightLut) { create_filter_table(); } } break; } if (samp->min_img_filter == sampler->mag_img_filter) { samp->min_mag_equal = TRUE; } return (void *)samp; } compute_lambda_func softpipe_get_lambda_func(const struct pipe_sampler_view *view, enum pipe_shader_type shader) { if (shader != PIPE_SHADER_FRAGMENT) return compute_lambda_vert; switch (view->target) { case PIPE_BUFFER: case PIPE_TEXTURE_1D: case PIPE_TEXTURE_1D_ARRAY: return compute_lambda_1d; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_2D_ARRAY: case PIPE_TEXTURE_RECT: return compute_lambda_2d; case PIPE_TEXTURE_CUBE: case PIPE_TEXTURE_CUBE_ARRAY: return compute_lambda_cube; case PIPE_TEXTURE_3D: return compute_lambda_3d; default: assert(0); return compute_lambda_1d; } } struct pipe_sampler_view * softpipe_create_sampler_view(struct pipe_context *pipe, struct pipe_resource *resource, const struct pipe_sampler_view *templ) { struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view); const struct softpipe_resource *spr = (struct softpipe_resource *)resource; if (sview) { struct pipe_sampler_view *view = &sview->base; *view = *templ; view->reference.count = 1; view->texture = NULL; pipe_resource_reference(&view->texture, resource); view->context = pipe; #ifdef DEBUG /* * This is possibly too lenient, but the primary reason is just * to catch gallium frontends which forget to initialize this, so * it only catches clearly impossible view targets. */ if (view->target != resource->target) { if (view->target == PIPE_TEXTURE_1D) assert(resource->target == PIPE_TEXTURE_1D_ARRAY); else if (view->target == PIPE_TEXTURE_1D_ARRAY) assert(resource->target == PIPE_TEXTURE_1D); else if (view->target == PIPE_TEXTURE_2D) assert(resource->target == PIPE_TEXTURE_2D_ARRAY || resource->target == PIPE_TEXTURE_CUBE || resource->target == PIPE_TEXTURE_CUBE_ARRAY); else if (view->target == PIPE_TEXTURE_2D_ARRAY) assert(resource->target == PIPE_TEXTURE_2D || resource->target == PIPE_TEXTURE_CUBE || resource->target == PIPE_TEXTURE_CUBE_ARRAY); else if (view->target == PIPE_TEXTURE_CUBE) assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY || resource->target == PIPE_TEXTURE_2D_ARRAY); else if (view->target == PIPE_TEXTURE_CUBE_ARRAY) assert(resource->target == PIPE_TEXTURE_CUBE || resource->target == PIPE_TEXTURE_2D_ARRAY); else assert(0); } #endif if (any_swizzle(view)) { sview->need_swizzle = TRUE; } sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE || view->target == PIPE_TEXTURE_CUBE_ARRAY); sview->pot2d = spr->pot && (view->target == PIPE_TEXTURE_2D || view->target == PIPE_TEXTURE_RECT); sview->xpot = util_logbase2( resource->width0 ); sview->ypot = util_logbase2( resource->height0 ); sview->oneval = util_format_is_pure_integer(view->format) ? uif(1) : 1.0f; } return (struct pipe_sampler_view *) sview; } static inline const struct sp_tgsi_sampler * sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler) { return (const struct sp_tgsi_sampler *)sampler; } static void sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler, const unsigned sview_index, int level, int dims[4]) { const struct sp_tgsi_sampler *sp_samp = sp_tgsi_sampler_cast_c(tgsi_sampler); assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS); /* always have a view here but texture is NULL if no sampler view was set. */ if (!sp_samp->sp_sview[sview_index].base.texture) { dims[0] = dims[1] = dims[2] = dims[3] = 0; return; } sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims); } static void prepare_compare_values(enum pipe_texture_target target, const float p[TGSI_QUAD_SIZE], const float c0[TGSI_QUAD_SIZE], const float c1[TGSI_QUAD_SIZE], float pc[TGSI_QUAD_SIZE]) { if (target == PIPE_TEXTURE_2D_ARRAY || target == PIPE_TEXTURE_CUBE) { pc[0] = c0[0]; pc[1] = c0[1]; pc[2] = c0[2]; pc[3] = c0[3]; } else if (target == PIPE_TEXTURE_CUBE_ARRAY) { pc[0] = c1[0]; pc[1] = c1[1]; pc[2] = c1[2]; pc[3] = c1[3]; } else { pc[0] = p[0]; pc[1] = p[1]; pc[2] = p[2]; pc[3] = p[3]; } } static void sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler, const unsigned sview_index, const unsigned sampler_index, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const float c0[TGSI_QUAD_SIZE], const float lod_in[TGSI_QUAD_SIZE], float derivs[3][2][TGSI_QUAD_SIZE], const int8_t offset[3], enum tgsi_sampler_control control, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct sp_tgsi_sampler *sp_tgsi_samp = sp_tgsi_sampler_cast_c(tgsi_sampler); struct sp_sampler_view sp_sview; const struct sp_sampler *sp_samp; struct filter_args filt_args; float compare_values[TGSI_QUAD_SIZE]; float lod[TGSI_QUAD_SIZE]; int c; assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS); assert(sampler_index < PIPE_MAX_SAMPLERS); assert(sp_tgsi_samp->sp_sampler[sampler_index]); memcpy(&sp_sview, &sp_tgsi_samp->sp_sview[sview_index], sizeof(struct sp_sampler_view)); sp_samp = sp_tgsi_samp->sp_sampler[sampler_index]; if (util_format_is_unorm(sp_sview.base.format)) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c], 0.0f, 1.0f); } else if (util_format_is_snorm(sp_sview.base.format)) { for (c = 0; c < TGSI_NUM_CHANNELS; c++) sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c], -1.0f, 1.0f); } else { memcpy(sp_sview.border_color.f, sp_samp->base.border_color.f, TGSI_NUM_CHANNELS * sizeof(float)); } /* always have a view here but texture is NULL if no sampler view was set. */ if (!sp_sview.base.texture) { int i, j; for (j = 0; j < TGSI_NUM_CHANNELS; j++) { for (i = 0; i < TGSI_QUAD_SIZE; i++) { rgba[j][i] = 0.0f; } } return; } if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) prepare_compare_values(sp_sview.base.target, p, c0, lod_in, compare_values); filt_args.control = control; filt_args.offset = offset; int gather_comp = get_gather_component(lod_in); compute_lambda_lod(&sp_sview, sp_samp, s, t, p, derivs, lod_in, control, lod); if (sp_sview.need_cube_convert) { float cs[TGSI_QUAD_SIZE]; float ct[TGSI_QUAD_SIZE]; float cp[TGSI_QUAD_SIZE]; uint faces[TGSI_QUAD_SIZE]; convert_cube(&sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces); filt_args.faces = faces; sample_mip(&sp_sview, sp_samp, cs, ct, cp, compare_values, gather_comp, lod, &filt_args, rgba); } else { static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0}; filt_args.faces = zero_faces; sample_mip(&sp_sview, sp_samp, s, t, p, compare_values, gather_comp, lod, &filt_args, rgba); } } static void sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler, const unsigned sview_index, const unsigned sampler_index, const float s[TGSI_QUAD_SIZE], const float t[TGSI_QUAD_SIZE], const float p[TGSI_QUAD_SIZE], const float c0[TGSI_QUAD_SIZE], const enum tgsi_sampler_control control, float mipmap[TGSI_QUAD_SIZE], float lod[TGSI_QUAD_SIZE]) { static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 }; static const float dummy_grad[3][2][TGSI_QUAD_SIZE]; const struct sp_tgsi_sampler *sp_tgsi_samp = sp_tgsi_sampler_cast_c(tgsi_sampler); const struct sp_sampler_view *sp_sview; const struct sp_sampler *sp_samp; const struct sp_filter_funcs *funcs; int i; assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS); assert(sampler_index < PIPE_MAX_SAMPLERS); assert(sp_tgsi_samp->sp_sampler[sampler_index]); sp_sview = &sp_tgsi_samp->sp_sview[sview_index]; sp_samp = sp_tgsi_samp->sp_sampler[sampler_index]; /* always have a view here but texture is NULL if no sampler view was * set. */ if (!sp_sview->base.texture) { for (i = 0; i < TGSI_QUAD_SIZE; i++) { mipmap[i] = 0.0f; lod[i] = 0.0f; } return; } compute_lambda_lod_unclamped(sp_sview, sp_samp, s, t, p, dummy_grad, lod_in, control, lod); get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL); funcs->relative_level(sp_sview, sp_samp, lod, mipmap); } static void sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler, const unsigned sview_index, const int i[TGSI_QUAD_SIZE], const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE], const int lod[TGSI_QUAD_SIZE], const int8_t offset[3], float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE]) { const struct sp_tgsi_sampler *sp_samp = sp_tgsi_sampler_cast_c(tgsi_sampler); assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS); /* always have a view here but texture is NULL if no sampler view was set. */ if (!sp_samp->sp_sview[sview_index].base.texture) { int i, j; for (j = 0; j < TGSI_NUM_CHANNELS; j++) { for (i = 0; i < TGSI_QUAD_SIZE; i++) { rgba[j][i] = 0.0f; } } return; } sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba); } struct sp_tgsi_sampler * sp_create_tgsi_sampler(void) { struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler); if (!samp) return NULL; samp->base.get_dims = sp_tgsi_get_dims; samp->base.get_samples = sp_tgsi_get_samples; samp->base.get_texel = sp_tgsi_get_texel; samp->base.query_lod = sp_tgsi_query_lod; return samp; }