/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #ifndef BRW_CFG_H #define BRW_CFG_H #include "brw_ir.h" #ifdef __cplusplus #include "brw_ir_analysis.h" #endif struct bblock_t; /** * CFG edge types. * * A logical edge represents a potential control flow path of the original * scalar program, while a physical edge represents a control flow path that * may not have existed in the original program but was introduced during * vectorization in order to implement divergent control flow of different * shader invocations within the same SIMD thread. * * All logical edges in the CFG are considered to be physical edges but not * the other way around -- I.e. the logical CFG is a subset of the physical * one. */ enum bblock_link_kind { bblock_link_logical = 0, bblock_link_physical }; struct bblock_link { #ifdef __cplusplus DECLARE_RALLOC_CXX_OPERATORS(bblock_link) bblock_link(bblock_t *block, enum bblock_link_kind kind) : block(block), kind(kind) { } #endif struct exec_node link; struct bblock_t *block; /* Type of this CFG edge. Because bblock_link_logical also implies * bblock_link_physical, the proper way to test for membership of edge 'l' * in CFG kind 'k' is 'l.kind <= k'. */ enum bblock_link_kind kind; }; struct backend_shader; struct cfg_t; struct bblock_t { #ifdef __cplusplus DECLARE_RALLOC_CXX_OPERATORS(bblock_t) explicit bblock_t(cfg_t *cfg); void add_successor(void *mem_ctx, bblock_t *successor, enum bblock_link_kind kind); bool is_predecessor_of(const bblock_t *block, enum bblock_link_kind kind) const; bool is_successor_of(const bblock_t *block, enum bblock_link_kind kind) const; bool can_combine_with(const bblock_t *that) const; void combine_with(bblock_t *that); void dump() const; backend_instruction *start(); const backend_instruction *start() const; backend_instruction *end(); const backend_instruction *end() const; bblock_t *next(); const bblock_t *next() const; bblock_t *prev(); const bblock_t *prev() const; bool starts_with_control_flow() const; bool ends_with_control_flow() const; backend_instruction *first_non_control_flow_inst(); backend_instruction *last_non_control_flow_inst(); #endif struct exec_node link; struct cfg_t *cfg; int start_ip; int end_ip; struct exec_list instructions; struct exec_list parents; struct exec_list children; int num; }; static inline struct backend_instruction * bblock_start(struct bblock_t *block) { return (struct backend_instruction *)exec_list_get_head(&block->instructions); } static inline const struct backend_instruction * bblock_start_const(const struct bblock_t *block) { return (const struct backend_instruction *)exec_list_get_head_const(&block->instructions); } static inline struct backend_instruction * bblock_end(struct bblock_t *block) { return (struct backend_instruction *)exec_list_get_tail(&block->instructions); } static inline const struct backend_instruction * bblock_end_const(const struct bblock_t *block) { return (const struct backend_instruction *)exec_list_get_tail_const(&block->instructions); } static inline struct bblock_t * bblock_next(struct bblock_t *block) { if (exec_node_is_tail_sentinel(block->link.next)) return NULL; return (struct bblock_t *)block->link.next; } static inline const struct bblock_t * bblock_next_const(const struct bblock_t *block) { if (exec_node_is_tail_sentinel(block->link.next)) return NULL; return (const struct bblock_t *)block->link.next; } static inline struct bblock_t * bblock_prev(struct bblock_t *block) { if (exec_node_is_head_sentinel(block->link.prev)) return NULL; return (struct bblock_t *)block->link.prev; } static inline const struct bblock_t * bblock_prev_const(const struct bblock_t *block) { if (exec_node_is_head_sentinel(block->link.prev)) return NULL; return (const struct bblock_t *)block->link.prev; } static inline bool bblock_starts_with_control_flow(const struct bblock_t *block) { enum opcode op = bblock_start_const(block)->opcode; return op == BRW_OPCODE_DO || op == BRW_OPCODE_ENDIF; } static inline bool bblock_ends_with_control_flow(const struct bblock_t *block) { enum opcode op = bblock_end_const(block)->opcode; return op == BRW_OPCODE_IF || op == BRW_OPCODE_ELSE || op == BRW_OPCODE_WHILE || op == BRW_OPCODE_BREAK || op == BRW_OPCODE_CONTINUE; } static inline struct backend_instruction * bblock_first_non_control_flow_inst(struct bblock_t *block) { struct backend_instruction *inst = bblock_start(block); if (bblock_starts_with_control_flow(block)) #ifdef __cplusplus inst = (struct backend_instruction *)inst->next; #else inst = (struct backend_instruction *)inst->link.next; #endif return inst; } static inline struct backend_instruction * bblock_last_non_control_flow_inst(struct bblock_t *block) { struct backend_instruction *inst = bblock_end(block); if (bblock_ends_with_control_flow(block)) #ifdef __cplusplus inst = (struct backend_instruction *)inst->prev; #else inst = (struct backend_instruction *)inst->link.prev; #endif return inst; } #ifdef __cplusplus inline backend_instruction * bblock_t::start() { return bblock_start(this); } inline const backend_instruction * bblock_t::start() const { return bblock_start_const(this); } inline backend_instruction * bblock_t::end() { return bblock_end(this); } inline const backend_instruction * bblock_t::end() const { return bblock_end_const(this); } inline bblock_t * bblock_t::next() { return bblock_next(this); } inline const bblock_t * bblock_t::next() const { return bblock_next_const(this); } inline bblock_t * bblock_t::prev() { return bblock_prev(this); } inline const bblock_t * bblock_t::prev() const { return bblock_prev_const(this); } inline bool bblock_t::starts_with_control_flow() const { return bblock_starts_with_control_flow(this); } inline bool bblock_t::ends_with_control_flow() const { return bblock_ends_with_control_flow(this); } inline backend_instruction * bblock_t::first_non_control_flow_inst() { return bblock_first_non_control_flow_inst(this); } inline backend_instruction * bblock_t::last_non_control_flow_inst() { return bblock_last_non_control_flow_inst(this); } #endif struct cfg_t { #ifdef __cplusplus DECLARE_RALLOC_CXX_OPERATORS(cfg_t) cfg_t(const backend_shader *s, exec_list *instructions); ~cfg_t(); void remove_block(bblock_t *block); bblock_t *first_block(); const bblock_t *first_block() const; bblock_t *last_block(); const bblock_t *last_block() const; bblock_t *new_block(); void set_next_block(bblock_t **cur, bblock_t *block, int ip); void make_block_array(); void dump(); void dump_cfg(); #endif const struct backend_shader *s; void *mem_ctx; /** Ordered list (by ip) of basic blocks */ struct exec_list block_list; struct bblock_t **blocks; int num_blocks; }; static inline struct bblock_t * cfg_first_block(struct cfg_t *cfg) { return (struct bblock_t *)exec_list_get_head(&cfg->block_list); } static inline const struct bblock_t * cfg_first_block_const(const struct cfg_t *cfg) { return (const struct bblock_t *)exec_list_get_head_const(&cfg->block_list); } static inline struct bblock_t * cfg_last_block(struct cfg_t *cfg) { return (struct bblock_t *)exec_list_get_tail(&cfg->block_list); } static inline const struct bblock_t * cfg_last_block_const(const struct cfg_t *cfg) { return (const struct bblock_t *)exec_list_get_tail_const(&cfg->block_list); } #ifdef __cplusplus inline bblock_t * cfg_t::first_block() { return cfg_first_block(this); } const inline bblock_t * cfg_t::first_block() const { return cfg_first_block_const(this); } inline bblock_t * cfg_t::last_block() { return cfg_last_block(this); } const inline bblock_t * cfg_t::last_block() const { return cfg_last_block_const(this); } #endif /* Note that this is implemented with a double for loop -- break will * break from the inner loop only! */ #define foreach_block_and_inst(__block, __type, __inst, __cfg) \ foreach_block (__block, __cfg) \ foreach_inst_in_block (__type, __inst, __block) /* Note that this is implemented with a double for loop -- break will * break from the inner loop only! */ #define foreach_block_and_inst_safe(__block, __type, __inst, __cfg) \ foreach_block_safe (__block, __cfg) \ foreach_inst_in_block_safe (__type, __inst, __block) #define foreach_block(__block, __cfg) \ foreach_list_typed (bblock_t, __block, link, &(__cfg)->block_list) #define foreach_block_reverse(__block, __cfg) \ foreach_list_typed_reverse (bblock_t, __block, link, &(__cfg)->block_list) #define foreach_block_safe(__block, __cfg) \ foreach_list_typed_safe (bblock_t, __block, link, &(__cfg)->block_list) #define foreach_block_reverse_safe(__block, __cfg) \ foreach_list_typed_reverse_safe (bblock_t, __block, link, &(__cfg)->block_list) #define foreach_inst_in_block(__type, __inst, __block) \ foreach_in_list(__type, __inst, &(__block)->instructions) #define foreach_inst_in_block_safe(__type, __inst, __block) \ for (__type *__inst = (__type *)__block->instructions.head_sentinel.next, \ *__next = (__type *)__inst->next; \ __next != NULL; \ __inst = __next, \ __next = (__type *)__next->next) #define foreach_inst_in_block_reverse(__type, __inst, __block) \ foreach_in_list_reverse(__type, __inst, &(__block)->instructions) #define foreach_inst_in_block_reverse_safe(__type, __inst, __block) \ foreach_in_list_reverse_safe(__type, __inst, &(__block)->instructions) #define foreach_inst_in_block_starting_from(__type, __scan_inst, __inst) \ for (__type *__scan_inst = (__type *)__inst->next; \ !__scan_inst->is_tail_sentinel(); \ __scan_inst = (__type *)__scan_inst->next) #define foreach_inst_in_block_reverse_starting_from(__type, __scan_inst, __inst) \ for (__type *__scan_inst = (__type *)__inst->prev; \ !__scan_inst->is_head_sentinel(); \ __scan_inst = (__type *)__scan_inst->prev) #ifdef __cplusplus namespace brw { /** * Immediate dominator tree analysis of a shader. */ struct idom_tree { idom_tree(const backend_shader *s); ~idom_tree(); bool validate(const backend_shader *) const { /* FINISHME */ return true; } analysis_dependency_class dependency_class() const { return DEPENDENCY_BLOCKS; } const bblock_t * parent(const bblock_t *b) const { assert(unsigned(b->num) < num_parents); return parents[b->num]; } bblock_t * parent(bblock_t *b) const { assert(unsigned(b->num) < num_parents); return parents[b->num]; } bblock_t * intersect(bblock_t *b1, bblock_t *b2) const; void dump() const; private: unsigned num_parents; bblock_t **parents; }; } #endif #endif /* BRW_CFG_H */