/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * @file brw_vec4_copy_propagation.cpp * * Implements tracking of values copied between registers, and * optimizations based on that: copy propagation and constant * propagation. */ #include "brw_vec4.h" #include "brw_cfg.h" #include "brw_eu.h" namespace brw { struct copy_entry { src_reg *value[4]; int saturatemask; }; static bool is_direct_copy(vec4_instruction *inst) { return (inst->opcode == BRW_OPCODE_MOV && !inst->predicate && inst->dst.file == VGRF && inst->dst.offset % REG_SIZE == 0 && !inst->dst.reladdr && !inst->src[0].reladdr && (inst->dst.type == inst->src[0].type || (inst->dst.type == BRW_REGISTER_TYPE_F && inst->src[0].type == BRW_REGISTER_TYPE_VF))); } static bool is_dominated_by_previous_instruction(vec4_instruction *inst) { return (inst->opcode != BRW_OPCODE_DO && inst->opcode != BRW_OPCODE_WHILE && inst->opcode != BRW_OPCODE_ELSE && inst->opcode != BRW_OPCODE_ENDIF); } static bool is_channel_updated(vec4_instruction *inst, src_reg *values[4], int ch) { const src_reg *src = values[ch]; /* consider GRF only */ assert(inst->dst.file == VGRF); if (!src || src->file != VGRF) return false; return regions_overlap(*src, REG_SIZE, inst->dst, inst->size_written) && (inst->dst.offset != src->offset || inst->dst.writemask & (1 << BRW_GET_SWZ(src->swizzle, ch))); } /** * Get the origin of a copy as a single register if all components present in * the given readmask originate from the same register and have compatible * regions, otherwise return a BAD_FILE register. */ static src_reg get_copy_value(const copy_entry &entry, unsigned readmask) { unsigned swz[4] = {}; src_reg value; for (unsigned i = 0; i < 4; i++) { if (readmask & (1 << i)) { if (entry.value[i]) { src_reg src = *entry.value[i]; if (src.file == IMM) { swz[i] = i; } else { swz[i] = BRW_GET_SWZ(src.swizzle, i); /* Overwrite the original swizzle so the src_reg::equals call * below doesn't care about it, the correct swizzle will be * calculated once the swizzles of all components are known. */ src.swizzle = BRW_SWIZZLE_XYZW; } if (value.file == BAD_FILE) { value = src; } else if (!value.equals(src)) { return src_reg(); } } else { return src_reg(); } } } return swizzle(value, brw_compose_swizzle(brw_swizzle_for_mask(readmask), BRW_SWIZZLE4(swz[0], swz[1], swz[2], swz[3]))); } static bool try_constant_propagate(vec4_instruction *inst, int arg, const copy_entry *entry) { /* For constant propagation, we only handle the same constant * across all 4 channels. Some day, we should handle the 8-bit * float vector format, which would let us constant propagate * vectors better. * We could be more aggressive here -- some channels might not get used * based on the destination writemask. */ src_reg value = get_copy_value(*entry, brw_apply_inv_swizzle_to_mask(inst->src[arg].swizzle, WRITEMASK_XYZW)); if (value.file != IMM) return false; /* 64-bit types can't be used except for one-source instructions, which * higher levels should have constant folded away, so there's no point in * propagating immediates here. */ if (type_sz(value.type) == 8 || type_sz(inst->src[arg].type) == 8) return false; if (value.type == BRW_REGISTER_TYPE_VF) { /* The result of bit-casting the component values of a vector float * cannot in general be represented as an immediate. */ if (inst->src[arg].type != BRW_REGISTER_TYPE_F) return false; } else { value.type = inst->src[arg].type; } if (inst->src[arg].abs) { if (!brw_abs_immediate(value.type, &value.as_brw_reg())) return false; } if (inst->src[arg].negate) { if (!brw_negate_immediate(value.type, &value.as_brw_reg())) return false; } value = swizzle(value, inst->src[arg].swizzle); switch (inst->opcode) { case BRW_OPCODE_MOV: case SHADER_OPCODE_BROADCAST: inst->src[arg] = value; return true; case VEC4_OPCODE_UNTYPED_ATOMIC: if (arg == 1) { inst->src[arg] = value; return true; } break; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: break; case BRW_OPCODE_DP2: case BRW_OPCODE_DP3: case BRW_OPCODE_DP4: case BRW_OPCODE_DPH: case BRW_OPCODE_BFI1: case BRW_OPCODE_ASR: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case BRW_OPCODE_SUBB: if (arg == 1) { inst->src[arg] = value; return true; } break; case BRW_OPCODE_MACH: case BRW_OPCODE_MUL: case SHADER_OPCODE_MULH: case BRW_OPCODE_ADD: case BRW_OPCODE_OR: case BRW_OPCODE_AND: case BRW_OPCODE_XOR: case BRW_OPCODE_ADDC: if (arg == 1) { inst->src[arg] = value; return true; } else if (arg == 0 && inst->src[1].file != IMM) { /* Fit this constant in by commuting the operands. Exception: we * can't do this for 32-bit integer MUL/MACH because it's asymmetric. */ if ((inst->opcode == BRW_OPCODE_MUL || inst->opcode == BRW_OPCODE_MACH) && (inst->src[1].type == BRW_REGISTER_TYPE_D || inst->src[1].type == BRW_REGISTER_TYPE_UD)) break; inst->src[0] = inst->src[1]; inst->src[1] = value; return true; } break; case GS_OPCODE_SET_WRITE_OFFSET: /* This is just a multiply by a constant with special strides. * The generator will handle immediates in both arguments (generating * a single MOV of the product). So feel free to propagate in src0. */ inst->src[arg] = value; return true; case BRW_OPCODE_CMP: if (arg == 1) { inst->src[arg] = value; return true; } else if (arg == 0 && inst->src[1].file != IMM) { enum brw_conditional_mod new_cmod; new_cmod = brw_swap_cmod(inst->conditional_mod); if (new_cmod != BRW_CONDITIONAL_NONE) { /* Fit this constant in by swapping the operands and * flipping the test. */ inst->src[0] = inst->src[1]; inst->src[1] = value; inst->conditional_mod = new_cmod; return true; } } break; case BRW_OPCODE_SEL: if (arg == 1) { inst->src[arg] = value; return true; } else if (arg == 0 && inst->src[1].file != IMM) { inst->src[0] = inst->src[1]; inst->src[1] = value; /* If this was predicated, flipping operands means * we also need to flip the predicate. */ if (inst->conditional_mod == BRW_CONDITIONAL_NONE) { inst->predicate_inverse = !inst->predicate_inverse; } return true; } break; default: break; } return false; } static bool is_align1_opcode(unsigned opcode) { switch (opcode) { case VEC4_OPCODE_DOUBLE_TO_F32: case VEC4_OPCODE_DOUBLE_TO_D32: case VEC4_OPCODE_DOUBLE_TO_U32: case VEC4_OPCODE_TO_DOUBLE: case VEC4_OPCODE_PICK_LOW_32BIT: case VEC4_OPCODE_PICK_HIGH_32BIT: case VEC4_OPCODE_SET_LOW_32BIT: case VEC4_OPCODE_SET_HIGH_32BIT: return true; default: return false; } } static bool try_copy_propagate(const struct gen_device_info *devinfo, vec4_instruction *inst, int arg, const copy_entry *entry, int attributes_per_reg) { /* Build up the value we are propagating as if it were the source of a * single MOV */ src_reg value = get_copy_value(*entry, brw_apply_inv_swizzle_to_mask(inst->src[arg].swizzle, WRITEMASK_XYZW)); /* Check that we can propagate that value */ if (value.file != UNIFORM && value.file != VGRF && value.file != ATTR) return false; /* Instructions that write 2 registers also need to read 2 registers. Make * sure we don't break that restriction by copy propagating from a uniform. */ if (inst->size_written > REG_SIZE && is_uniform(value)) return false; /* There is a regioning restriction such that if execsize == width * and hstride != 0 then the vstride can't be 0. When we split instrutions * that take a single-precision source (like F->DF conversions) we end up * with a 4-wide source on an instruction with an execution size of 4. * If we then copy-propagate the source from a uniform we also end up with a * vstride of 0 and we violate the restriction. */ if (inst->exec_size == 4 && value.file == UNIFORM && type_sz(value.type) == 4) return false; /* If the type of the copy value is different from the type of the * instruction then the swizzles and writemasks involved don't have the same * meaning and simply replacing the source would produce different semantics. */ if (type_sz(value.type) != type_sz(inst->src[arg].type)) return false; if (inst->src[arg].offset % REG_SIZE || value.offset % REG_SIZE) return false; bool has_source_modifiers = value.negate || value.abs; /* gen6 math and gen7+ SENDs from GRFs ignore source modifiers on * instructions. */ if ((has_source_modifiers || value.file == UNIFORM || value.swizzle != BRW_SWIZZLE_XYZW) && !inst->can_do_source_mods(devinfo)) return false; if (has_source_modifiers && value.type != inst->src[arg].type && !inst->can_change_types()) return false; if (has_source_modifiers && (inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE || inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)) return false; unsigned composed_swizzle = brw_compose_swizzle(inst->src[arg].swizzle, value.swizzle); /* Instructions that operate on vectors in ALIGN1 mode will ignore swizzles * so copy-propagation won't be safe if the composed swizzle is anything * other than the identity. */ if (is_align1_opcode(inst->opcode) && composed_swizzle != BRW_SWIZZLE_XYZW) return false; if (inst->is_3src(devinfo) && (value.file == UNIFORM || (value.file == ATTR && attributes_per_reg != 1)) && !brw_is_single_value_swizzle(composed_swizzle)) return false; if (inst->is_send_from_grf()) return false; /* we can't generally copy-propagate UD negations becuse we * end up accessing the resulting values as signed integers * instead. See also resolve_ud_negate(). */ if (value.negate && value.type == BRW_REGISTER_TYPE_UD) return false; /* Don't report progress if this is a noop. */ if (value.equals(inst->src[arg])) return false; const unsigned dst_saturate_mask = inst->dst.writemask & brw_apply_swizzle_to_mask(inst->src[arg].swizzle, entry->saturatemask); if (dst_saturate_mask) { /* We either saturate all or nothing. */ if (dst_saturate_mask != inst->dst.writemask) return false; /* Limit saturate propagation only to SEL with src1 bounded within 0.0 * and 1.0, otherwise skip copy propagate altogether. */ switch(inst->opcode) { case BRW_OPCODE_SEL: if (arg != 0 || inst->src[0].type != BRW_REGISTER_TYPE_F || inst->src[1].file != IMM || inst->src[1].type != BRW_REGISTER_TYPE_F || inst->src[1].f < 0.0 || inst->src[1].f > 1.0) { return false; } if (!inst->saturate) inst->saturate = true; break; default: return false; } } /* Build the final value */ if (inst->src[arg].abs) { value.negate = false; value.abs = true; } if (inst->src[arg].negate) value.negate = !value.negate; value.swizzle = composed_swizzle; if (has_source_modifiers && value.type != inst->src[arg].type) { assert(inst->can_change_types()); for (int i = 0; i < 3; i++) { inst->src[i].type = value.type; } inst->dst.type = value.type; } else { value.type = inst->src[arg].type; } inst->src[arg] = value; return true; } bool vec4_visitor::opt_copy_propagation(bool do_constant_prop) { /* If we are in dual instanced or single mode, then attributes are going * to be interleaved, so one register contains two attribute slots. */ const int attributes_per_reg = prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2; bool progress = false; struct copy_entry entries[alloc.total_size]; memset(&entries, 0, sizeof(entries)); foreach_block_and_inst(block, vec4_instruction, inst, cfg) { /* This pass only works on basic blocks. If there's flow * control, throw out all our information and start from * scratch. * * This should really be fixed by using a structure like in * src/glsl/opt_copy_propagation.cpp to track available copies. */ if (!is_dominated_by_previous_instruction(inst)) { memset(&entries, 0, sizeof(entries)); continue; } /* For each source arg, see if each component comes from a copy * from the same type file (IMM, VGRF, UNIFORM), and try * optimizing out access to the copy result */ for (int i = 2; i >= 0; i--) { /* Copied values end up in GRFs, and we don't track reladdr * accesses. */ if (inst->src[i].file != VGRF || inst->src[i].reladdr) continue; /* We only handle register-aligned single GRF copies. */ if (inst->size_read(i) != REG_SIZE || inst->src[i].offset % REG_SIZE) continue; const unsigned reg = (alloc.offsets[inst->src[i].nr] + inst->src[i].offset / REG_SIZE); const copy_entry &entry = entries[reg]; if (do_constant_prop && try_constant_propagate(inst, i, &entry)) progress = true; else if (try_copy_propagate(devinfo, inst, i, &entry, attributes_per_reg)) progress = true; } /* Track available source registers. */ if (inst->dst.file == VGRF) { const int reg = alloc.offsets[inst->dst.nr] + inst->dst.offset / REG_SIZE; /* Update our destination's current channel values. For a direct copy, * the value is the newly propagated source. Otherwise, we don't know * the new value, so clear it. */ bool direct_copy = is_direct_copy(inst); entries[reg].saturatemask &= ~inst->dst.writemask; for (int i = 0; i < 4; i++) { if (inst->dst.writemask & (1 << i)) { entries[reg].value[i] = direct_copy ? &inst->src[0] : NULL; entries[reg].saturatemask |= inst->saturate && direct_copy ? 1 << i : 0; } } /* Clear the records for any registers whose current value came from * our destination's updated channels, as the two are no longer equal. */ if (inst->dst.reladdr) memset(&entries, 0, sizeof(entries)); else { for (unsigned i = 0; i < alloc.total_size; i++) { for (int j = 0; j < 4; j++) { if (is_channel_updated(inst, entries[i].value, j)) { entries[i].value[j] = NULL; entries[i].saturatemask &= ~(1 << j); } } } } } } if (progress) invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | DEPENDENCY_INSTRUCTION_DETAIL); return progress; } } /* namespace brw */