/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_fs.h" #include "brw_fs_live_variables.h" using namespace brw; #define MAX_INSTRUCTION (1 << 30) /** @file brw_fs_live_variables.cpp * * Support for calculating liveness information about virtual GRFs. * * This produces a live interval for each whole virtual GRF. We could * choose to expose per-component live intervals for VGRFs of size > 1, * but we currently do not. It is easier for the consumers of this * information to work with whole VGRFs. * * However, we internally track use/def information at the per-GRF level for * greater accuracy. Large VGRFs may be accessed piecemeal over many * (possibly non-adjacent) instructions. In this case, examining a single * instruction is insufficient to decide whether a whole VGRF is ultimately * used or defined. Tracking individual components allows us to easily * assemble this information. * * See Muchnick's Advanced Compiler Design and Implementation, section * 14.1 (p444). */ void fs_live_variables::setup_one_read(struct block_data *bd, int ip, const fs_reg ®) { int var = var_from_reg(reg); assert(var < num_vars); start[var] = MIN2(start[var], ip); end[var] = MAX2(end[var], ip); /* The use[] bitset marks when the block makes use of a variable (VGRF * channel) without having completely defined that variable within the * block. */ if (!BITSET_TEST(bd->def, var)) BITSET_SET(bd->use, var); } void fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst, int ip, const fs_reg ®) { int var = var_from_reg(reg); assert(var < num_vars); start[var] = MIN2(start[var], ip); end[var] = MAX2(end[var], ip); /* The def[] bitset marks when an initialization in a block completely * screens off previous updates of that variable (VGRF channel). */ if (inst->dst.file == VGRF) { if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var)) BITSET_SET(bd->def, var); BITSET_SET(bd->defout, var); } } /** * Sets up the use[] and def[] bitsets. * * The basic-block-level live variable analysis needs to know which * variables get used before they're completely defined, and which * variables are completely defined before they're used. * * These are tracked at the per-component level, rather than whole VGRFs. */ void fs_live_variables::setup_def_use() { int ip = 0; foreach_block (block, cfg) { assert(ip == block->start_ip); if (block->num > 0) assert(cfg->blocks[block->num - 1]->end_ip == ip - 1); struct block_data *bd = &block_data[block->num]; foreach_inst_in_block(fs_inst, inst, block) { /* Set use[] for this instruction */ for (unsigned int i = 0; i < inst->sources; i++) { fs_reg reg = inst->src[i]; if (reg.file != VGRF) continue; for (unsigned j = 0; j < regs_read(inst, i); j++) { setup_one_read(bd, ip, reg); reg.offset += REG_SIZE; } } bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0]; /* Set def[] for this instruction */ if (inst->dst.file == VGRF) { fs_reg reg = inst->dst; for (unsigned j = 0; j < regs_written(inst); j++) { setup_one_write(bd, inst, ip, reg); reg.offset += REG_SIZE; } } if (!inst->predicate && inst->exec_size >= 8) bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0]; ip++; } } } /** * The algorithm incrementally sets bits in liveout and livein, * propagating it through control flow. It will eventually terminate * because it only ever adds bits, and stops when no bits are added in * a pass. */ void fs_live_variables::compute_live_variables() { bool cont = true; while (cont) { cont = false; foreach_block_reverse (block, cfg) { struct block_data *bd = &block_data[block->num]; /* Update liveout */ foreach_list_typed(bblock_link, child_link, link, &block->children) { struct block_data *child_bd = &block_data[child_link->block->num]; for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_liveout = (child_bd->livein[i] & ~bd->liveout[i]); if (new_liveout) { bd->liveout[i] |= new_liveout; cont = true; } } BITSET_WORD new_liveout = (child_bd->flag_livein[0] & ~bd->flag_liveout[0]); if (new_liveout) { bd->flag_liveout[0] |= new_liveout; cont = true; } } /* Update livein */ for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_livein = (bd->use[i] | (bd->liveout[i] & ~bd->def[i])); if (new_livein & ~bd->livein[i]) { bd->livein[i] |= new_livein; cont = true; } } BITSET_WORD new_livein = (bd->flag_use[0] | (bd->flag_liveout[0] & ~bd->flag_def[0])); if (new_livein & ~bd->flag_livein[0]) { bd->flag_livein[0] |= new_livein; cont = true; } } } /* Propagate defin and defout down the CFG to calculate the union of live * variables potentially defined along any possible control flow path. */ do { cont = false; foreach_block (block, cfg) { const struct block_data *bd = &block_data[block->num]; foreach_list_typed(bblock_link, child_link, link, &block->children) { struct block_data *child_bd = &block_data[child_link->block->num]; for (int i = 0; i < bitset_words; i++) { const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i]; child_bd->defin[i] |= new_def; child_bd->defout[i] |= new_def; cont |= new_def; } } } } while (cont); } /** * Extend the start/end ranges for each variable to account for the * new information calculated from control flow. */ void fs_live_variables::compute_start_end() { foreach_block (block, cfg) { struct block_data *bd = &block_data[block->num]; for (int w = 0; w < bitset_words; w++) { BITSET_WORD livedefin = bd->livein[w] & bd->defin[w]; BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w]; BITSET_WORD livedefinout = livedefin | livedefout; while (livedefinout) { unsigned b = u_bit_scan(&livedefinout); unsigned i = w * BITSET_WORDBITS + b; if (livedefin & (1u << b)) { start[i] = MIN2(start[i], block->start_ip); end[i] = MAX2(end[i], block->start_ip); } if (livedefout & (1u << b)) { start[i] = MIN2(start[i], block->end_ip); end[i] = MAX2(end[i], block->end_ip); } } } } } fs_live_variables::fs_live_variables(const backend_shader *s) : devinfo(s->devinfo), cfg(s->cfg) { mem_ctx = ralloc_context(NULL); num_vgrfs = s->alloc.count; num_vars = 0; var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs); for (int i = 0; i < num_vgrfs; i++) { var_from_vgrf[i] = num_vars; num_vars += s->alloc.sizes[i]; } vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars); for (int i = 0; i < num_vgrfs; i++) { for (unsigned j = 0; j < s->alloc.sizes[i]; j++) { vgrf_from_var[var_from_vgrf[i] + j] = i; } } start = ralloc_array(mem_ctx, int, num_vars); end = rzalloc_array(mem_ctx, int, num_vars); for (int i = 0; i < num_vars; i++) { start[i] = MAX_INSTRUCTION; end[i] = -1; } vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs); vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs); for (int i = 0; i < num_vgrfs; i++) { vgrf_start[i] = MAX_INSTRUCTION; vgrf_end[i] = -1; } block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); bitset_words = BITSET_WORDS(num_vars); for (int i = 0; i < cfg->num_blocks; i++) { block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); block_data[i].flag_def[0] = 0; block_data[i].flag_use[0] = 0; block_data[i].flag_livein[0] = 0; block_data[i].flag_liveout[0] = 0; } setup_def_use(); compute_live_variables(); compute_start_end(); /* Merge the per-component live ranges to whole VGRF live ranges. */ for (int i = 0; i < num_vars; i++) { const unsigned vgrf = vgrf_from_var[i]; vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]); vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]); } } fs_live_variables::~fs_live_variables() { ralloc_free(mem_ctx); } static bool check_register_live_range(const fs_live_variables *live, int ip, const fs_reg ®, unsigned n) { const unsigned var = live->var_from_reg(reg); if (var + n > unsigned(live->num_vars) || live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip) return false; for (unsigned j = 0; j < n; j++) { if (live->start[var + j] > ip || live->end[var + j] < ip) return false; } return true; } bool fs_live_variables::validate(const backend_shader *s) const { int ip = 0; foreach_block_and_inst(block, fs_inst, inst, s->cfg) { for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF && !check_register_live_range(this, ip, inst->src[i], regs_read(inst, i))) return false; } if (inst->dst.file == VGRF && !check_register_live_range(this, ip, inst->dst, regs_written(inst))) return false; ip++; } return true; } bool fs_live_variables::vars_interfere(int a, int b) const { return !(end[b] <= start[a] || end[a] <= start[b]); } bool fs_live_variables::vgrfs_interfere(int a, int b) const { return !(vgrf_end[a] <= vgrf_start[b] || vgrf_end[b] <= vgrf_start[a]); }