/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/blob.h" #include "util/hash_table.h" #include "util/debug.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "nir/nir_serialize.h" #include "anv_private.h" #include "nir/nir_xfb_info.h" #include "vulkan/util/vk_util.h" struct anv_shader_bin * anv_shader_bin_create(struct anv_device *device, gl_shader_stage stage, const void *key_data, uint32_t key_size, const void *kernel_data, uint32_t kernel_size, const struct brw_stage_prog_data *prog_data_in, uint32_t prog_data_size, const struct brw_compile_stats *stats, uint32_t num_stats, const nir_xfb_info *xfb_info_in, const struct anv_pipeline_bind_map *bind_map) { struct anv_shader_bin *shader; struct anv_shader_bin_key *key; struct brw_stage_prog_data *prog_data; struct brw_shader_reloc *prog_data_relocs; uint32_t *prog_data_param; nir_xfb_info *xfb_info; struct anv_pipeline_binding *surface_to_descriptor, *sampler_to_descriptor; ANV_MULTIALLOC(ma); anv_multialloc_add(&ma, &shader, 1); anv_multialloc_add_size(&ma, &key, sizeof(*key) + key_size); anv_multialloc_add_size(&ma, &prog_data, prog_data_size); anv_multialloc_add(&ma, &prog_data_relocs, prog_data_in->num_relocs); anv_multialloc_add(&ma, &prog_data_param, prog_data_in->nr_params); if (xfb_info_in) { uint32_t xfb_info_size = nir_xfb_info_size(xfb_info_in->output_count); anv_multialloc_add_size(&ma, &xfb_info, xfb_info_size); } anv_multialloc_add(&ma, &surface_to_descriptor, bind_map->surface_count); anv_multialloc_add(&ma, &sampler_to_descriptor, bind_map->sampler_count); if (!anv_multialloc_alloc(&ma, &device->vk.alloc, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE)) return NULL; shader->ref_cnt = 1; shader->stage = stage; key->size = key_size; memcpy(key->data, key_data, key_size); shader->key = key; shader->kernel = anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64); memcpy(shader->kernel.map, kernel_data, kernel_size); shader->kernel_size = kernel_size; uint64_t shader_data_addr = INSTRUCTION_STATE_POOL_MIN_ADDRESS + shader->kernel.offset + prog_data_in->const_data_offset; struct brw_shader_reloc_value reloc_values[] = { { .id = ANV_SHADER_RELOC_CONST_DATA_ADDR_LOW, .value = shader_data_addr, }, { .id = ANV_SHADER_RELOC_CONST_DATA_ADDR_HIGH, .value = shader_data_addr >> 32, }, }; brw_write_shader_relocs(&device->info, shader->kernel.map, prog_data_in, reloc_values, ARRAY_SIZE(reloc_values)); memcpy(prog_data, prog_data_in, prog_data_size); typed_memcpy(prog_data_relocs, prog_data_in->relocs, prog_data_in->num_relocs); prog_data->relocs = prog_data_relocs; memset(prog_data_param, 0, prog_data->nr_params * sizeof(*prog_data_param)); prog_data->param = prog_data_param; shader->prog_data = prog_data; shader->prog_data_size = prog_data_size; assert(num_stats <= ARRAY_SIZE(shader->stats)); typed_memcpy(shader->stats, stats, num_stats); shader->num_stats = num_stats; if (xfb_info_in) { *xfb_info = *xfb_info_in; typed_memcpy(xfb_info->outputs, xfb_info_in->outputs, xfb_info_in->output_count); shader->xfb_info = xfb_info; } else { shader->xfb_info = NULL; } shader->bind_map = *bind_map; typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor, bind_map->surface_count); shader->bind_map.surface_to_descriptor = surface_to_descriptor; typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor, bind_map->sampler_count); shader->bind_map.sampler_to_descriptor = sampler_to_descriptor; return shader; } void anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader) { assert(shader->ref_cnt == 0); anv_state_pool_free(&device->instruction_state_pool, shader->kernel); vk_free(&device->vk.alloc, shader); } static bool anv_shader_bin_write_to_blob(const struct anv_shader_bin *shader, struct blob *blob) { blob_write_uint32(blob, shader->stage); blob_write_uint32(blob, shader->key->size); blob_write_bytes(blob, shader->key->data, shader->key->size); blob_write_uint32(blob, shader->kernel_size); blob_write_bytes(blob, shader->kernel.map, shader->kernel_size); blob_write_uint32(blob, shader->prog_data_size); blob_write_bytes(blob, shader->prog_data, shader->prog_data_size); blob_write_bytes(blob, shader->prog_data->relocs, shader->prog_data->num_relocs * sizeof(shader->prog_data->relocs[0])); blob_write_uint32(blob, shader->num_stats); blob_write_bytes(blob, shader->stats, shader->num_stats * sizeof(shader->stats[0])); if (shader->xfb_info) { uint32_t xfb_info_size = nir_xfb_info_size(shader->xfb_info->output_count); blob_write_uint32(blob, xfb_info_size); blob_write_bytes(blob, shader->xfb_info, xfb_info_size); } else { blob_write_uint32(blob, 0); } blob_write_bytes(blob, shader->bind_map.surface_sha1, sizeof(shader->bind_map.surface_sha1)); blob_write_bytes(blob, shader->bind_map.sampler_sha1, sizeof(shader->bind_map.sampler_sha1)); blob_write_bytes(blob, shader->bind_map.push_sha1, sizeof(shader->bind_map.push_sha1)); blob_write_uint32(blob, shader->bind_map.surface_count); blob_write_uint32(blob, shader->bind_map.sampler_count); blob_write_bytes(blob, shader->bind_map.surface_to_descriptor, shader->bind_map.surface_count * sizeof(*shader->bind_map.surface_to_descriptor)); blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor, shader->bind_map.sampler_count * sizeof(*shader->bind_map.sampler_to_descriptor)); blob_write_bytes(blob, shader->bind_map.push_ranges, sizeof(shader->bind_map.push_ranges)); return !blob->out_of_memory; } static struct anv_shader_bin * anv_shader_bin_create_from_blob(struct anv_device *device, struct blob_reader *blob) { gl_shader_stage stage = blob_read_uint32(blob); uint32_t key_size = blob_read_uint32(blob); const void *key_data = blob_read_bytes(blob, key_size); uint32_t kernel_size = blob_read_uint32(blob); const void *kernel_data = blob_read_bytes(blob, kernel_size); uint32_t prog_data_size = blob_read_uint32(blob); const void *prog_data_bytes = blob_read_bytes(blob, prog_data_size); if (blob->overrun) return NULL; union brw_any_prog_data prog_data; memcpy(&prog_data, prog_data_bytes, MIN2(sizeof(prog_data), prog_data_size)); prog_data.base.relocs = blob_read_bytes(blob, prog_data.base.num_relocs * sizeof(prog_data.base.relocs[0])); uint32_t num_stats = blob_read_uint32(blob); const struct brw_compile_stats *stats = blob_read_bytes(blob, num_stats * sizeof(stats[0])); const nir_xfb_info *xfb_info = NULL; uint32_t xfb_size = blob_read_uint32(blob); if (xfb_size) xfb_info = blob_read_bytes(blob, xfb_size); struct anv_pipeline_bind_map bind_map; blob_copy_bytes(blob, bind_map.surface_sha1, sizeof(bind_map.surface_sha1)); blob_copy_bytes(blob, bind_map.sampler_sha1, sizeof(bind_map.sampler_sha1)); blob_copy_bytes(blob, bind_map.push_sha1, sizeof(bind_map.push_sha1)); bind_map.surface_count = blob_read_uint32(blob); bind_map.sampler_count = blob_read_uint32(blob); bind_map.surface_to_descriptor = (void *) blob_read_bytes(blob, bind_map.surface_count * sizeof(*bind_map.surface_to_descriptor)); bind_map.sampler_to_descriptor = (void *) blob_read_bytes(blob, bind_map.sampler_count * sizeof(*bind_map.sampler_to_descriptor)); blob_copy_bytes(blob, bind_map.push_ranges, sizeof(bind_map.push_ranges)); if (blob->overrun) return NULL; return anv_shader_bin_create(device, stage, key_data, key_size, kernel_data, kernel_size, &prog_data.base, prog_data_size, stats, num_stats, xfb_info, &bind_map); } /* Remaining work: * * - Compact binding table layout so it's tight and not dependent on * descriptor set layout. * * - Review prog_data struct for size and cacheability: struct * brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8 * bit quantities etc; use bit fields for all bools, eg dual_src_blend. */ static uint32_t shader_bin_key_hash_func(const void *void_key) { const struct anv_shader_bin_key *key = void_key; return _mesa_hash_data(key->data, key->size); } static bool shader_bin_key_compare_func(const void *void_a, const void *void_b) { const struct anv_shader_bin_key *a = void_a, *b = void_b; if (a->size != b->size) return false; return memcmp(a->data, b->data, a->size) == 0; } static uint32_t sha1_hash_func(const void *sha1) { return _mesa_hash_data(sha1, 20); } static bool sha1_compare_func(const void *sha1_a, const void *sha1_b) { return memcmp(sha1_a, sha1_b, 20) == 0; } void anv_pipeline_cache_init(struct anv_pipeline_cache *cache, struct anv_device *device, bool cache_enabled, bool external_sync) { vk_object_base_init(&device->vk, &cache->base, VK_OBJECT_TYPE_PIPELINE_CACHE); cache->device = device; cache->external_sync = external_sync; pthread_mutex_init(&cache->mutex, NULL); if (cache_enabled) { cache->cache = _mesa_hash_table_create(NULL, shader_bin_key_hash_func, shader_bin_key_compare_func); cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func, sha1_compare_func); } else { cache->cache = NULL; cache->nir_cache = NULL; } } void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache) { pthread_mutex_destroy(&cache->mutex); if (cache->cache) { /* This is a bit unfortunate. In order to keep things from randomly * going away, the shader cache has to hold a reference to all shader * binaries it contains. We unref them when we destroy the cache. */ hash_table_foreach(cache->cache, entry) anv_shader_bin_unref(cache->device, entry->data); _mesa_hash_table_destroy(cache->cache, NULL); } if (cache->nir_cache) { hash_table_foreach(cache->nir_cache, entry) ralloc_free(entry->data); _mesa_hash_table_destroy(cache->nir_cache, NULL); } vk_object_base_finish(&cache->base); } static struct anv_shader_bin * anv_pipeline_cache_search_locked(struct anv_pipeline_cache *cache, const void *key_data, uint32_t key_size) { uint32_t vla[1 + DIV_ROUND_UP(key_size, sizeof(uint32_t))]; struct anv_shader_bin_key *key = (void *)vla; key->size = key_size; memcpy(key->data, key_data, key_size); struct hash_entry *entry = _mesa_hash_table_search(cache->cache, key); if (entry) return entry->data; else return NULL; } static inline void anv_cache_lock(struct anv_pipeline_cache *cache) { if (!cache->external_sync) pthread_mutex_lock(&cache->mutex); } static inline void anv_cache_unlock(struct anv_pipeline_cache *cache) { if (!cache->external_sync) pthread_mutex_unlock(&cache->mutex); } struct anv_shader_bin * anv_pipeline_cache_search(struct anv_pipeline_cache *cache, const void *key_data, uint32_t key_size) { if (!cache->cache) return NULL; anv_cache_lock(cache); struct anv_shader_bin *shader = anv_pipeline_cache_search_locked(cache, key_data, key_size); anv_cache_unlock(cache); /* We increment refcount before handing it to the caller */ if (shader) anv_shader_bin_ref(shader); return shader; } static void anv_pipeline_cache_add_shader_bin(struct anv_pipeline_cache *cache, struct anv_shader_bin *bin) { if (!cache->cache) return; anv_cache_lock(cache); struct hash_entry *entry = _mesa_hash_table_search(cache->cache, bin->key); if (entry == NULL) { /* Take a reference for the cache */ anv_shader_bin_ref(bin); _mesa_hash_table_insert(cache->cache, bin->key, bin); } anv_cache_unlock(cache); } static struct anv_shader_bin * anv_pipeline_cache_add_shader_locked(struct anv_pipeline_cache *cache, gl_shader_stage stage, const void *key_data, uint32_t key_size, const void *kernel_data, uint32_t kernel_size, const struct brw_stage_prog_data *prog_data, uint32_t prog_data_size, const struct brw_compile_stats *stats, uint32_t num_stats, const nir_xfb_info *xfb_info, const struct anv_pipeline_bind_map *bind_map) { struct anv_shader_bin *shader = anv_pipeline_cache_search_locked(cache, key_data, key_size); if (shader) return shader; struct anv_shader_bin *bin = anv_shader_bin_create(cache->device, stage, key_data, key_size, kernel_data, kernel_size, prog_data, prog_data_size, stats, num_stats, xfb_info, bind_map); if (!bin) return NULL; _mesa_hash_table_insert(cache->cache, bin->key, bin); return bin; } struct anv_shader_bin * anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache, gl_shader_stage stage, const void *key_data, uint32_t key_size, const void *kernel_data, uint32_t kernel_size, const struct brw_stage_prog_data *prog_data, uint32_t prog_data_size, const struct brw_compile_stats *stats, uint32_t num_stats, const nir_xfb_info *xfb_info, const struct anv_pipeline_bind_map *bind_map) { if (cache->cache) { anv_cache_lock(cache); struct anv_shader_bin *bin = anv_pipeline_cache_add_shader_locked(cache, stage, key_data, key_size, kernel_data, kernel_size, prog_data, prog_data_size, stats, num_stats, xfb_info, bind_map); anv_cache_unlock(cache); /* We increment refcount before handing it to the caller */ if (bin) anv_shader_bin_ref(bin); return bin; } else { /* In this case, we're not caching it so the caller owns it entirely */ return anv_shader_bin_create(cache->device, stage, key_data, key_size, kernel_data, kernel_size, prog_data, prog_data_size, stats, num_stats, xfb_info, bind_map); } } static void anv_pipeline_cache_load(struct anv_pipeline_cache *cache, const void *data, size_t size) { struct anv_device *device = cache->device; struct anv_physical_device *pdevice = device->physical; if (cache->cache == NULL) return; struct blob_reader blob; blob_reader_init(&blob, data, size); struct vk_pipeline_cache_header header; blob_copy_bytes(&blob, &header, sizeof(header)); uint32_t count = blob_read_uint32(&blob); if (blob.overrun) return; if (header.header_size < sizeof(header)) return; if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) return; if (header.vendor_id != 0x8086) return; if (header.device_id != device->info.chipset_id) return; if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0) return; for (uint32_t i = 0; i < count; i++) { struct anv_shader_bin *bin = anv_shader_bin_create_from_blob(device, &blob); if (!bin) break; _mesa_hash_table_insert(cache->cache, bin->key, bin); } } VkResult anv_CreatePipelineCache( VkDevice _device, const VkPipelineCacheCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineCache* pPipelineCache) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_pipeline_cache *cache; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO); cache = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*cache), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (cache == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); anv_pipeline_cache_init(cache, device, device->physical->instance->pipeline_cache_enabled, pCreateInfo->flags & VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT_EXT); if (pCreateInfo->initialDataSize > 0) anv_pipeline_cache_load(cache, pCreateInfo->pInitialData, pCreateInfo->initialDataSize); *pPipelineCache = anv_pipeline_cache_to_handle(cache); return VK_SUCCESS; } void anv_DestroyPipelineCache( VkDevice _device, VkPipelineCache _cache, const VkAllocationCallbacks* pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache); if (!cache) return; anv_pipeline_cache_finish(cache); vk_free2(&device->vk.alloc, pAllocator, cache); } VkResult anv_GetPipelineCacheData( VkDevice _device, VkPipelineCache _cache, size_t* pDataSize, void* pData) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache); struct blob blob; if (pData) { blob_init_fixed(&blob, pData, *pDataSize); } else { blob_init_fixed(&blob, NULL, SIZE_MAX); } struct vk_pipeline_cache_header header = { .header_size = sizeof(struct vk_pipeline_cache_header), .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE, .vendor_id = 0x8086, .device_id = device->info.chipset_id, }; memcpy(header.uuid, device->physical->pipeline_cache_uuid, VK_UUID_SIZE); blob_write_bytes(&blob, &header, sizeof(header)); uint32_t count = 0; intptr_t count_offset = blob_reserve_uint32(&blob); if (count_offset < 0) { *pDataSize = 0; blob_finish(&blob); return VK_INCOMPLETE; } VkResult result = VK_SUCCESS; if (cache->cache) { hash_table_foreach(cache->cache, entry) { struct anv_shader_bin *shader = entry->data; size_t save_size = blob.size; if (!anv_shader_bin_write_to_blob(shader, &blob)) { /* If it fails reset to the previous size and bail */ blob.size = save_size; result = VK_INCOMPLETE; break; } count++; } } blob_overwrite_uint32(&blob, count_offset, count); *pDataSize = blob.size; blob_finish(&blob); return result; } VkResult anv_MergePipelineCaches( VkDevice _device, VkPipelineCache destCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches) { ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache); if (!dst->cache) return VK_SUCCESS; for (uint32_t i = 0; i < srcCacheCount; i++) { ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]); if (!src->cache) continue; hash_table_foreach(src->cache, entry) { struct anv_shader_bin *bin = entry->data; assert(bin); if (_mesa_hash_table_search(dst->cache, bin->key)) continue; anv_shader_bin_ref(bin); _mesa_hash_table_insert(dst->cache, bin->key, bin); } } return VK_SUCCESS; } struct anv_shader_bin * anv_device_search_for_kernel(struct anv_device *device, struct anv_pipeline_cache *cache, const void *key_data, uint32_t key_size, bool *user_cache_hit) { struct anv_shader_bin *bin; *user_cache_hit = false; if (cache) { bin = anv_pipeline_cache_search(cache, key_data, key_size); if (bin) { *user_cache_hit = cache != &device->default_pipeline_cache; return bin; } } #ifdef ENABLE_SHADER_CACHE struct disk_cache *disk_cache = device->physical->disk_cache; if (disk_cache && device->physical->instance->pipeline_cache_enabled) { cache_key cache_key; disk_cache_compute_key(disk_cache, key_data, key_size, cache_key); size_t buffer_size; uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size); if (buffer) { struct blob_reader blob; blob_reader_init(&blob, buffer, buffer_size); bin = anv_shader_bin_create_from_blob(device, &blob); free(buffer); if (bin) { if (cache) anv_pipeline_cache_add_shader_bin(cache, bin); return bin; } } } #endif return NULL; } struct anv_shader_bin * anv_device_upload_kernel(struct anv_device *device, struct anv_pipeline_cache *cache, gl_shader_stage stage, const void *key_data, uint32_t key_size, const void *kernel_data, uint32_t kernel_size, const struct brw_stage_prog_data *prog_data, uint32_t prog_data_size, const struct brw_compile_stats *stats, uint32_t num_stats, const nir_xfb_info *xfb_info, const struct anv_pipeline_bind_map *bind_map) { struct anv_shader_bin *bin; if (cache) { bin = anv_pipeline_cache_upload_kernel(cache, stage, key_data, key_size, kernel_data, kernel_size, prog_data, prog_data_size, stats, num_stats, xfb_info, bind_map); } else { bin = anv_shader_bin_create(device, stage, key_data, key_size, kernel_data, kernel_size, prog_data, prog_data_size, stats, num_stats, xfb_info, bind_map); } if (bin == NULL) return NULL; #ifdef ENABLE_SHADER_CACHE struct disk_cache *disk_cache = device->physical->disk_cache; if (disk_cache) { struct blob binary; blob_init(&binary); if (anv_shader_bin_write_to_blob(bin, &binary)) { cache_key cache_key; disk_cache_compute_key(disk_cache, key_data, key_size, cache_key); disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL); } blob_finish(&binary); } #endif return bin; } struct serialized_nir { unsigned char sha1_key[20]; size_t size; char data[0]; }; struct nir_shader * anv_device_search_for_nir(struct anv_device *device, struct anv_pipeline_cache *cache, const nir_shader_compiler_options *nir_options, unsigned char sha1_key[20], void *mem_ctx) { if (cache && cache->nir_cache) { const struct serialized_nir *snir = NULL; anv_cache_lock(cache); struct hash_entry *entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); if (entry) snir = entry->data; anv_cache_unlock(cache); if (snir) { struct blob_reader blob; blob_reader_init(&blob, snir->data, snir->size); nir_shader *nir = nir_deserialize(mem_ctx, nir_options, &blob); if (blob.overrun) { ralloc_free(nir); } else { return nir; } } } return NULL; } void anv_device_upload_nir(struct anv_device *device, struct anv_pipeline_cache *cache, const struct nir_shader *nir, unsigned char sha1_key[20]) { if (cache && cache->nir_cache) { anv_cache_lock(cache); struct hash_entry *entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); anv_cache_unlock(cache); if (entry) return; struct blob blob; blob_init(&blob); nir_serialize(&blob, nir, false); if (blob.out_of_memory) { blob_finish(&blob); return; } anv_cache_lock(cache); /* Because ralloc isn't thread-safe, we have to do all this inside the * lock. We could unlock for the big memcpy but it's probably not worth * the hassle. */ entry = _mesa_hash_table_search(cache->nir_cache, sha1_key); if (entry) { blob_finish(&blob); anv_cache_unlock(cache); return; } struct serialized_nir *snir = ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size); memcpy(snir->sha1_key, sha1_key, 20); snir->size = blob.size; memcpy(snir->data, blob.data, blob.size); blob_finish(&blob); _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir); anv_cache_unlock(cache); } }